
Reclaiming Over-the-IP-Block Routing Resources With Buffering-Aware Rectilinear Steiner
Minimum Tree Construction

Yilin Zhang1, Ashutosh Chakraborty2, Salim Chowdhury2 and David Z. Pan1
1 Department of ECE, University of Texas at Austin, Austin, TX, USA {yzhang1, dpan}@cerc.utexas.edu

2 Oracle, Austin, TX, USA {ashutosh.chakraborty, Salim.Chowdhury}@oracle.com

Abstract—In this paper, we study an often overlooked but very
important and practical problem of building Buffering-aware Over-the-
Block rectilinear Steiner minimum tree (BOB-RSMT). In most previous
works, the routing resources over the IP blocks were simply treated
as routing blockages, resulting in significant waste of routing resources
on higher metal layers not utilized by internal intra-block routing. On
the other hand, routing over large IP blocks needs special attention
as there is no way to insert buffers inside hard IP blocks, which can
lead to unresolvable slew/timing violations. In this paper, we propose a
novel BOB-RSMT algorithm which helps reclaim the “wasted” over-the-
block routing resources while meeting user-specified slew constraints. Our
algorithm incrementally and efficiently migrates initial tree structures
with buffering-awareness to meet slew constraints while minimizing wire
length. It can handle complex blocks including rectilinear shapes. Our
experiments on various benchmarks demonstrate very promising results.
By utilizing over-the-block routing resources intelligently, we can save
the outside-block wire length as well as the total wire length significantly
compared with the conventional obstacle-avoiding rectilinear Steiner
minimum tree (OA-RSMT) algorithms. BOB-RSMT also reduces the
repeater count/area needed to satisfy slew constraints, which is very
important for modern design closure.

I. INTRODUCTION

As the semiconductor technology scales into deeper sub-micron
domain, billions of transistors can be used on a single system-on-
chip (SOC). Routing becomes more and more challenging because
of congestion, power, timing and buffering requirements. Rectilinear
Steiner minimum tree (RSMT) construction is a fundamental physical
design problem to achieve routing and buffering quality. This classical
problem has long been proved as NP-complete [18] and many works
have been performed including recent breakthrough, e.g. [8].

Because of extensively using IP-blocks to shorten turn around time,
SOC designs nowadays are packed with IP blocks or macros. RSMT
construction avoiding these blockages is well known as the OA-
RSMT problem. OA-RSMT problem has been studied actively in
the last few years (e.g., [2], [13], [15], [16]). Early approaches [15],
[16] only deal with rectangular blockages, while a most recent study
[13] can tackle rectilinear blockages without dissecting rectilinear
blockages into rectangular ones. This approach can eliminate the
infeasible solutions which put wires and buffers between adjoining
blocks. However, all these OA-RSMT algorithms simply treat IP
blocks as routing blockages, which would significantly waste routing
resources over these IP blocks and cause more congestion issues.

Indeed, most IP blocks such as SRAMs only use certain lower
metal layers. There are still considerable amount of routing resources
available at higher metal layers over these IP blocks, even if we take
into consideration the resources reserved for power/ground and clock

This work is partially supported by Oracle.
Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 2012,
November 5-8, 2012, San Jose, California, USA

Copyright 2012 ACM 978-1-4503-1573-9/12/11... $15.00

routing. If we simply treat the IP blocks as routing obstacles, these
over-the-block routing resources will be wasted, which leads to more
routing demand elsewhere.

Besides blockage avoidance, other layout constraints are consid-
ered in [4], [5], [11], [12], [19], [21]. [4], [11], [19], [21] take
timing, buffering, etc., into consideration in their tree construction.
But slew constraint is not fully touched upon. It is reported that
in reality, slew mode buffering is more predominant than timing
mode buffering [12], [20]. Only a fraction (roughly 5% ∼ 10%)
of nets needs to be buffered for delay optimization while for the
remaining (roughly 90% ∼ 95%) are sufficient with slew mode
buffering to meet the slew constraints. [5] extends the work in
[4] with slew in consideration. However, the slew constraints are
translated as length constraints, which may not guarantee meeting
strict slew tolerances. [12] considers slew mode buffering and adopts
the blockage avoidance algorithm in [3], [10] to benefit slew. But this
approach either puts a Steiner node stationary in block or completely
moves it out of block. This might bring unnecessary wiring detours
and high buffering cost.

The blockage avoidance approach in [12] is shown by a 3-pin net
example in Fig. 1(a). S is the source and A,B are the sinks; moving
the Steiner node to right leads to the minimum-cost solution. Fig. 1(b)
shows the same net if BOB-RSMT is adopted. In this case, BOB-
RSMT saves two buffers as well as some detour wire length because
it changes the structure of inside tree more efficiently. Buffer-aware
tree construction has advantage over methods of tree construction
which are independent of buffering.

SA

B

(a)

SA

B

(b)

Fig. 1. A motivational example compares [12] and our proposed BOB-RSMT,
which saves wire length and buffers.

