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ABSTRACT

As technology scales and frequency increases, a new design style
is emerging, referred to as hybrid designs, which contain a mixture
of random logic and datapath standard cell components. This work
begins by demonstrating that conventional Half-Perimeter Wire Le-
ngth (HPWL)-driven placers under-perform in terms of regularity
and Steiner Wire Length (StWL) for such hybrid designs, and the
quality gap between manual placement and automatic placers is
more pronounced as the designs become more datapath-oriented.
Then, a new unified placement flow that simultaneously handles
random logic and datapath standard cells is proposed that signifi-
cantly improves the placement quality of the datapath while lever-
aging the speed of modern state-of-the-art placement algorithms.
The placement flow is built on top of a leading academic force-
directed placer. It consists of a series of novel global and detailed
placement techniques, collectively called Structure Aware Place-
ment Techniques (SAPT). The techniques effectively integrate align-
ment constraints into placement, overcoming the deficiencies of the
HPWL objective. Experimental results comparing our placement
flow with six state-of-the-art placers on the ISPD 2011 Datapath
Benchmark Suite show at least a 32% improvement in total StWL
with over a 6× improvement in total routing overflow. In addi-
tion, the flow demonstrates an 8.25% improvement in total StWL
on industrial hybrid designs.

Categories and Subject Descriptors

B.7.2 [Hardware, Integrated Circuits]: Design Aids—Placement

and Routing

General Terms

Design
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1. INTRODUCTION
As ASIC frequency exceeds 1GHz and shrinking schedules drive

increased automation for microprocessor designs, the boundary be-
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tween manually designed datapath logic and random logic macros
is blurring. A new design style, referred to as hybrid designs,
is emerging that contains both random logic and datapath logic.
The datapath logic generally refers to circuit structures contain-
ing highly parallel bit operations [1], (often called the bit-stack)
and careful design is important for high frequency designs. Prior
work [2] has shown that, with separate placement engines, a dedi-
cated datapath placer may overly constrain the random logic place-
ment solution causing overall degradation in congestion and wire
length. A single placement flow handling both structures is ex-
tremely valuable, improving design time, quality, and saving de-
velopment and maintenance costs. However, [3,4] demonstrate that
most state-of-the-art placers are incapable of handling designs with
regular structure. This is because, in part, current wirelength-driven
placement algorithms are unaware of the structure of the datapath.
However, with a bit of minimal design guidance, this work shows
that an HPWL-driven placer can be taught to handle these situa-
tions much better than they do today. The clue is high fanout nets
disrupting the structure of the datapath. Most placers will create
a clique with a very low weight to model these nets, or treat them
just like any other. To minimize the HPWL of a high fanout net, a
placer naturally clumps it into a ball, but that is the exact opposite
of what is required by a regular datapath structure, as shown in [5].

In this paper, effective techniques are proposed that can be in-
corporated within existing random-logic targeted placers to better
handle designs with embedded datapaths. A novel placement flow
is proposed that leverages the speed and flexibility of state-of-the-
art HPWL-driven placers while imposing alignment constraints, to
achieve better regularity of the datapaths and better StWL results.

The key contributions of this work are as follows:

1. A study of obstacles to current academic placers: the inad-
equacies and specifically the lack of fidelity of the HPWL
model versus StWL model when evaluating datapath logic.

2. A key insight to bit-stack alignment: alignment of the bit-
stack guides indirect StWL optimization, and significantly
improves total StWL and routing congestion.

3. A novel placement flow: Structure Aware Placement Tech-
niques (SAPT) that can be incorporated within existing HPWL-
driven placers to enable better alignment of the embedded
datapaths during both global and detailed placement.

Section 2 outlines the problem faced by current random logic
placers when placing datapath logic. Section 3 describes the place-
ment flow consisting of two global placement techniques and two
detailed placement techniques, which provide alignment constraints
to the datapath. Experimental results are presented in Section 4 and
finally, conclusions and future work are presented in Section 5.
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2. MOTIVATION
Datapath logic can refer to a wide variety of logic circuits in-

cluding adders, multipliers, rotators, and other logics implemented
within pipeline stages. This section discusses: (a) some of the ben-
efits derived from a unified placement framework able to align cells
during placement, (b) problems with existing random logic placers,
and (c) datapath HPWL accuracy metrics; for designs containing
datapath logic circuits.

2.1 The need for a Unified Placement
Framework

Datapath logic circuits are traditionally placed by a separate dat-
apath placer such as [1, 6, 7]. These separate datapath placement
techniques generate highly efficient and tightly packed placements.
After the datapath is placed, these methods generate a larger macro
block or small individual bit-slice macro blocks, that are then placed
similar to a movable macro block by the main random logic mixed-
size placer. The primary drawback of these approaches is that
even though a datapath placer may minimize the local wire length
through cell ordering [8] or optimizing specific bit-stacks [9], the
global connectivity of the placement problem with the embedded
datapath is not taken into account. As shown by [2–4], the added
constraints from this shortcoming, in general, produce suboptimal
results. Additionally, a significant benefit from a unified placement
framework comes in the form of reduced development and support
costs derived from a single placement framework versus multiple.

