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ABSTRACT

This work presents PADE, a new placer with automatic datapath
extraction and evaluation. PADE applies novel data learning tech-
niques to train, predict, and evaluate potential datapaths using high-
dimensional data such as netlist symmetrical structures, initial place-
ment hints and relative area. Extracted datapaths are mapped to
bit-stack structures that are aligned and simultaneously placed with
the random logic. Results show at least 7% average total Half-
Perimeter Wire Length (HPWL) and 12% Steiner Wire Length (StWL)
improvements on industrial hybrid benchmarks and at least 2% av-
erage total HPWL and 3% StWL improvements on ISPD 2005 con-
test benchmarks. To the best of our knowledge, this is the first
attempt to link data learning, datapath extraction with evaluation,
and placement and has the tremendous potential for pushing place-
ment state-of-the-art for modern circuits which have datapath and
random logics.

Categories and Subject Descriptors

B.7.2 [Hardware, Integrated Circuits]: Design Aids—Placement

and Routing

General Terms

Design

Keywords

Datapath, Placement, Extraction, Physical Design

1. INTRODUCTION
Advancements in random logic placement have been impressive

over the last few years with modern placers able to handle over one
million placeable objects in minutes (e.g., [1]). Typically, these
placers optimize the half-perimeter wire length (HPWL) objective
standardized by the 2005 ISPD Placement contests [2] and is a good
indicator of placement quality for random logic designs [3]. Unlike
random logic, datapath logic generally is characterized by a high
degree of bit-wise parallelism [4] (often called bit-stack) that mod-
ern placers have shown to be suboptimal [5]. This is partly due to
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Figure 1: PADE placement example showing a 14% StWL im-
provement compared to FastPlace3 [7].

the inaccuracy of the HPWL model when compared to the Steiner
wire length (StWL) [6].

Figure 1 shows a toy example where modern placers are not able
to handle datapaths effectively. Figure 1(a) displays the datapath
circuit, where the input and output pins are fixed. Cell 1 is an in-
verter driving four NAND2 gates and there are three bit-stacks
corresponding to cells: ({2, 3, 4, 5}, {6, 7, 8, 9}, and {10, 11, 12, 13}.
For clarity, Fig. 1(b-c) display fixed pin locations. Fig. 1(b) dis-
plays the PADE placement solution solution. In this case, each
bit-stack is tightly packed and aligned producing an StWL solu-
tion of 524. Figure 1(c) displays the placement solution from Fast-
Place3 [7] where the bit-stack is not carefully aligned producing
StWL of 612. In fact, with only thirteen cells, the StWL solution
in 1(c) is over 14% worse than that in 1(b). In designs where there
are many embedded datapaths, extracting the datapath and plac-
ing them with random logics properly has the potential for signif-
icant improvement in the overall StWL. Datapath extraction tech-
niques in the past generally focused on functional or structural lev-
els. Functional regularity extraction identifies logically equivalent
subcircuits within a netlist that are then handled separately during
placement. One example of this method is developed in [8] where
a large set of templates are generated and used to search for dat-
apath logic before placement. Another example is the hash-based
approach of [9]. Structural datapath extraction techniques have fo-
cused on developing a regularity metric to represent the datapath.
In [4], the datapath extraction consists of a decomposition of the
netlist into a set of stages and a set of slices with one cell occurring
in exactly one stage set and one slice set. The extraction algorithm
expands in search-waves through the network using the regularity
metric to determine the expansion direction. More recently, [10]
developed a method for extracting structure within a design with
the assumption that the placement distance between a pair of cells
is related to the graph distance between them. Nets are weighted
in a shortest path computation by assuming the distance between
two cells is related to the degree of the net connecting them. Then,
by extracting “corner” cells and fixing them in place, the maximum
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distance of the other cells can be calculated.
These previous datapath extraction algorithms, which only use

functional or structure information, are not effective for modern
large-scale hybrid datapath/random logic circuits with many pre-
placed IP blocks: (1) the placement blockage could force the bit-
stacks to be placed away from adjacent logic causing wirelegnth
degradation; (2) it may give out too many or the wrong bit-stacks
which would also adversely affect the overall placement quality.
Compounding the problem, as shown in [11], a dedicated datapath
placer often overly constrains the random logic placer. These prob-
lems lead to the general industry practice of manually designing the
datapath because of the possible significant timing and wire-length
improvement by careful alignment and packing of the bit-stack.
However, increasing design sizes and shortening turn-around-time
demand a consolidated automated datapath extraction and place-
ment framework.