In this paper, we propose to study a new class of BOB-RSMT
problem and develop an effective algorithm which trys to intelligently
reclaim the “wasted”, over-the-IP-block routing resources by previous
approaches while ensuring slew constraints for high quality buffering.
Our algorithm incrementally updates the initial RSMT structure ob-
tained from FLUTE [8] to satisfy slew constraints while minimizing
wire length (FLUTE is chosen to be the initial RSMT generator
because its low runtime and high quality). A restricted length, over-
the-block maze routing algorithm is developed to reconnect any part
of BOB-RSMT which is dissected during the optimization process.
Our work has the following major contributions:

137

1) This is the first work targeting this kind of BOB-RSMT
problem. Our algorithm is able to integrate with a buffering
tool to generate a low buffering cost BOB-RSMT without
violating maximum slew constraint, which can be used in
floorplanning, placement and routing stages. An incremental
approach of fixing slew violation one by one is used to satisfy
slew constraints on over-the-block part of BOB-RSMT.

2) Wire length outside blocks of our BOB-RSMT is remarkably
less comparing with that in other algorithms which are not
utilizing over-the-block routing resources. This will result in
better timing, less power consumption and alleviate routing
congestion. The total wire length, which includes the inside
wire length as well, is also shorter than the results from OA-
RSMT algorithms.

3) We formulate the incremental slew improvement problem into
an integer linear programming (ILP) problem, which can be
solved very fast as the number of variables are small.

4) A block-aware maze router is proposed to reconnect any part of
BOB-RSMT dissected during the tree structure optimization.

The rest of paper is organized as follows. We first formulate the
BOB-RSMT problem and analyze three optimization primitives in
Section II. Our incremental approach of tree structures optimization
will be presented in Section III, which includes five subsections. Sec-
tion III-A discusses about how to find possible point set. Section III-B
gives a method of shrinking search space. Section III-C formulates
and solves the problem. Section III-D introduces a block-aware maze
router to reconnect any dissected part of the tree. Section III-E
describes a buffer insertion algorithm. Experimental results will be
shown in Section IV, followed by conclusions in Section V.

II. PROBLEM FORMULATION

A. What is BOB-RSMT?

In this paper, we propose a new class of RSMT which utilizes
the routing resource over the IP-blocks to improve wire length and
congestion. In a two-dimensional routing region, we are given a net
with a set of pins P = {p1, p2, . . . , pn}. Let B = {b1, b2, . . . , bm}
be a set of non-overlapping rectilinear blocks in the 2−dimensional
space. For ∀ pr ∈ P , pr is not inside the 2−dimensional space
occupied by B. Any area with high-density placed logic cells is not
allowed for buffering is also taken as buffering blockage into B.

Our algorithm constructs BOB-RSMT to connect all the pins in
P . BOB-RSMT might intersect with blocks in B, which confine a
set of trees T = {T1, T2, . . . , Tl} inside blocks. We call trees in T
inside trees. The outside-the-block part of BOB-RSMT is defined as
T0. For each inside tree Ti ∈ T , the leaf nodes of Ti are on the
boundaries of a block. Among all leaf nodes, one must be driving
the signal and others are receiving. We name these leaf nodes which
receive signals escaping points (EP), and the set of escaping points
for Ti is EP i = {EP i

1 , EP
i
2 , . . . , EP

i
|EP i|}, in which |EP i| is the

number of escaping points in EP i. We denote the driver by Di.

B. Basic Ideas and Optimization Primitives

For any inside tree Ti ∈ T , the worst slew part would occur at
escaping points because no buffer is allowed to be inserted over the
block. The best that a buffering tool can do to carry signal over the
block to escaping points is to put the strongest buffer at Di and a
bunch of smallest buffers at EP i to shield downstream capacitance.
If for any j, slewi

j is still worse than slewi
spec, then the slew from

Di to EP i
j violates maximum slew constraint, which means that no

buffering solution can be generated anyway. Further, because we want
to leave more margin for buffering tool at critical timing path and

buffer placement aspects, we use a middle size hypothetical buffer at
Di and middle size hypothetical buffers at EP i to judge if thus the
escaping points have slew violation. Using middle size hypothetical
buffers instead of two extreme sizes will weaken the capability of
utilizing more over-the-block routing resources, but the former will be
a more practical assumption and leads to less buffering cost because
more solutions can propagate through this inside tree. If any escaping
point EP i

j driven by a hypothetical buffer has slewi
j worse than

slewi
spec, then this EP i

j is called illegal escaping point. Any inside
tree with at least one illegal escaping point is an illegal inside tree.

In order to legalize any illegal inside tree, we will change positions
of its escaping points as well as inside Steiner nodes. We move
escaping points closer to the driver and then update the positions
of corresponding Steiner nodes to improve slew. Fig. 2(a) is a three-
pin net with source S and sinks A and B. Fig. 2(b) is the updated
tree after a parallel sliding of escaping point V . Comparing Fig. 2(b)
to Fig. 2(a), the downstream capacitance from W is closer to driver
point due to the parallel sliding of V . The less capacitance burden
to the driver reduces the slew on both escaping points U and V .