2.2 StWL and HPWL Comparisons for
Datapath Circuits

Most placers will create a clique with a very low weight to model
high fanout nets, or treat them just like any other. To minimize
the HPWL of a high fanout net, a placer naturally clumps it into a
ball, but that is the exact opposite of what is required by a regular
datapath structure, as shown in [5]. The clue to overcoming this
problem is to apply alignment constraints during placement.

The way to measure alignment is to use StWL, rather than HPWL
to measure the quality of placement, because it more accurately
represents routability. To support this point, the following placers
mPL6 v6 [11], CAPO v10.2 [12], FastPlace v3.0 [13], NTUPlace3
v7.10.19 [14], Dragon v3.01 [15], and SimPL [16] are compared on
both, total Half-Perimeter Wire Length (HPWL) and total Steiner
Wire Length (StWL) on the modified ISPD 2011 Datapath Bench-
mark Suite [10] 1 [3] shown in Table 1. For improved experimental
control, all StWL measurements were performed using coalesC-
grip [17], and all reported numbers are total wire length results for
each design. The HPWL column in Table 1 is sorted from smallest
to largest for each benchmark. The table reports both the actual
measured HPWL and StWL for the benchmark circuits as well as
the wire length ratio compared to the manually placed solution.

Careful examination of this table yields the following surprising
results:

1. While HPWL for both benchmarks is very close to the man-
ually placed solution, the StWL results degrade significantly
from the manual solution, with the best automated solution at
82% increase in StWL for benchmark A and 227% increase
for benchmark B.

2. While fidelity of the HPWL model is expected, for datapath
logic it does not hold true. As Table 1 shows, the HPWL

1The MISPD 2011 Datapath Benchmark Suite was modified to
contain unfixed latch rows compared to the original fixed latch
placement reported in ISPD 2011. Benchmarks can be downloaded
at: http://www.cerc.utexas.edu/utda/download/DP/
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Figure 1: An example circuit where StWL of the manually
placed design is better than that of the automated placement,
but HPWL of the automated placement solution is better than
that of the manual placement. Net1 has fanout of 10.

column is sorted by increasing value and it is generally ex-
pected that StWL would maintain that order. But in fact
that does not happen. In both cases, the placer with the
best HPWL does not generate the best StWL. For bench-
mark A, though CAPO generates the best HPWL, 5% larger
than the manually placed solution, SimPL generates the best
StWL, outperforming CAPO with a 82% increase over the
manual solution. The same holds true for benchmark B.
Again, CAPO generates the best HPWL, but SimPL gen-
erates the best StWL, outperforming CAPO with a 2.43%
increase compared to the manual solution.

As Section 4.3 will show, the significant improvement in StWL
also corresponds to vastly improved congestion metrics.

2.3 Implicit StWL Optimization through
Bit-Stack Alignment

There has been prior work in optimizing StWL directly. As re-
ported in [18], StWL generally correlates with routed wire length
(rWL) much better than HPWL. However, optimizing StWL di-
rectly during global placement is a hard problem, and iteratively
computing StWL can be time consuming. Alternately, this work
shows that if a HPWL-driven placer can obtain better alignment for
regular structures, it will have better StWL. An example is shown
in Figure 1. In Figure 1(a), a partial logic netlist with one NAND
gate, shown as hashed, drives net net1 with a fanout of 10. All the
input and output pins are fixed objects placed on top of the gate.
Figure 1(b) shows a manually placed solution for this partial cir-
cuit and Figure 1(c) shows a solution from an existing placer. The
dark shaded cells match the same dark shaded NAND gates in Fig-
ure 1(a). The light shaded grey cells are other logic placed within
the design.

For both solutions, we measure the total HPWL and StWL, and
the numbers are shown in the figure. As Section 2.2 pointed out,
even though the HPWL of the manual solution (1442) is greater
than the HPWL of the automated placer (1415), the StWL shows
the reverse trend. While it is impractical to list the HPWL and
StWL of every single net, clearly for net net1, the StWL in Fig-
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Table 1: Legalized HPWL and StWL comparison on the ISPD 2011 Datapath Benchmark Suite [10] between manually placed and
automated placement solutions. Placement results are sorted by increasing HPWL value. To note: (1) Best HPWL solution does not
indicate the best StWL solution. (2) Bold numbers are the best automated placement wire length.

ISPD Datapath Benchmark A ISPD Datapath Benchmark B
Total HPWL Total StWL Total HPWL Total StWL

Manually Placed 11000365 1.00 11066683 1.00 Manually Placed 8642097 1.00 9823680 1.00
CAPO 11535525 1.05 21516128 1.94 CAPO 10338805 1.20 23881606 2.43
SimPL 11837307 1.08 20180311 1.82 NTUPlace3 10433894 1.21 26110039 2.66
mPL6 12919955 1.17 23950663 2.16 SimPL 10631304 1.23 22319594 2.27
NTUPlace3 13447753 1.22 24673151 2.23 Dragon 12229019 1.42 28577316 2.91
FastPlace3 15672727 1.42 27115750 2.45 FastPlace3 14537026 1.68 36642434 3.73
Dragon 16424739 1.49 26182449 2.37 mPL6 16263018 1.88 28846387 2.94

ure 1(b) is better than the StWL in Figure 1(c). This is due to the
better alignment of the whole net in one horizontal row, which pro-
duces much better StWL. Also the solution of Figure 1(c) shows
the existing placer trying to clump the net into smaller HPWL but
causing the StWL to be worse. This paper presents techniques to
teach the existing placer to generate a placement solution similar to
Figure 1(b) with better StWL than the one in Figure 1(c).