In this paper, we propose PADE, a new placer with automatic
datapath extraction which can handle large scale designs mixed
with random and datapath circuits. PADE will evaluate and rank
all the first-order, important data paths, and optimize them along
with general-purpose wirelength driven placement1. The key con-
tributions of this paper include:

• We develop a novel high-dimensional data learning, extrac-
tion, and evaluation algorithm for datapath extraction in PADE.
It considers not only logic structures, but also placement hints
from initial global placement results.

• We develop an optimal algorithm for bit-stack selection (to
be used for guiding data-path aware placement) using integer
linear programming.

• PADE has demonstrated significantly better results than pre-
vious state-of-the-art placers on both hybrid industrial de-
signs which contain both random logics and datapaths, and
even the ISPD 2005 placement benchmarks where structured
datapath logics were not intended.

Section 2 outlines the overall flow and section 3 details the high-
dimensional extraction data. Section 4 describes the model training
and cluster evaluation and section 5 describes the binary integer
programming bit-stack assignment technique. Experimental results
are presented in section 6 followed by conclusions in section 7.

2. OVERALL FLOW OF PADE PLACER
Given a netlist N = (V, E) with nodes V and nets E, place-

ment obtains locations (xi, yi) for all movable nodes, such that the
area of nodes within the placement boundary does not exceed the
area of cell sites in that region. With ~x, ~y = {xi, yi}, HPWL is
defined as: HPWL(~x, ~y) = HPWL(~x) + HPWL(~y) where
HPWL(~x) =

P

e⊂E
[MAXxi − MINxi]. Modern placers

often approximate HPWL by a differentiable function using the
quadratic objective, defined as:

ΦG(~x, ~y) =
X

i,j

wi,j [(xi − xj)
2 + (yi − yj)

2] (1)

From Equation 1, (xi, yi) represents the coordinates of cell i,
and wi,j represents the weight between cells i and j. A datapath
netlist with p bit-stacks, each bit-stack Bk 0 < k < P is a disjoint
set of cells Bk ⊂ V , describing the bit-wise parallelism present in
the netlist. Representing the datapath as a set of cells in this manner
enables implicit StWL optimization through forced alignment as
presented in [6].

1The name for PADE placer is also inspired by the famous Pade
approximation which is widely used in model order reduction, as
they share the same principle to extract the first-order effects.
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Figure 2: Overall flow of the PADE placer.

PADE is a modern force-directed global placer extending the
SAPT [6] placer where wi,j is given by the Bound2Bound net
model [12] and it utilizes a detailed placer similar to FastPlace3 [7].

Briefly, SAPT is a datapath aware placer requiring manual def-
inition of both the bitstack and the datapath direction. For each
bit-stack Bk, an alignment net is inserted, similar to a pseudo-
net but remains persistent between placement iterations, connect-
ing each cell in Bk. The alignment net is manipulated through
the use of skewed weighting on wi,j and modified fixed-point in-
sertion making it possible to introduce an alignment constraint to
a predefined group of cells within the linear solver during global
placement. A gradually increasing application of this constraint
aligns each bit-stack through consecutive global placement itera-
tions, which enables a unified placement framework that simulta-
neously places datapath and random logic cells without over con-
straining the placer. Additionally, during detailed placement the
placer maintains that alignment by constraining cell movements
along the bit-stacks.