V

UA

B

SDW

(a)

V

B

A U SDW

(b)

Fig. 2. V moves to right in (b) compared to (a). This parallel sliding is
providing slew improvement for escaping points U and V .

In this paper, we adopt the following PERI model for slew
calculation at the escaping points [14]:

S(vj) =
√
S(vi)2 + Sstep(vi, vj)2 (1)

S(vj) is slew at any node vj , which is the root-mean square of the
step slew from vi to vj and output slew at node vi. The experimental
results in [14] shows the error of PERI is within 1%, which is
indistinguishable from what is obtained using SPICE simulation. For
simplicity we use Bakoglu’s metric [6] for step slew calculation:

Sstep(vi, vj) = α ∗ Elmore(vi, vj), α = ln9 (2)

The combination of Bakoglu’s metric and the PERI model is shown
to have error within 4% [14]. It is, in general, accurate enough for
RSMT construction purpose. If needed, we can use more accurate
slew calculation tool for BOB-RSMT.

In this paper, we propose three slew optimization primitives
including parallel sliding, perpendicular sliding and EP merging to
improve the slew. The proposed primitives could guide illegal inside
trees to migrate into legal ones with minimum wire length increase.
The analysis demonstrates that the capability of using these three
primitives can fix slew violations under any slewspec.

We first analyze parallel sliding which performs sliding to a new
position on one of the block boundaries. As the escaping point
sliding on the boundary, if its first upstream Steiner node ancestor can
also slide to keep the wire segment between escaping point and the
ancestor Steiner node in translation, then this sliding on the boundary
is called parallel sliding. The requirement of a meaningful parallel
sliding is that the sliding should shorten the length of path from the

138

escaping point to Di, i.e., sliding the escaping point closer to the
driver.

The example in Fig. 3(a) provides an inside tree with the driver D
and escaping points A,B,C,E. Fig. 3(b) shows that escaping point
A performs a parallel sliding by a distance of ∆l to new position
A′. There will be a reduction of step slew on escaping point A
and B. We adopt the following notations in Table I to calculate the
slew improvement of parallel sliding in this example. The step slew
reduction on A and B from Bakoglu’s metric model will be:

δA = −α ∗ r∆l(Ct(U) + 0.5 ∗ c∆l)
δB = −α ∗ r ∗∆l ∗ (Cb + c ∗ l(A,U))

The output slew of the driver D remains unchanged since the total
downstream capacitance of the inside tree is the same. Then we can
use (1) to calculate the corresponding slew change on escaping point
A and B. The changes in slew of escaping point C and E are both
zero because U is not on the path from these two escaping points to
the driver D.

C

A

U

E

B D

(a)

C

A

U

E

B D

A'

U'

Δl

(b)

C

E

B D

A

U'

A'

A''

(c)

C

E(A)

B D

A

U

(d)

Fig. 3. An example shows slew reduction from three primitives. (b) shows
escaping point A slides to A′ parallelly to improve slew on A and B. (c)
shows the vertical sliding of A from A′ to A′′. (d) shows EP merging of
escaping point A to E.

TABLE I
NOTATION OF VARIABLES

r unit length wire resistance on chosen layer
c unit length wire capacitance on chosen layer
Rb chosen buffer output resistance
Cb chosen buffer input capacitance

l(U, V) length of edges between node U and V
Ct(V) total capacitance of the sub-tree rooted at node V

down to the nearest downstream buffer,
including the buffer input capacitance

With parallel sliding we can decrease slew at escaping points, but
we may have wire length penalty because the position change of
escaping points may need some additional wire connection from
outside-the-block sub-tree. In the example shown in Fig. 3(a) to
Fig. 3(b), escaping point A moves a distance of ∆l to A′ by a parallel
sliding. The penalty of wire length is at most ∆l because the outside
connection to A′ can go through A along the edge from A to A′

with ∆l more wire length and there is no change in wire length of
inside tree.

Algorithm 1 The overall BOB-RSMT Algorithm

Input: Initial inside trees T , Slew required for the net: slewspec

Output: BOB-RSMT
1: for each Tt do
2: Sort EP t in descending order of slew
3: while slewt

1 > slewspec do
4: Build possible point set for all unfixed EP in EP t

5: Formulate the problem by a ILP
6: Solve the ILP and update Tt

7: Remove EP t
1 from EP t

8: end while
9: end for

10: return BOB-RSMT

Besides parallel sliding, we perform perpendicular sliding on edges
which are not considered as parallel sliding edges. In Fig. 3(c), if A
is sliding on the segment between A′ to A′′, the wire length penalty
will be zero during the whole sliding process because slide of A
from A′ to A′′ is just slipping wire from inside block to outside. It
is observed that as A reaches A′′, all escaping points will have the
largest slew improvement due to the least downstream capacitance
from U ′. The calculation of slew reduction is similar as of parallel
sliding.