By providing alignment constraints to small portions of the dat-
apath, it is observed that during the iterative placement process,
other surrounding cells become aligned as well. Previous works,
like post ECO datapath placement, or placing the datapath as a
macro block, tend to ignore the connection between random logic
and datapath cells since they place every datapath cell in priori. The
alignment constraints presented in this work however are providing
hints to the placer directing it toward a more globally optimal so-
lution. Thus, as results will show, with relatively few manually
defined bit-stacks, the placer generates significantly reduced over-
all wire length and congestion. The next section outlines the details
of supplying these alignment constraints during placement.

3. UNIFIED PLACEMENT WITH

ALIGNMENT CONSTRAINTS
Given a netlist N = (V, E) with nodes V and nets E, placement

obtains locations (xi, yi) for all the movable nodes, such that the
area of nodes within any rectangular region does not exceed the
area of cell sites in that region.

With ~x, ~y = {xi, yi}, HPWL is defined as:

HPWL(~x, ~y) = HPWL(~x) + HPWL(~y) (1)

HPWL(~x) =
X

e⊂E

[MAXxi − MINxi] (2)

Modern placers often approximate HPWL by a differentiable
function using the quadratic objective, defined as:

ΦG(~x, ~y) =
X

i,j

wi,j [(xi − xj)
2 + (yi − yj)

2] (3)

From Equation 3, (xi, yi) represents the coordinates of cell i,
and wi,j represents the weight between cells i and j. In this work, a
force-directed global placer in the spirit of SimPL [16], where wi,j

is given by the Bound2Bound net model [19], is used along with
a detailed placer similar to FastPlace-DP [20]. Briefly, SimPL is
a flat, force-directed global placer. It maintains a lower-bound and
an upper-bound placement and iteratively narrows the displacement
between the two to yield a final placement solution. The upper-
bound placement is generated by applying lookahead legalization,
which is based on top-down geometric partitioning and non-linear
scaling. The coordinates obtained from the upper bound placement
are used to generate the fixed-points and pseudo nets for force-
directed placement. The lower-bound placement is then generated
by minimizing the quadratic objective in Equation 3.

In this paper, it is assumed a set of T datapath groups and their
directions are given. Each datapath group gk ∈ G, 0 < k < T ,
is an unordered nonoverlaping subset of cells from V . Generally,
each gk corresponds to the bit-stack in the datapath, but can be
other elements such as cells connected to a single high fanout net
that improves through alignment, buffers that need careful place-
ment to facilitate routing of large buses, or for structured latch

placement. The direction of datapath gk is defined as ~dk. In this
paper, only horizontal and vertical directions are considered, which

means ~dk ∈ (0, 90). In the example shown in Figure 1, ~dk = 0.
The above assumptions that the datapath groups and directions

are given are valid and practical. One may use datapath extractors
such as [21, 22], based on circuit properties, to generate the datap-
ath. This information could also be provided by designers, which
may come directly from the logic description of the nelist, or de-
signer experience. As an example, if a designer is trying to structure
the latch placement to be vertical, it is trivial for him to provide the
vectored latch name and the direction (horizontal or vertical).

3.1 Alignment Nets
Adding pseudo nets is a common method used by modern plac-

ers to provide spreading forces. In this work, similar to SimPL,
during every iteration of global placement, pseudo nets are added
after lookahead legalization to enforce spreading during the subse-
quent linear system solver.

Definition 1. A pseudo net c(f, i) is a weighted two-pin con-
nection between a fixed-point f and a cell i in the circuit netlist.
The pseudo net has a weight equal to α · wi,j , defined in [16], and
does not exist in the circuit netlist.

It shall be noted that, these nets are added for every movable cell
in the design. In addition, existing pseudo nets are discarded at
the end of the current iteration, and a new set is added to enforce
spreading during the subsequent placement iteration. The pseudo
net weighting technique with increasing parameter α is described
in [16], and controls the rate of overlap removal during global
placement. During early iterations, greater significance is given
to interconnect minimization while the relative cell ordering stabi-
lizes. This is accomplished by starting with a small α value and
gradually increasing through each iteration. This scheme provides
flexibility to the placer during the early stages, while tightening the
constraints for no overlap towards the end of global placement.

To generate better datapath alignment, one approach is direct ma-
nipulation of existing nets between the datapath cells. But this ap-
proach interferes with other prior placement enhancements. Specif-
ically, direct weighting manipulation of current nets disrupts tim-
ing aware placement and net weighting for those cells. Due to the
above problem, a new method is instead proposed. A new category
of nets, refereed as alignment nets is defined.