The overall flow of the PADE placer is shown in Fig. 2 with
the novel datapath training, extraction, evaluation and datapath bit-
stack selection stages shaded. To properly handle the extraction
of datapath structures, a compact and high performance knowledge
base is proposed to identify datapath patterns from non-datapath
logics and to evaluate the placement quality of these patterns. The
knowledge base, step 1. in Fig. 2, is constructed via perform-
ing advanced data learning algorithms over a set of baseline design
benchmarks after placement. By construction, it explores the place-
ment database and captures the special characteristics that strongly
correlate to datapath patterns, such as netlist connectivity automor-
phisms. Once these characteristics are captured and extracted, a
complex decision diagram is built at a one time cost, which can
later be applied to classify datapath netlists and non-datapath log-
ics very rapidly. This knowledge base allows special treatment of
the datapath logics in the placement stage without degrading the
performance of the rest of the design. Additionally, these models
are generic and can be applied to any circuit.

Step 2., a single global placement (GP) iteration, is one stan-
dard iteration of a force-directed placer that includes pseudo net
insertion, linear system solver and fixed point generation. Let M ,
0 ≤ n ≤ M , be the upper bound on the global placement itera-
tions and d an intermediate point at which time a prediction on the
datapath will be made. Integrating the datapath extraction during
global placement (GP) instead of before allows for enhanced pre-
diction accuracy by taking into account physical characteristics in
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addition to netlist regularity measures.
Step 3 extracts the high-dimensional features from the netlist and

step 4 classifies and then evaluates the datapath candidates. For all
identified datapath logics, step 5 uses an ILP formulation to map
cells to a bit-stack and then inserts the alignment nets. Step 6
performs datapath aware global placement with bit-stacks aligned
during the following global placement iterations. The flow com-
pletes with datapath aware detailed placement and legalization as
described in [6].

3. HIGH-DIMENSIONAL EXTRACTION
In this work, both graph-based and physical features are ana-

lyzed and extracted from the netlist mapping a set of parameters
most critical and sensitive to datapath logics. Effective features cre-
ate differentiation between random and datapath logic allowing the
patterns extracted on the training set to effectively classify datapath
structures in new circuits and predict the direction of the datapath.
The first step in this process is to generate candidate clusters of the
original netlist in which to search for datapath structures.

3.1 Seed-Based Connectivity Clustering
The connectivity based clustering stage prepares the data to ana-

lyze and extract datapath structures from. The goal is to find clus-
ters exhibiting the structure we are looking for. Extending the seed
growth method proposed in [13], the clustering method creates k
clusters. It maximizes the ratio of the external to internal force of a
cluster Ci, where Ci 0 ≤ i < k indicates a group of vertices, while
maintaining a maximum logic depth threshold. The external force
is defined as the summation of the edge weights of nets with at least
one vertex outside and one inside Ci and the internal force is de-
fined as the summation of all internal cluster weight connections.
The weight w(u, j) is determined by the net model used, in this
case a clique representation, where a connection c for a given edge
e, w(c) = w(e)/((|e|−1)|e|). The connectivity between neighbor
node u and cluster Ci is given by conn(u, Ci) =

P

j⊂Ci
w(u, j)

where suitable seed nodes are those with a large net degree.
In each subsequent pass, the neighbor node with the largest con-

nectivity conn is added to the cluster Ci while keeping the internal
force of the cluster as large as possible. Once a cluster’s node car-
dinality reaches the threshold value or the entire netlist is clustered,
the high-dimensional features described in the next subsection are
extracted from each cluster Ci and then the cluster is classified as
a datapath or random logic cluster.

3.2 Automorphism Feature Extraction
In this section we describe the graph features used to differen-

ciate datapath and random logic. One of the fundamental observa-
tions in this work is that datapath logic contains a high degree of
graph automorphism. An automorphism of a graph, a form of sym-
metry, preserves the edge - vertex connectivity of the graph while
mapping onto itself 2. That is, an automorphism is a graph isomor-
phism from G to itself.

DEFINITION 1. Automorphism: An automorphism of a graph
G = (V, E) is a permutation σ of the vertex set V , such that
the pair of vertices (u, v) form an edge if and only if the pair
(σ(u), σ(v)) also form an edge.

Automorphism Group: The set of automorphisms of a given graph
forms the automorphism group of the graph and is denoted by
Aut(G). The set S ⊆ Aut(G) of generators for Aut(G) is a
set whereby combining elements of S generates every non-identity
permutation in Aut(G).