Complementary to parallel sliding and perpendicular sliding, EP
merging removes one escaping point and all edges from this escaping
point up to the first Steiner point ancestor in the inside tree. This will
also bring down the slew of all escaping points based on the fact that
this escaping point and the upstreaming edges from it to next Steiner
point in the inside tree will be removed. The above process will
reduce the total capacitance burden of the driver and hence improve
slew for all escaping points.

In tree Ti, if EP merging joins one EPi with another EPj , the
outside connection to EPi will be reconnected to EPj or other
closer part of BOB-RSMT by a restricted length, over-the-block maze
routing algorithm, which will be introduced in Section III-D.

Considering the EP merging of escaping point A to E in Fig. 3(a)
and Fig. 3(d), the wire length penalty will be at most the distance
between A and E because the outside connection to A can go through
original position of A and then along the edge to E as shown in
Fig. 3(d). Actually due to the existence of tree outside this block,
reconnecting to the outside part might have less wire length penalty.
But here, we take the previous conservative estimate as the wire
length penalty because it is guaranteed to be achieved. The calculation
of slew reduction is similar.

III. BOB-RSMT ALGORITHMS

To construct a legal BOB-RSMT, we first generate an initial RSMT
by using FLUTE-3.1, and then we apply primitives to all illegal inside
trees to fix the slew of them. Finally a proposed restricted length,
over-the-block maze routing algorithm is used to reconnect all these
parts to form the final BOB-RSMT. The approach is described in
Algorithm 1.

For each Tt ∈ T as an illegal inside tree, three primitives are
applied to decrease slew on illegal escaping points until Tt becomes
a legal inside tree. The procedure starts from calculating slew of each
EP t

i . From the calculated result, we first sort EP t in descending
order of their slew violations as line 2 of Algorithm 1. Then we
choose the first illegal escaping point, EP t

1 , which should have
worst slew violation based on the sorting. To improve slew for EP t

1 ,
each escaping point from {EP t

1 , EP
t
2 , . . . EP

t
|EP t|} might slide to a

different position by taking a combination of primitives discussed in
section II-B. Taking these optimization primitives guarantees slewt

1

to be within slew requirement. Because in the extreme situation where

139

maximum slew constraint is zero EP t
1 can still become legal escaping

point by merging one escaping point to another until only the driver
is left. This slew fixing procedure is elaborated through line 4 to 6
of Algorithm 1.

After slewt
1 has decreased below the required slew, EP t

1 is fixed at
the current position and removed from EPt as in line 7. Next iteration
will start from the rest of EP t. The current iteration will not degrade
the result of previous iterations as we will remove solution space from
current solution space if it degrades slew of fixed escaping points.
This solution space elimination happens rarely because moving one
escaping point closer to driver usually does not degrade slew on other
points. This slew improvement method will keep being applied on
EP t

1 at each iteration until all EP t are fixed.

A. Generating Possible Point Set

C

A

U

E

B D

PP
2

PP
1

(a)

C

A

U

E

B D

(b)

Fig. 4. (a) is an inside tree with driver at D. It shows all possible points
for E. (b) exhibits the refined possible point set for E.

At every iteration we try to improve the slewt
1 of inside tree Tt ∈

T, t ∈ {1, 2, . . . , l}. One important step in that is to generate possible
point set for each non-fixed escaping points. Possible point set is a set
of all possible points of one non-fixed escaping point. Each possible
point in the set is a point on a boundary edge where escaping point
might end up. For any non-fixed EP t

i ∈ {EP t}, the jth possible
point associated with EP t

i is denoted as PPij . PPij is stored in a
3-tuple format {Eij , Bij ,Wij}. Eij and Bij denote the step slew at
EP t

1 and output slew reduction of the driver if EPi moves to PPij .
Wij is the corresponding estimated wire length penalty. The possible
point set associating with EP t

i in the current iteration is denoted as
PPSt

i . PPSt
i = {PP t

i1, PP
t
i2, . . . , PP

t
ir}, where r is the number

of possible points inside.
For each EP t

i in current iteration, we generate the possible
point for EP merging first. Assume the target escaping point for
EP t

i to merge with is EP t
j . The estimated wire length penalty

is the outside-the-block distance from EP t
i to EP t

j . Thus for EP
merging, we always choose the EP t

j with minimum outside-the-
block distance from EP t

i . The slew reduction and the estimated wire
length penalty of this choice will be added to the PPSt

i as the 3-
tuple {Eij , Bij ,Wij}. For example in Fig.4(a), where EP t

1 is B and
EP t

i is E, the EP merging point for E is escaping point A.
Secondly, we consider the sliding for EP t

i . We first search all
edges on blockt for sliding by the criteria discussed in SectionII-B.
The blockt here refers to the block confining Tt. Then for each
parallel sliding edge, we chop it at a number of points. Moving
EP t

i to any one of these points can improve slew on EP t
1 . For

each perpendicular sliding edge, we pick the possible point at one
end of it, as discussed in SectionII-B. Each chop point is a possible
point, which will be added into possible point set. We set distance
between two chop points to be a fixed value depending on the scale
of the chip. For example in Fig.4(b), D is the driver and A,B,C,E
are escaping points. The possible point set for E are shown with red
color dots.