Definition 2. An alignment net sk, where 0 < k < T and T =
|G|, is a weighted multi-pin connection between all cells in the
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datapath group gk. For placement, the alignment net is modeled
using the Bound2Bound net model [19].

These nets are created at the beginning of global placement and
remain persistent during the entire global and detailed placement
stages. A skewed net-weight schedule (Section 3.3), helps these
nets align the cells within the corresponding datapath group gk in-
side the placement region. By applying the alignment constraints
to a new net sk, prior techniques continue to function as before.

3.2 Unified Placement Flow Overview
The proposed new placement flow is presented in Figure 2, where

the shaded boxes highlight the enhancements applied to each gk.
During global placement, after pseudo net insertion for all cells, the
modified flow applies the skewed weighting with step size schedul-

ing to each datapath group. Then after the linear solver and fixed-
point generation, the second global placement modification is ap-
plied called fixed-point and pseudo net alignment constraint. Once
the global placement solution has converged as defined in [16], two
detailed placement steps that act only on the datapath logic are pre-
sented. The first is bit-stack aligned cell swapping and the second is
datapath group repartitioning. Detailed placement for the random
logic cells is implemented using the techniques presented in [20].
At each step, the modifications apply only to the defined placement
groups gk leaving all other random logic cells to be placed as they
would before. Though in this work SimPL and FastPlace-DP are
used as an example, the techniques can be adapted for other force
directed global placement and detail placement methods as well.
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Figure 2: Proposed unified datapath-aware placement flow.
The baseline components are shown in transparent boxes and
the added datapath-aware components are shaded.

3.3 Skewed Weighting with Step Size
Scheduling

In this section, a skewed weighting process applied to each align-
ment net sk is described that improves alignment along the datap-
ath. The high level idea is to add a skewed weight for each datapath
group, with the weight gradually increasing during each iteration.
The rate of change of the weighting value increases slowly during
the initial stages of global placement, increases rapidly during the
middle stages, and slows again near the end of global placement.

Applying hard constraints (forced alignment) in the early stage
of wire length optimization can disrupt the original optimization

p(n)

M0 M/4 3M/4M/2

0

0.5

1

p(n)

M0 M/4 3M/4M/2

0

0.5

1

Figure 3: Bell-shaped step size scheduling function.

and often can lead to a solution that suffers from sub-optimality in
terms of overall wire length.

Thus, let n be the global placement iteration number and M be
its upper bound2 and define p(n) as the alignment weight schedule
function for each iteration n. The following equation for p(n) is
proposed:

p(n) =

8

>

<

>

:

8n2

M2 0 ≤ n < M
4

1 −
8(n− M

2
)2

M2

M
4

≤ n ≤ 3M
4

8(n−M)2

M2

3M
4

< n ≤ M

(4)

To minimize hard constraints during the initial stages of global
placement, p(n) gradually increases during the initial iterations and
to minimize large constraint changes during the final stages, the
function decreases toward zero at the last iteration. This function is
also used in [23] as a penalty function, but it serves a completely dif-

ferent purpose here as a scheduling function. Using p(n), Equation
5 displays the skewed monotonically increasing weighting parame-
ters γn and δn for alignment net sk. Using p(n) directly generates
very large weighting steps therefore a constant scaling factor β is
added. This parameter is left default throughout all placement runs.
Let x̂, ŷ be the directional unit vectors and σ2

x,y the nth iteration’s
variance in either the x or y direction. Finally, the modified place-
ment equation is shown in Equation (6). For non-alignment nets,
δi,j = 0 and γi,j = 0.

γ
n = γ

n−1 + ŷ ·
−→
dk ∗ β ∗ p(n) ∗ σ

2
x(n) where γ

0 = 1

δ
n = δ

n−1 + x̂ ·
−→
dk ∗ β ∗ p(n) ∗ σ

2
y(n) where δ

0 = 1
(5)

ΦG(~x, ~y)n =
X

i,j

[(γn
i,j +wi,j)(xi−xj)

2+(δn
i,j +wi,j)(yi−yj)

2]

(6)

3.4 Fixed-Point Alignment Constraint
Modern force-directed global placement frameworks use fixed-

points and pseudo nets to increase spreading. By gradually perturb-
ing the unconstrained linear system solver, consecutive placement
solutions with less overlap are generated In SimPL [16], after each
global placement iteration, lookahead legalization generates a fixed
zero-area anchor with two-pin pseudo nets. During the following
global placement iteration, these pulling forces reduce the amount
of cell overlap. For datapath logic, the lookahead legalization step
and subsequent pseudo net insertion step cause misalignment within
the bit-stack requiring a constraint forcing alignment which mini-
mizes wrong-way perturbations in the bit-stack.