2Assuming reader familiarity with graph automorphisms and per-
mutations. Please refer to [14] for further details.
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Figure 3: Graph automorphism example showing the original
graph in (a) with each of the automorphisms in (b). A random
netlist is shown in (c) with only trivial automorphisms.

DEFINITION 2. Generator Set: A generator set of a group is a
subset such that every element of the group can be expressed as the
combination, under the group operation, of finitely many elements
of the subset and their inverses.

As an example, Fig. 3(a) displays a graph G with six labeled
nodes and seven edges. The automorphism feature is represented
with a seventeen parameter vector (|Aut(G)|, ∆(2 : 18), ) where
|Aut(G)| is the cardinality of the automorphism group Si for clus-
ter Ci. The last sixteen parameters, ∆(2 : 18), are from the fre-
quency table of the size of each automorphism.

As an example in Fig. 3, the graph G has a total of four automor-
phisms and two generators (|S| = 2, with |Aut(G)| = 4). The first
automorphism, G(1, 2, 3, 4, 5, 6), corresponds to itself and three
additional automorphisms G(2, 1, 4, 3, 6, 5) G flipped left-right,
G(5, 6, 3, 4, 1, 2) G flipped up-down, and G(6, 5, 4, 3, 2, 1) G flipped
left-right and up-down, displayed in Fig. 3(b). The nontrivial gen-
erator set S of G is (1, 5)(2, 6) and (1, 2)(3, 4)(5, 6). As this ex-
ample shows, the symmetry of the graph along with the genera-
tor group provides possible bit-stack candidates including: (1, 2),
(5, 6) or (1, 3, 5), (2, 4, 6).

Figure 3(c) displays a random logic netlist also with six nodes
and seven edges. Unlike the clear symmetry present in Fig. 3(a),
Fig. 3(c) contains no non-trivial automorphisms. In fact, this is
a fundamental observation holding true for random logic netlists
in general. Thus, the automorphism generators of structured logic
appear very differently than the automorphism generators of ran-
dom logic netlists enabling sufficient differentiation as a datapath
feature.

3.3 Physical Aware Feature Extraction
using Placement Hints

Graph automorphism features alone do not capture the physical
nature of the placement problem, a fundamental shortcomming of
prior extraction techniques. Global placement has merit in wire-
length optimization, which shall be used for improved classifica-
tion. Thus physical features extracted after the first few passes de-
fine the following attributes.

Let ac
i be the sum of the total cell area within cluster Ci, wc

i

be the bounding box width from the placement for Ci, hc
i be the

bounding box height and finally rc
i be the ratio ac

i/(w
c
i +hc

i ). This
physical information helps to characterize the amount of spreading
and the initial cell locations for each Ci. Dense clusters indicate
tightly packed logic and possibly the need for improved placement
whereas sparse logic is generally less likely to improve from being
passed to the datapath placer. In the next section, the training steps
for building the model and the process to evaluate each cluster is
described.

4. DATAPATH MODEL TRAINING AND

CLUSTER EVALUATION
To classify and evaluate the datapath patterns in each cluster,

we propose to combine data learning algorithms Support Vector
Machine (SVM) and Neural Network (NN) to build compact and
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run-time efficient models as shown in Fig. 4. SVM calculates a hy-
perplane boundary with maximum separation margin in-between
of datapath and non-datapath. Only the critical information on
the separation boundaries is preserved (the support vectors SV).
All SV’s are involved in the decision (score) calculation. For bet-
ter quality, we combine a soft-error tolerant SVM and a special
working set selection method [15]. NN works through configur-
ing complex networks of neurons to achieve a high dimensional
decision diagram-like data structure given training samples and de-
cision hints. We employ a resilient backward propagation method
based on iterative sub-gradient updates. To quantify the learning
performance, we define the following two types of accuracies:

DEFINITION 3. Datapath evaluation accuracy: the rate of cor-
rectly detected datapath (datapath-like) patterns over the total num-
ber of actual datapath structures.