TABLE II
NOTATION OF VARIABLES IN OUR FORMULATION

Xij binary variable denoting the choice of PPSt
ij ,

Xij = 1 if it is chosen, otherwise Xij = 0

Eij step slew reduction at EP t
1 if EP t

i moves to PPSij

Bij output slew reduction on Dt if EP t
i moves to PPSij

Wij estimated wire length penalty of EP t
1 if EP t

i moves to PPSij

Yrsij binary variable equals to one only if Xrs = 1 and Xij = 1

B. Refinement of Possible Region Set

For any escaping point EP t
i , after collecting PPSt

i , we will do a
refinement on ∀PPij ∈ PPSt

i to reduce the potential solution space.
The refinement is based on Pareto efficiency [7].

The refined possible point set should form a Pareto frontier in
the sense of estimated wire length penalty and slew reduction(both
output slew reduction at the driver and step slew reduction at EP t

1),
which is restricting attention to the set of choices that either has less
estimated wire length penalty or more slew reduction. After applying
refinement on Fig.4(a), the possible points turn into Fig.4(b). One
example of a pruned possible point in Fig.4(a) is: PP2 is pruned by
PP1 as the latter has less estimated wire length penalty and more
slew improvement.

C. Primitive Choice Based on a Fast ILP

In order to construct the inside tree under the slew constraint with
minimum wire length as target, ∀EP t

i ∈ EP t we need to decide
which possible point to choose. We use an incremental way to update
positions of all escaping points at each iteration. In each iteration,
in order to meet the slew constraint for the worst violated escaping
point, all escaping points in EP t will move and the whole inside
tree will be updated. Only through moving all EP t

i ∈ EP t at the
same time can we attain an optimal solution with minimum estimated
wire length penalty. This stems from the reason that ∀PPSt

i , i ∈
{1, 2, . . . , |EP t

i |} has a Pareto frontier to choose one point from. The
choice depends on what choices are made at other Pareto frontiers
because the total slew reduction summed up from all these choices
has to diminish the slew violation of EP t

1 . The new slew has to
satisfy the slew constraints,√√√√

(St
step1 +

|EP t
i |∑

i=1

Et
i)

2 + (St(Dt) +

|EP t
i |∑

i=1

Bt
i)

2 < slewt
spec

The simultaneous step slew reduction is same with calculating one
by one, and the simultaneous output slew reduction is close enough
to be represented by the summation of individuals. The simultaneous
point choice problem can be formulated in an optimization problem
as follows (notation in Table II):

min.

|EP t|∑
i=1

|PPSt
i |∑

j=1

XijWij (3)

s.t.(St
step1 +

|EP t|∑
i=1

|PPSt
i |∑

j=1

XijE
t
ij)

2+

(St(Dt) +

|EP t|∑
i=1

|PPSt
i |∑

j=1

XijB
t
ij)

2 <= slewt
spec

2
(3a)

|PPSt
i |∑

j=1

Xij = 1 ∀i ∈ {1, 2, . . . , |EP t|} (3b)

The objective function (3) is to minimize the total estimated wire
length penalty. Constraint (3a) restricts that the total slew reduction

140

on EP t
1 has to be able to pull slewt

1 down below requirement.
Constraint (3b) is used to limit only one position chosen for each
escaping point.

This formulation is a non-linear integer programming formulation
(NLIP). We expand the step slew part in constraint (3a) as:

St
step1

2
+ 2St

step1

|EP t|∑
i=1

|PPSt
i |∑

j=1

(Xt
ij)(E

t
ij)+

|EP t|∑
r=1

|PPSt
i |∑

s=1

|EP t|∑
i=1

|PPSt
i |∑

j=1

Xt
rsE

t
rsX

t
ijE

t
ij

We observe that the only quadratic item is Xt
rsX

t
ij . We can

substitute this item for a new binary variable Yrsij . We constrain
Yrsij such that Yrsij always behaves same as Xt

rsX
t
ij . The constraint

needed is (for output slew part, it is similar):

Yrsij <= Xt
rs ∀r, s, i, j ∈ {1, 2, . . . , |EP t|} (3c)

Yrsij <= Xt
ij ∀r, s, i, j ∈ {1, 2, . . . , |EP t|} (3d)

Yrsij >= Xt
rs +Xt

ij − 1 ∀r, s, i, j ∈ {1, 2, . . . , |EP t|} (3e)

By adding constraint (3c) ∼ (3e) to (3), we turn the NLIP problem
into integer linear programming formulation (ILP), which can be
solved by solver Gurobi Optimizer [1] quickly. The formulation of
ILP is shown as follows:

min.