The proposed fixed-point alignment constraint is applied in two
steps. First, lookahead legalization generates a fixed-point location
for all cells. Second, for all cells in datapath group gk, a modified
fixed-point is added. The defined location of this fixed-point for

2M is typically upper-bounded by 50 [16]
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Figure 4: Example of a fixed-point alignment constraint for
a horizontal bit-stack. Lookahead legalization generates new
zero area fixed-points and the locations of these points are mod-
ified to be in alignment with ηn

k .

cell i as ηn
k,i for the nth iteration. In this paper, ηn

k,i is computed as
follows:

η
n
k,i = (xi, |gk|

s

Y

j=1,...,|gk|

yj), if dk = 0

η
n
k,i = ( |gk|

s

Y

j=1,...,|gk|

xj , yi), if dk = 90

(7)

An example of the modified fixed-point locations and correspond-
ing pseudo nets for a horizontal datapath is shown in Figure 4. In
this example, the three grey cells, gk(0 : 2) are in one datapath
group gk. The other cell connections are shown with the dashed
line connected to the hollow cells. For random logic cells, the fixed-
point will be determined based on the lookahead legalization step
alone. For the datapath cells shown, after lookahead legalization
generates a new fixed-point location, those locations are modified

based on the geometric mean parallel to the datapath direction ~dk.
Modifying the fixed-point locations enables the global placer to

progressively reduce cell overlap while maintaining bit-stack align-
ment. Two items should be noted about this process. First, this
work only modifies the fixed-point location for datapath logic, not
the weighting of the pseudo net. The pseudo net weighting, dis-
parate from the alignment net weighting proposed in Section 3.3,
acts on datapath and random logics the same. Second, though
this technique violates the overlap constraint during global place-
ment, the overlap reduces with consecutive global placement iter-
ations [16] and small overlaps can be easily removed during legal-
ization without undermining the overall wire length.

3.5 Bit-Stack Aligned Cell Swapping
This detailed placement technique modifies global cell swapping

from [20] for nodes within each gk by modifying the “swap region”
while keeping the overlap penalty the same. Assuming all cells in
the placeable region are fixed except for cell j, the “swap region”,
based on the median idea from [8], is the location where the wire
length for cell j is improved if it is swapped with a cell k located
in the swap region. This technique looks for cells to swap between
the current location of cell j and all cells within the swap region. If
a swap produces improved HPWL, the cell locations are updated.

This work, unlike [20], bounds the swap region perpendicular to
~dk. More specifically, for each net p ∈ E, the left, right, lower
and upper edges of the bounding box are: (xl[p],xr[p],yl[p],yu[p])
and the xopt and yopt from [8] is the median of the x series (xl[1],
xr[1], xl[2], xr[2], ...) and y series (yl[1], yu[1], yl[2], yu[2], ...).
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Figure 5: Swap region shift for cell j when the datapath direc-
tion is parallel to the x-axis. The upper y coordinate location is
defined by cell i plus the variance between cell i and cell j.

Because the number of elements is generally even, the xopt and
yopt becomes a region with bounding box (xopt

l ,yopt
l , xopt

r ,yopt
u ).

The modified swap region assuming the alignment net sk is parallel
to the x-axis is shown in Equation 8, and assuming the alignment
net sk is parallel to the y-axis is shown in Equation 9.

x
opt

l , miny(gk) − vary(gk)

x
opt
r , maxy(gk) + vary(gk)

when (
−→
dk = 0)

(8)

minx(gk) − varx(gk), yopt

l ,

maxx(gk) + varx(gk), yopt
u

when (
−→
dk = 90)

(9)

Figure 5 Illustrates the difference between the original potential
swap region and the datapath aware swap region. In the original
example from Figure 5(a) on the left, the swap region for cell j,

based on the HPWL would cause j to move out of line with ~dk for
that group, thus disrupting the alignment. In the proposed method
shown in Figure 5(b) on the right, the swap region is shifted down
to maintain alignment for that group.

3.6 Datapath Group Repartitioning
The second detailed placement technique is a top down recur-

sive repartitioning for each gk along alignment net sk, referred to
as datapath partitioning. With datapaths, traditional HPWL met-
rics can at times fail to detect alignment improvements. This tech-
nique minimizes internal net cut values potentially improving both
HPWL and StWL metrics for all nodes in gk along sk. The par-
titioning iterates through each node in gk and swaps among other
cells in gk that minimize the total net cut of that partition. By min-
imizing cut value, improved alignment and routability is possible.
The base cut algorithm is from [24], but there are a couple of key
differences to the repartitioning method. First, the swap is only
accepted when the HPWL after the swap is less than or equal to
the HPWL before the swap. Second, the initial median is the mid-
point between the nodes. All nodes in gk with values less than the
median go in one partition, the other nodes in the other partition.

For each defined datapath in the design, the algorithm calculates
the median or middle point of sk. Once a median point has been
identified, the algorithm partitions all nodes connected to the data-
path alignment group using KL partitioning. The partitioning solu-
tion is made HPWL aware by evaluating the KL solution for HPWL
changes. If the HPWL increases, the solution is discarded and KL
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Figure 6: Group repartitioning example swapping the positions
of cell ai and bi for an improved net cut.

evaluates a new solution for a higher net cut value that does not
cause an increase in HPWL or total net cut. Once a partition has
been selected, the design is legalized and the loop at that partition
level is complete. The algorithm continues to hierarchically break,
using recursive repartitioning, each datapath group into smaller par-
titions until a predefined minimum partition size is met. As an
example, consider Figure 6(a) with median location mi, datapath
alignment group si in Row(j). In this placement, the initial cut
value across mi is three. After swapping nodes bi and ai, shown in
Figure 6(b), the total net cut value along mi is reduced to one.