DEFINITION 4. Non-datapath evaluation accuracy: the rate of
correctly detected non-datapath (e.g., random logic) patterns over
the total number of non-datapath structures processed.

The optimization objective for both SVM and NN is to maximize
the evaluation accuracies of datapath and non-datapath patterns, or
equivalently, to minimize the mean square errors for both classes
of pattern evaluation. This is achieved in two steps: Step A and B
as shown in Fig. 4.

4.1 Training, Calibration and Validation
In Step A, we first apply data learning algorithms over a rela-

tively small set of design patterns with known datapath information
under the guidance of placement as hints. Since they are built a pri-
ori at a one time cost, the CPU run-time penalty is negligible. There
are 3 major procedures involved in this step: (1) training is the
process where the learning algorithms optimize both datapath and
non-datapath accuracies; (2) calibration process further improves
the accuracies, e.g., via properly selecting the separation threshold
in (1); (3) validation process is performed over a relatively large set
of known design patterns exclusive from (1) to assure the balance
of learning accuracies between training data and unknown testing
data, especially in Step B. These models can then be applied gener-
ically to any other designs to classify datapath clusters.

4.2 Cluster Classification and Evaluation
Once Step A is completed, in Step B the data learning models

will be applied directly to classify and evaluate new unknown de-
sign patterns. As the new patterns go through the learning models,
the evaluation scores could span within certain range for datapath
and non-datapath patterns respectively for NN and SVM. In this
step, we evaluate a pattern to be datapath like if and only if both
NN and SVM evaluation scores are above certain thresholds. This
helps to systematically improve the datapath evaluation accuracy
without noticeable penalty in non-datapath accuracy.

Usually NN and SVM have similar performance for most of
binary classifications, e.g., differentiating datapath-like and non-
datapath patterns. In principle, SVM guarantees the global opti-
mum but is sensitive to data noise. NN usually has good noise-
robustness, however it takes more time in the training and calibra-
tion step to reach optimal or close-to-optimal. Each Ci identified
as datapath logic is passed to the bit-stack assignment in the next
section.

5. BIT-STACK SELECTION WITH ILP
Once a cluster has been classified as containing datapath logic,

step 5 from Fig. 2 extracts the bit-stack structures from the logic
clusters and passes those bit-stacks to the datapath placer. For
each cluster Ci, a set of bit-stack candidates is chosen based on
maximizing the total bit-stack count. This work uses the auto-
morphism generators as the bit-stack candidates and adds in wire-
length weighting to make the ILP formulation wire-length aware.

5.1 Bit-Stack Candidate List
Each generator set Si, created during classification of each Ci,

captures possible cell connections that can be used for a bit-stack
assignment. Figure 3(a) provides an example for clarity. The gen-
erator group for the graph in Figure 3(a) is: (1, 2)(3, 4), (5, 6) and
(1, 5)(2, 6). Using this generator set, it is possible to create bit-
stack candidates by grouping the tuple by index-0 and index-1 from
each generator. For Fig. 3(a), the bit-stack candidates would be:

b0 = [1 : 3 : 5] b2 = [1 : 2]

b1 = [2 : 4 : 6] b3 = [5 : 6]

Thus, with a set of bit-stack candidates, the goal is to maximize the
number of bit-stacks within the partition while maintaining mutual
exclusion among the cells. This constraint maintains the require-
ment that a particular cell can not be assigned to multiple bit-stacks.

5.2 ILP-based Bit-Stack Selection
The bit-stack candidate selection is optimally solved using inte-

ger linear programming (ILP). A binary vector η is maximized with
the linear function ΓT(η) subject to the non-overlap constraint. As-
suming there are i = 1...n bit-stack candidates, let η be a binary
indicator variable such that:

ηi =



1 if bit-stack candidate Bi is selected
0 otherwise

(2)

Let αi = |Bi| and βi = wi where wi is equal to the Half-Perimeter
Wire Length of the edges connected to each cell in bit-stack can-
didate Bi. The αi term increases the value for larger bit-stack
candidates (covering more cells) and the Bi term adds a penalty
for larger wire-length. Then the objective function maximizes the
number of bit-stack candidates selected as given in Equation 3.