|EP t|∑
i=1

|PPSt
i |∑

j=1

XijWij

s.t.St
step1

2
+ St(Dt)

2
+ 2St

step1

|EP t|∑
i=1

|PPSt
i |∑

j=1

(Xt
ij)(E

t
ij)+

2St(Dt)

|EP t|∑
i=1

|PPSt
i |∑

j=1

(Xt
ij)(B

t
ij)+

|EP t|∑
r=1

|PPSt
i |∑

s=1

|EP t|∑
i=1

|PPSt
i |∑

j=1

(Bt
rsB

t
ij + Et

rsE
t
ij)Yrsij <= slewt

spec
2

|PPSt
i |∑

j=1

Xij = 1 ∀i ∈ {1, 2, . . . , |EP t|}

Yrsij <= Xt
rs ∀r, s, i, j ∈ {1, 2, . . . , |EP t|}

Yrsij <= Xt
ij ∀r, s, i, j ∈ {1, 2, . . . , |EP t|}

Yrsij >= Xt
rs +Xt

ij − 1 ∀r, s, i, j ∈ {1, 2, . . . , |EP t|}

Due to the number of choices for each escaping point is limited by the
number of possible sliding edges and their length, the total number
of variables in our formulation is very limited. The ILP solver can
get the solution very fast.

D. Block-aware Maze Routing Algorithm

After final positions of all escaping points are fixed, a restricted
length, over-the-block maze routing will be applied. This maze
routing features ability of routing over-the-blockage. The maximum
length it can route over the block is decided by the distance a middle
size buffer could drive itself over the block without slew problem.
This restricted length, over-the-block maze router requires less wire
length comparing with normal maze router because of its ability to
route over the block. In Fig. 5(a), U is an escaping point and A
is a sink of the tree. Escaping point U slides to U ′ to legalize the

inside tree. The restricted length, over-the-block maze is applied to
reconnect A, and it will choose connection from A to V instead of
from A to U ′ because of shorter wire length, resulting in Fig. 5(b).
Wire segment U ′ to W will be removed if no other part connects to
U ′.

D

A

U

(a)

D
U'

V

U

W

A

(b)

Fig. 5. Restricted length, over-the-block maze routing find a shortest path
to reconnect pin A

The implementation of block-aware maze routing is based on the
normal maze routing. But its multiple points to multiple points search
is from all points of the tree rooted at the current escaping point to
T0 or an escaping point of any inside tree. Furthermore, the length of
the over-the-block path is checked every step in the search to make
slew safe. The details of the algorithm are skipped here due to page
limit.

E. Min-cost Slew Mode Buffer Insertion

After BOB-RSMT is fully constructed, we insert buffers in a free-
location way, which allows buffers at any unblocked space. Com-
paring with fixed-location buffer insertion algorithm, free-location
buffering can freely choose position for buffering, which will result
in lower buffer cost. We assume the input slew of each buffer is
fixed at the slew constraint. Free-location buffering with fixed input
slew will give a shorter runtime but conservative result [12]. It uses a
dynamic programming framework to propagate a set solutions from
bottom up to the source of the net. Each solution is characterized as
a triple (C,W,S), where C stands for downstream capacitance, W
denotes the total cost of the solution, and S is the worst downstream
accumulated step slew degradation calculated from (2). Consider to
propagate a solution from a node vj to its parent vi through edge
e = (vi, vj). One solution γj at node vj propagates to vi to become
a solution γi as C(γi) = C(γj) + Ce,W (γi) = W (γj), S(γi) =
S(γj) + Sstep(vi, vj).

In addition to unbuffered propagation, a buffer can be placed at
vi to generate a buffered solution. If a buffer is placed, the buffered
solution at vi is becoming C(γi,buf) = Cb,W (γi,buf) = W (γi) +
Wb, S(γi,buf) = 0.

When two sets of solutions propagated by both left and right
children reach a branching node, these two set of solutions are
merged. The merge is performed on each solution in left child with
each solution in right child. Assume γl is one solution from left
side and γr is one solution from right side to be merged. The
merged solution γp will have C(γp) = C(γl) + C(γl),W (γp) =
W (γl) +W (γr), S(γp) = max{S(γl), S(γr)}.

It is beneficial to prune useless solution at each node. As two
solutions γi1 and γi2 are at same node, γi1 dominates γi2 only if
C(γi1) <= C(γi2),W (γi1) <= W (γi2), S(γi1) <= S(γi2).