4. EXPERIMENTAL RESULTS
The placer in this work is compatible with the Bookshelf format

and requires an additional datapath definition file as input. This file
is loaded prior to global placement, and includes each manually
identified datapath groups to be aligned and provides a direction
for each datapath group. For improved experimental control, all
HPWL numbers and StWL estimates were generated using coa-
lesCgrip [17]. The ISPD 2011 Datapath Benchmark Suite for the
manual placement and spacing variations were modified to make all
latches movable compared to the fixed latch placement in the orig-
inal work. All logical connections and input and output pin loca-
tions remained the same. Briefly, the ISPD 2011 Datapath Bench-
mark Suite [10] contains two common datapath circuits each with
a series of eight different utilizations to examine the ability of auto-
matic placers to generate placement solutions at different densities.

All placement numbers are the ratio of the total wire length of the
placed solution vs. the total wire length of the manually designed
placement as described in [3]. All wire length numbers are from
legalized placements and in cases where overlaps were generated,
post placement legalizers were used to generate a legal placement.
This work focuses on the placement solution, so each datapath was
manually defined for improved experimental control.

The proposed approach is referred to as Structure Aware Place-
ment Techniques (SAPT). In the tables that follow, SAPTgp refers
to the proposed structure aware global placement techniques with
the base FastPlace-DP [20] detailed placer, and SAPTdp refers to
the wire length results when running both the proposed global and
detailed placement techniques. All placers were supplied a target
density requirement of 1 as defined in the ISPD placement con-
tests [25]. The placer ROOSTER [18], a variant of Capo that op-
timizes StWL in global and detailed placement, was also run and
we observed slightly improved HPWL and StWL results with little
impact on overflow numbers when compared to CAPO.

Table 2 provides benchmark characteristics. Of note is the num-
ber of datapath groups gk in each design and the datapath ratio.
The datapath ratio is defined as the ratio of datapath cells to ran-
dom logic cells in each design. Though the hybrid designs are on
the smaller side, they are state-of-the-art industrial circuits contain-
ing both datapath and random logic cells. They are included to
demonstrate the impact of the proposed techniques on modern de-
signs. Due to page limitations, run times are reported for only the
hybrid industrial designs.

4.1 Results on the Modified ISPD2011
Datapath Benchmark Suite

Table 3 shows the total HPWL ratio (including both random
and datapath logic nets in the design) for the ISPD2011 Datapath
Benchmark Suite comparing prior placers to the manually gener-
ated layout solutions. In these runs for benchmark A, CAPO gen-
erated the best total HPWL results for all placers coming within
2% of the manually placed benchmark at 82% design utilization.
The SimPL placer also generated very competitive HPWL results
at only 4% increase at 77% utilization. NTUPlace3 failed to run
on benchmark A. For benchmark B, both NTUPlace3 and CAPO
generated the best overall total HPWL result among all placers at
12% worse than the manual solution. For all proposed techniques,
the HPWL numbers oscillate within a few percentage points of the
original placement solution from SimPL and FastPlace-DP detailed
placement. As will be shown, though the total HPWL numbers are
approximately the same as the manually placed solution, the total
StWL of the automated placers is significantly worse. This result
reinforces that for datapath designs, total HPWL is a bad indicator
of placement quality.

Total steiner wire length (StWL) results (including all nets in the
design) for each datapath benchmark A and B variant are shown in
Table 4. As previously shown, total StWL results of prior place-
ment algorithms were abysmal compared to the total StWL of the
manually placed benchmark. However, the proposed global place-
ment (SAPTgp) solutions improved the StWL from 1.78 to 1.35
compared to the manual solution and the detailed placement meth-
ods (SAPTdp) further improves the ratio from 1.78 to 1.30. The
proposed placer on benchmark B also significantly outperformed
prior placers with SAPTgp achieving 1.48 and SAPTdp achieving
1.46 compared to the manual designed solution. The results in bold
represent the best published automated StWL placement solution.

These results show that the presented placer for benchmark A
outperforms all other automated placers with SimPL coming clos-
est at a 36% increase compared to SATPdp. For benchmark B, the
proposed placer outperforms all other placers with SimPL again
being the closest at a 48% increase over SAPTdp.

Figure 7 (a) displays the datapath placement solution from SimPL.
In this figure, a random selection of bit-stack cells are plotted with
a black line connecting them. In the manually placed solution, the
bit stack is aligned, either vertically or horizontally depending on
the group, which allows the placer to obtain a more compact place-
ment solution. As shown in Figure 7 (a), clearly these cells are not
placed in alignment. The modified placement solution generated
using the proposed placer is shown in Figure 7 (b). The same set
of datapath groups shown in Figure 7 (a) are displayed with a black
line connecting each cell. Clearly there is significant straightening
improvement in each bit-stack group.

4.2 Hybrid Placement Results
In addition to significantly improved StWL results on the dat-

apath benchmarks, the proposed placer generates improved hybrid
design StWL results as shown in Table 5. For each placer, the num-
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Table 2: Circuit statistics. Datapath ratio is calculated as the total number of datapath cells divided by the total number of cells.