maximize:
η

Γ =
n

X

i=0

[(
αi

βi

∗ ηi)]
(3)

subject to: ηi + ηj ≤ 1, ∀ i, j ⇐⇒ ηi ∩ ηj

0 ≤ i < j < n ∀ i, j

ηi ∈ (0, 1) ∀ i, j
(4)

Equation 4 maintains the non-overlapping cell constraint ηi ∩ηj =
Ø between each bit-stack candidate. Though the general ILP prob-
lem is NP-Hard [16] and the solution time for the integer program-
ming problem grows exponentially (in the worst case) with the
number of integer variables, in this case the run time is negligible
for two reasons: (1) The number of bit-stack candidates n from a
single Ci and the number of constraints is generally very low, with
n often on the order of a few hundred because we bound the size of
Ci; (2) The ILP assignment only occurs when a cluster is classified
as datapath logic meaning for the majority of the clusters, the ILP
code does not run at all.

With the preceding steps from Fig. 2, PADE is able to quickly
extract and classify datapath structures then pass them to an ILP
solver to generate the bit-stacks for the logic. By making the clas-
sification and bit-stack assignment aware of physical placement in-
formation from the global placer, significant improvement in over-
all wirelength is possible as will be shown in the next section.
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6. EXPERIMENTAL RESULTS
The first step, at a one-time cost, was training the high-dimensional

models using known datapath pattern extracted from four baseline
industrial hybrid circuits and the ISPD2011 Datapath Benchmark
Suite [5]. Both datapath and random logic patterns were trained off
the baseline circuits. Then the global placement flow was devel-
oped to extract and evaluate each Ci within the original netlist using
the high-dimensional model. Clusters identified as containing data-
path structures were mapped to bit-stacks using the automorphisms
of the subcircuit and the ILP formulation. After the bit-stack was
defined, global placement continued through completion and then
detailed placement and legalization ran. All numbers reported are
total wirelength results for both datapath and random logics on le-
gal placement solutions.

PADE was implemented in C++ with g++ 4.1.2 extending the
SAPT [6] placer for automatic datapath extraction. Running PADE
without datapath extraction results in the same wirelength results
reported for SimPL because SAPT extended the SimPL framework.
Benchmark runs were performed on an Intel Xeon CPU x5570
Linux workstation running at 2.93GHz using two CPU cores. This
work compared PADE against six untrained industrial hybrid de-
signs and additionally on the untrained ISPD 2005 benchmark suite
[2]. For improved experimental control, all HPWL numbers and
StWL estimates were generated using coalesCgrip [17]3, every placer
was run in default mode, and all placers were supplied a target den-
sity requirement of 1 as defined as in ISPD placement contests [2].
The tool bliss [14] was used to generate the automorphism groups
for each cluster and GUROBI [18] for the lp solver. Wire-length
results for the ISPD 2011 Datapath Benchmark circuits are not pro-
vided because they were used to train the high-dimensional models.

6.1 High Dimensional Learning Accuracies
We implemented and fine-tuned both SVM and NN algorithms

specifically for the evaluation of datapath patterns. Then we com-
bine both of their evaluation scores for datapath extraction. The NN
accuracy is shown in Fig. 5 and SVM accuracy is shown in Fig. 6

A 2 class C-SVM algorithm is modified and configured at a one
time training and calibration cost of around 3 minutes, involving:
(1) training/calibrating of SVM models over some known struc-
tures with around 100 datapath and 10K non-datapath; (2) valida-
tion of the calibrated models over a relatively large set of known
datapath/non-datapath structures beyond (1) with around 300 data-
path and 60K non-datapath. Step(1) shows about 85% and 99.5%
of datapath and non-datapath accuracy respectively, while Step(2)
reaches 80% and 99% of datapath and non-datapath accuracy re-
spectively. In the calibration and scoring process, a separation
threshold of -0.9 is used for SVM models. A resilient backward
propagation NN algorithm is fine-tuned within around 8 minutes
using similar steps. It shows 90% and 99.9% of datapath and non-
datapath accuracy in training, 87.8% and 99.6% in validation, with
a separation threshold 0.05.