IV. EXPERIMENTAL RESULTS

We have implemented our algorithm in the C++ programming
language. The experiments are conducted on an Intel Core 3.0GHz

141

TABLE III
COMPARISONS BETWEEN OUR PROPOSED BOB-RSMT AND OA-RSMT

Bench n m 20% slew 50% slew 80% slew FLUTE Huang Ajwani
-marks WLi WLo WL WLi WLo WL WLi WLo WL -3.1 [13] [2]

RT1 10 500 385 1449 1834 296 1522 1818 296 1522 1818 1817 2146 2191
RT2 50 500 1216 43469 44685 1216 43469 44685 1186 43507 44693 44685 45852 48156
RT3 100 500 263 7420 7683 276 7390 7666 282 7379 7661 7652 7964 8282
RT4 100 1000 1196 6647 7843 872 6957 7829 882 6947 7829 7827 9693 10330
RT5 200 2000 6702 36474 43176 7277 35720 42997 7491 35458 42949 42943 51313 54598
RC1 10 10 740 24550 25290 740 24550 25290 740 24550 25290 25290 25980 25980
RC2 30 10 5220 36998 42218 8190 34520 42710 8190 33020 41210 39920 41350 42110
RC3 50 10 530 53950 54480 1190 53290 54480 4480 48430 52910 52880 54160 56030
RC4 70 10 3030 52420 55450 4490 50960 55450 5420 50027 55447 55300 59070 59720
RC5 100 10 3590 69810 73400 3590 69810 73400 4750 68980 73730 73220 74070 75000
RC6 100 500 12983 65667 78650 14613 61980 76593 15049 62432 77481 77171 79714 81229
RC7 200 500 13141 97109 110250 13785 95162 108947 14244 93565 107809 106743 108740 110764
RC8 200 800 23674 88136 111810 25515 84049 109564 25184 83385 108569 108495 112564 116047
RC9 200 1000 25689 83972 109661 25689 83972 109661 26026 82192 108218 107729 111005 115593

RC10 500 100 8372 156348 164720 9400 155370 164770 9400 155370 164770 163980 164150 168280
RC11 1000 100 3016 229519 232535 3498 228232 231730 3498 228282 231780 231730 230837 234416
Ave. 9.95 91.38 101.33 10.99 89.98 100.97 11.69 88.74 100.43 100 106.03 108.17

TABLE IV
CPU RUNTIME

CPU (s)
Bench 20% slew 50% slew 80% slew
-marks maze C-SB BOB-RSMT maze C-SB BOB-RSMT maze C-SB BOB-RSMT

ILP routing buffering buffering ILP routing buffering buffering ILP routing buffering buffering
RT1 0.02 0.1 270.09 0.03 0 0.04 281.62 0.02 0 0.04 285.03 0.01
RT2 0 0.13 1041.83 0.03 0 0.04 1056.27 0.07 0.01 0.1 1059.6 0.04
RT3 0.02 0.13 905.05 0.26 0 0.07 1023.39 0.19 0 0.07 1041.01 0.15
RT4 0.02 0.25 2859.06 0.64 0 0.07 2880.2 0.47 0 0.07 2896.48 0.43
RT5 0.03 2.61 > 7200 1.25 0.01 1.43 > 7200 1.03 0.01 0.35 > 7200 1.03
RC1 0 0.01 0.05 0 0 0.01 0.05 0 0 0 0.05 0
RC2 0 0 0.45 0.01 0 0 0.53 0 0 0.01 0.63 0
RC3 0 0.02 0.50 0.01 0 0.03 0.66 0.01 0 0.01 0.63 0.01
RC4 0.01 0.04 2.72 0.01 0 0.01 2.40 0.01 0.02 0 2.40 0.01
RC5 0 0.01 4.44 0.02 0.01 0.01 4.44 0.02 0.01 0.01 4.50 0.02
RC6 0.04 0.91 1652.4 0.2 0.01 0.08 1643.11 0.12 0 0.09 1634.05 0.13
RC7 0.04 3.43 > 7200 0.36 0.02 1.51 > 7200 0.29 0 0.56 > 7200 0.24
RC8 0.05 2.24 > 7200 0.05 0.01 0.76 > 7200 0.56 0.01 0.26 > 7200 0.55
RC9 0.09 5.08 > 7200 0.78 0.03 1.88 > 7200 0.55 0.02 1.02 > 7200 0.4

RC10 0.02 0.31 190.1 0.44 0 0.06 191.3 0.39 0 0.05 190.39 0.38
RC11 0.04 0.55 592.35 1.24 0.01 0.46 589.87 1.15 0.01 0.37 591.71 1.15

TABLE V
EXTRA BUFFERING COST COMPARISON

Bench 20% slew 50% slew 80% slew
FLU [12] extra % BOB extra % of FLU [12] extra % BOB extra % of FLU [12] extra % BOB extra % of