ISPD2011 Datapath Benchmarks Industrial Hybrid Designs

Benchmark A Benchmark B Hybrid C Hybrid D Hybrid E Hybrid F

Total node count 160416 152668 17922 55387 83802 263906
Total pin count 637984 653116 64078 94682 130000 397652
Total net count 157849 148682 16874 14458 16422 53884
Datapath groups gk 1425 1932 35 110 60 131
Datapath ratio 0.920 0.850 0.010 0.012 0.008 0.007

Table 3: Total HPWL ratio comparison on the modified ISPD 2011 Datapath Benchmark A and B variants with legalized placement.
The ratios are computed with respect to the manually placed solution.

ISPD 2011 Datapath Benchmark A: Total HPWL ISPD 2011 Datapath Benchmark B: Total HPWL

Utilization 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79

CAPO 1.05 1.04 1.04 1.04 1.03 1.02 1.06 1.03 1.20 1.18 1.17 1.12 1.13 1.13 1.14 1.12
mPL6 1.17 1.19 1.22 1.14 1.16 1.20 1.17 1.16 1.64 1.86 1.72 1.64 1.65 1.65 1.78 1.78
NTUPlace3 1.22 1.19 1.16 1.19 1.15 1.19 1.23 1.26 1.25 1.19 1.17 1.15 1.16 1.15 1.12 1.15
Dragon 1.49 1.58 1.63 1.60 1.51 1.62 1.66 1.60 1.40 1.40 1.35 1.32 1.32 1.30 1.31 1.31
FastPlace3 1.42 1.50 1.53 1.54 1.53 1.67 1.70 1.75 1.69 1.66 1.73 1.71 1.77 1.86 1.77 1.87
SimPL 1.08 1.07 1.06 1.07 1.05 1.06 1.05 1.04 1.23 1.22 1.21 1.20 1.17 1.16 1.16 1.15

SAPTgp 1.10 1.12 1.07 1.05 1.06 1.05 1.04 1.04 1.21 1.20 1.17 1.16 1.16 1.16 1.16 1.15
SAPTdp 1.09 1.07 1.05 1.05 1.04 1.04 1.03 1.04 1.21 1.19 1.17 1.16 1.15 1.15 1.14 1.15

Table 4: Total StWL ratio comparison on the modified ISPD 2011 Datapath Benchmark A and B variants with unfixed latches after
legalized placement. The ratios are computed with respect to the manually placed solution. Numbers in bold are the best automated
placement results published for these benchmarks.

ISPD 2011 Datapath Benchmark A: Total StWL ISPD 2011 Datapath Benchmark B: Total StWL

Utilization 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79

CAPO 1.94 1.94 1.91 1.93 1.90 1.90 1.80 1.90 2.40 2.40 2.38 2.35 2.36 2.36 2.35 2.32
mPL6 2.16 2.14 2.16 2.08 2.10 2.12 2.11 2.09 2.94 3.29 3.06 3.01 2.97 2.95 3.20 3.21
NTUPlace3 2.23 2.18 2.15 2.15 2.11 2.16 2.19 2.09 2.66 2.48 2.47 2.44 2.44 2.44 2.32 2.44
Dragon 2.37 2.44 2.53 2.48 2.36 2.48 2.56 2.43 2.91 2.87 2.84 2.80 2.79 2.77 2.75 2.74
FastPlace3 2.45 2.53 2.56 2.59 2.56 2.71 2.75 2.79 3.73 3.58 3.78 3.79 3.97 4.13 3.96 4.14
SimPL 1.82 1.83 1.80 1.81 1.78 1.78 1.78 1.75 2.27 2.30 2.25 2.24 2.23 2.19 2.24 2.22

SAPTgp 1.43 1.46 1.39 1.36 1.37 1.36 1.35 1.35 1.59 1.56 1.54 1.50 1.51 1.50 1.50 1.48
SAPTdp 1.38 1.35 1.34 1.34 1.32 1.32 1.30 1.32 1.58 1.55 1.52 1.49 1.49 1.48 1.48 1.46

Table 5: The impact of datapath placement on hybrid designs. The wire length ratios are compared to the proposed placer.

Hybrid C Hybrid D Hybrid E Hybrid F

Total Total Run Total Total Run Total Total Run Total Total Run
HPWL StWL Time(s) HPWL StWL Time(s) HPWL StWL Time(s) HPWL StWL Time(s)

CAPO 1.13 1.26 94.6 1.17 1.32 74.0 1.12 1.27 83.4 1.19 1.17 480.3
mPL6 1.05 1.15 48.5 1.02 1.14 32.4 1.20 1.32 36.2 1.37 1.30 161.7
NTUPlace3 0.95 1.10 13.0 0.95 1.13 30.0 0.99 1.19 70.0 1.30 1.30 278.0
Dragon 1.10 1.20 425.9 2.11 2.04 193.0 1.32 1.38 283.9 1.29 1.24 927.4
FastPlace3 0.95 1.04 13.0 0.96 1.16 10.7 1.22 1.30 17.4 1.17 1.14 55.3
SimPL 1.02 1.10 9.2 0.97 1.16 12.6 1.03 1.12 27.1 1.04 1.04 59.2

SAPTdp 1.00 1.00 15.9 1.00 1.00 16.7 1.00 1.00 38.2 1.00 1.00 70.9

Table 6: The Total Overflow (x 1e+5) using the router and evaluation script from the ISPD 2011 routability-driven placement contest
on the modified ISPD 2011 Datapath Benchmark A and B variants with unfixed latches after legalized placement. The "Total
Overflow", a measure of the routing congestion of the placement solution, is reduced to zero on six of the benchmark A variants and
reduced by at least 6.7x for all benchmark B variants.