6.2 Wire Length Results
In the tables that follow, PADE refers to the proposed placement

technique with automatic datapath extraction and evaluation. To
compare the data learning and extraction effectiveness of PADE,
we also implemented Logic Based Regularity Extraction (LBRE)
based on [22]. Everything in LBRE is the same except the extrac-
tion and bit-stack assignment techniques. The logic based regular-
ity extraction results are passed to the same datapath placer and
compares the effectiveness of prior extraction techniques verses
PADE. LBRE uses functional regularity to extract the datapath there-

3FastPlace3 [7] reports slightly lower HPWL than CoalesCgrip.
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fore can only be compared against the hybrid circuit designs be-
cause logical information is not provided in the ISPD 2005 bench-
mark circuits.

Wirelength results on six industrial hybrid circuits and the ISPD
2005 Placement Benchmarks are presented in Table 1. Each of the
hybrid designs are state-of-the-art circuits containing a mixture of
random and datapath logic. Though the exact ratio of datapath to
random logic is not known, generally the significant majority of the
logic is random. As discussed in [6], HPWL to StWL correlation
can be inadequate for datapath logic. Thus, both HPWL and StWL
is reported with the best StWL result in bold. In every case, PADE
obtains the best StWL results. In four of the six cases, PADE also
outperforms all other placers in HPWL results.

The purpose of running on the ISPD 2005 placement benchmark
suite is to show that the methods herein are capable of high place-
ment quality on both random and datapath logics. Surprisingly,
some datapath structure was found and on average PADE improves
the HPWL 2% and StWL by 3% compared to prior academic plac-
ers. As Table 1 shows, PADE produced the best HWPL and StWL
results for seven of the eight benchmarks.

One notable placer missing from our comparisons is the structure
aware Beacon placer [10]. Though requested, currently the placer
does not work with mixed-size placement and thus direct compari-
son is not possible.

6.3 Runtime Comparisons
Table 2 compares the runtime of PADE against other state-of-

the-art placers. For the hybrid and ISPD 2005 Benchmark circuits,
FastPlace3.1 ran the fastest of all placers. For the hybrid circuits,
PADE was only 19% slower than FastPlace3.1 and for the ISPD
2005 benchmarks, PADE was 32% slower than FastPlace3.1. Over-
all, PADE significantly outperforms CAPO10.2, mPL6, and NTU-
Place3 showing speedups of 7.28, 3.26 and 1.74 respectively on the
ISPD 2005 Benchmarks. Though PADE is not the fastest placer,
there is clearly a significant wirelength benefit on hybrid design
styles and it is possible to parallelize the clustering, evaluation and
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Capo10.5 [19] mPL6 [20] FastPlace3.1 [7] NTUPlace3 [21] simPL [1] LBRE PADE
Circuit Total Total Total Total Total Total Total Total Total Total Total Total Total Total

HPWL StWL HPWL StWL HPWL StWL HPWL StWL HPWL StWL HPWL StWL HPWL StWL
Hybrid 1 2.39 3.12 2.27 2.89 2.06 2.61 2.04 2.67 2.19 2.75 2.32 2.89 2.05 2.55
Hybrid 2 1.72 2.51 1.47 2.17 1.39 2.20 1.38 2.20 1.39 2.20 1.39 2.18 1.37 1.87
Hybrid 3 2.68 2.75 1.89 2.41 1.81 2.28 1.77 2.25 1.77 2.25 1.79 2.26 1.71 2.16
Hybrid 4 2.66 3.57 3.18 4.01 2.91 3.59 2.35 3.36 2.69 3.30 2.79 3.49 2.36 2.77
Hybrid 5 11.36 12.90 12.76 14.41 10.88 13.27 10.59 12.30 10.57 12.22 10.56 12.22 9.71 10.87
Hybrid 6 7.66 9.06 9.04 10.29 7.75 9.04 9.04 10.69 6.64 7.92 6.90 8.21 6.24 7.21

Average 1.25 1.30 1.23 1.27 1.11 1.17 1.09 1.18 1.07 1.12 1.10 1.14 1.00 1.00

Adaptec1 88.14 97.22 77.58 86.20 79.88 88.75 81.82 91.06 78.15 87.05 - - 76.83 85.12
Adaptec2 100.25 114.54 90.31 100.64 93.02 104.03 88.79 99.06 90.96 102.13 - - 89.14 98.92
Adaptec3 276.80 296.22 215.88 235.06 219.78 239.70 214.83 234.52 208.81 228.32 - - 205.32 222.08
Adaptec4 231.30 257.47 193.93 208.85 199.66 215.02 195.93 211.86 187.21 201.82 - - 183.79 196.23
Bigblue1 110.92 127.72 97.10 108.31 94.37 105.24 98.41 110.02 98.64 109.94 - - 95.86 106.98
Bigblue2 162.81 189.60 152.13 174.69 155.16 178.44 151.55 175.27 145.29 168.65 - - 143.18 164.33
Bigblue3 405.40 452.91 342.50 370.70 392.72 421.31 360.66 389.39 341.55 369.61 - - 341.72 361.96
Bigblue4 1016.19 1105.52 831.34 930.63 816.14 911.64 866.43 974.44 804.22 901.85 - - 796.18 883.82

Average 1.21 1.22 1.03 1.04 1.06 1.07 1.05 1.06 1.02 1.03 - - 1.00 1.00

Table 1: Legal HPWL and StWL (x10e6) comparison on industrial hybrid designs and the ISPD 2005 Placement Benchmarks [2].
HPWL and StWL was computed using CoalesCgrip [17]. LBRE is blank for the ISPD 2005 suite because logic information is not
provided for those circuits.

Capo10.2 mPL6 FP3.1 NTUPlace3 simPL LBRE PADE
Hd1 7.4 1.9 1.3 1.5 1.2 2.1 1.1
Hd2 8.1 2.4 1.4 1.7 2.0 2.7 1.7
Hd3 8.8 4.5 1.7 2.7 2.2 4.2 1.8
Hd4 8.6 4.1 2.2 3.2 2.2 6.3 2.3
Hd5 25.2 10.7 6.4 9.8 5.8 12.8 7.4
Hd6 45.4 22.8 4.8 9.3 4.1 14.2 7.1
Ave 4.99 2.01 0.81 1.31 0.97 2.05 1.00
ad1 35.7 18.3 4.7 10.0 4.2 - 5.3
ad2 42.8 19.9 2.2 9.2 4.4 - 5.6
ad3 111.9 60.3 4.4 18.6 10.7 - 12.9
ad4 110.0 58.5 9.0 19.5 18.1 - 21.4
bb1 56.6 21.8 5.4 16.2 4.5 - 5.5
bb2 107.6 64.0 9.6 32.1 17.3 - 20.4
bb3 286.0 88.4 28.3 62.5 34.8 - 40.6
bb4 543.4 172.8 58.1 141.8 62.3 - 73.0
Ave 7.28 3.26 0.68 1.74 0.83 - 1.00

Table 2: The total runtime comparisons (sec). Runtimes on the
ISPD 2005 benchmarks on LBRE are left blank because logical
information is not provided by the ISPD 2005 benchmarks. (hd
= hybrid, ad = adaptec, bb = bigblue, FP3.1 = FastPlace3.1)

bit-stack assignment stages of the flow. Doing so would reduce
runtimes to be similar with the other state-of-the-art placement al-
gorithms.

7. CONCLUSIONS
This work presented a high-performance mixed-size placer PADE

with automatic datapath extraction and evaluation through high-
dimensional data learning using both logical and physical infor-
mation. PADE has demonstrated 7% improvements in HPWL and
12% improvements in StWL for a set of industrial hybrid circuits
compared to prior placers. Even for the ISPD 2005 benchmark cir-
cuits, PADE produces 2% average improvements for HPWL and
3% improvement in StWL over prior placers. To our best knowl-
edge, this is the first attempt that links high-dimensional data learn-
ing with placement of hybrid datapath and random logic circuits.
The results are very encouraging and we believe a lot of future re-
search can be done to further advance the state-of-the-art of modern
placement.
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