ISPD 2011 Datapath Benchmark A: Routing Overflow ISPD 2011 Datapath Benchmark B: Routing Overflow

Utilization 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79

CAPO 2.29 2.17 1.72 1.83 1.84 1.68 1.10 2.18 9.16 7.28 7.05 6.68 7.17 7.01 7.13 6.98
mPL6 4.66 4.38 4.44 3.40 3.38 3.65 6.03 5.02 12.7 16.4 14.0 13.6 12.8 12.6 15.3 15.3
NTUPlace3 5.54 5.12 4.63 5.19 4.92 5.63 6.03 5.02 10.2 8.41 8.3 8.09 8.92 9.07 8.21 9.92
Dragon 3 - - - - - - - - 12.8 12.7 12.5 12.4 12.6 12.7 12.8 12.9
FastPlace3 7.23 8.10 8.72 9.08 8.80 10.4 11.8 12.1 20.8 19.3 21.6 21.7 23.7 25.5 23.5 25.6
SimPL 1.28 1.28 1.22 0.98 0.87 0.87 0.85 0.77 5.98 6.24 5.65 5.49 5.26 4.85 5.21 5.25

SAPTgp 0.0012 0.032 0.0 0.0 0.0 0.0 0.0 0.0 0.90 0.70 0.56 0.45 0.48 0.59 0.62 0.59
SAPTdp 0.0014 0.038 0.0 0.0 0.0 0.0 0.0 0.0 0.88 0.70 0.55 0.43 0.67 0.58 0.60 0.58
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(a) (b)

Figure 7: Forty structured bit-stacks are randomly chosen to
show the impact of the proposed placer on structured nets in
Benchmark A. (a) is generated by SimPL [16] whereas (b) is
generated by the proposed placer. Movable cells are shown
lightly shaded while the bit-stack connectivity is shown in
black.

bers indicate the ratio of the total wire length obtained by the placer
to that obtained by our techniques (given under SAPTdp). Though
the HPWL results are similar, the proposed placer obtains an im-
provement in StWL between 4% and 13%. For these designs, the
wire length improvement is significant considering the percentage
of datapath logics within the designs is less than 1.5%.

By providing alignment constraints to portions of the datapath, it
is observed that neighboring cells also get aligned during the iter-
ative placement process. The alignment constraints provide hints,
directing the placer in the correct gradient. These hints help to
overcome local optima, driving placement towards a more globally
optimal solution. Thus, with relatively few manually pre-defined
bit-stacks, this work shows that a HPWL-driven placer can gener-
ate improved solutions for the other cells, resulting in significantly
improved total wire length.

4.3 Routing Congestion Results
To empirically prove our claim that StWL accurately approxi-

mates routability, Table 6 displays the total overflow (×1e + 5), as
defined in the ISPD 2011 routability-driven placement contest [26].
Reported overflow numbers are provided using the contest evalua-
tion script on legal placements. As seen in Table 6, SAPT produces
the smallest overflow across all test cases. For benchmark A, SAPT
produced a routable placement solution with zero (0) overflow for
all but two of the variations. For benchmark B, SAPT improves
total overflow by 6.7×, 23.54×, 14.44×, 11.56×, 14.3×, and
10.36× versus SimPL, FastPlace3, Dragon, NTUPlace3, mPL6,
and CAPO respectively. Though SAPT is not a congestion aware
placer, the significant improvement in routing congestion indicates
the strong correlation between alignment, congestion and the im-
portance of StWL for datapath logics.

5. CONCLUSIONS
This work presents a unified framework to enhance current ran-

dom logic placers to better handle designs containing datapath log-
ics. A set of new global and detail placement techniques, includ-
ing skewed weighting with step size scheduling, fixed-point and
pseudo net alignment constraint, bit-stack aligned cell swapping
and group recursive repartitioning, were presented that seamlessly
integrate alignment constraints into a state-of-the-art placement en-
gine to overcome the shortcomings of the HPWL model for data-
paths. Experimental results show at least a 32% improvement in
total StWL compared with six state-of-the-art academic placers for
the ISPD 2011 Datapath Benchmark Suite and a 8.25% average im-
provement in total StWL over six state-of-the-art placers for indus-
trial hybrid designs. Though comparisons do not report the timing
impact because the current implementation is limited to reading the

Bookshelf format, significant improvements in wire length are gen-
erally attributed to improved timing. Future research will including
quantifying this effect in addition to automatically extracting the
datapath.
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