-marks -TE of [12] -RSMT BOB-RSMT -TE of [12] -RSMT BOB-RSMT -TE of [12] -RSMT BOB-RSMT
RT1 151 221 46.36 158 4.63 94 137 45.74 98 4.26 74 109 33.78 77 4.05
RT2 349 409 17.19 352 0.86 218 225 3.21 218 0.00 16 19 18.75 16 0.00
RT3 761 897 17.87 767 0.79 470 557 18.51 473 0.64 376 442 17.55 376 0.00
RT4 300 448 49.33 306 2.00 180 270 50.00 184 2.22 139 208 49.64 144 3.60
RT5 378 673 78.04 386 2.12 228 413 81.14 237 3.95 174 326 87.36 183 5.17
RC1 21 23 9.52 22 4.76 13 14 7.70 14 7.70 10 11 10.00 10 0.00
RC2 33 37 12.12 33 0.00 21 24 14.29 21 0.00 16 19 18.75 16 0.00
RC3 96 113 17.71 99 3.12 59 71 20.34 60 1.69 45 54 20.00 47 4.44
RC4 65 76 16.92 67 3.08 41 48 17.07 41 0.00 30 36 20.00 32 6.67
RC5 62 70 12.90 62 0.00 36 41 13.89 39 8.33 28 32 14.29 29 3.57
RC6 237 272 14.77 248 4.64 143 166 16.08 151 5.59 112 128 14.29 118 5.36
RC7 458 504 10.04 465 1.53 278 307 7.67 287 3.24 217 242 11.52 224 3.23
RC8 282 342 21.28 304 7.80 172 211 22.67 187 8.72 135 162 20.00 143 5.92
RC9 425 506 19.06 451 6.12 259 313 20.85 278 7.34 202 247 22.28 213 5.45
RC10 394 412 5.08 395 0.25 246 261 6.10 248 0.81 189 201 6.35 191 1.06
RC11 1662 1695 1.99 1670 0.48 1023 1044 2.05 1025 0.20 789 804 1.90 792 0.38
Ave. 21.89 2.64 21.71 3.42 22.90 3.06

Linux machine with 32GB memory. We choose Gurobi Optimizer
4.60 as our solver for the integer linear programming.

RT1-RT5 and RC01-RC11 are benchmarks in our experiments.
IND1-IND5 used in [2], [13] are not used in our experiments,
because they require routing/buffering between adjoining blocks,
which might be infeasible for real designs. RT1-RT5 are randomly
generated circuits used in [17]. RC01-RC11 are test cases used in [9].
Because these benchmarks are widely different in scale and do not

carry timing and physical information, we first apply predetermined
resistance and capacitance to all of them. We use different resistance
and capacitance for horizontal and vertical wires respectively. If a
congestion map is considered, we can assign each wire segment to a
proper layer by pruning possible points in congestion.

For each benchmark, after FLUTE-3.1 finishes generating inside
trees, we collect slew on every escaping point for all inside trees.
The range of value of collected slew is [slewmin, slewmax]. Then

142

we test each benchmark under three slew constraints:
1) 20% slew: slewmin + 20%(slewmax − slewmin)
2) 50% slew: slewmin + 50%(slewmax − slewmin)
3) 80% slew: slewmin + 80%(slewmax − slewmin).

These three tests of each benchmark can test the performance
of our algorithm under tight, medium and loose slew constraints,
respectively.

Table III compares the performance of our algorithm with some
recently published OA-RSMT algorithms. Columns 4, 5, 6 list the
over-the-block wire length, outside-the-block wire length and total
wire length of our algorithm under 20% slew constraint. Columns 7
to 12 are for same types of wire length under 50% and 80% slew
constraints. The row at bottom illustrates the average performance
from all benchmarks listed above. We normalize the performance in
such a way that the total wire length of FLUTE-3.1 is 100. The
outside-the-block wire length from Huang [13] is 14.27% more than
our BOB-RSMT algorithm under 20% slew constraint and 17.29%
under 80% slew constraint. The free over-the-block routing resources
reclaimed by BOB-RSMT are between 10% to 12% of the total
wire length. Even for the total wire length, since BOB-RSMT can
intelligently use over-the-block wires, it can reduce about 5% of total
wire length compared with [13] and [2]. The runtime of our proposed
algorithm BOB-RSMT is divided into two parts: solving ILP and
block-aware maze routing, which are listed in the columns 2, 3, 6, 7,
10, 11 in Table IV. Our runtime is much shorter than both reported
in [13] and [2].

Table V carries out the buffering results on FLUTE, approach in
[12] and BOB-RSMT. For simplicity we only use one type of buffer,
and total buffering cost is the number of buffers used. From the table
we have minimum buffering cost associated with 20%, 50%, 80%
slew constraint respectively for all benchmarks. We use buffering on
FLUTE as the baseline for our comparison. Buffering on FLUTE
is performed without considering any block in the two-dimensional
routing region. We implement the approach in [12] and the results
are in columns 3, 8, 13 in the Table V. The penalty parameter α for
over-the-block routing wires in [3], [12] is set between 10 to 100,
which increases if no solution can propagate to the source. Columns
5, 10, 15 in the Table V are the minimum buffering costs from BOB-
RSMT. Columns after the buffering cost are the percentages of extra
buffers used to overcome blocks by that approach. As we can see,
buffering on BOB-RSMT only uses around 3% more buffers than
FLUTE to propagate through blocks, while the approach in [12] uses
more than 20%. The CPU runtime comparison between buffering
on BOB-RSMT and the approach in [12] is in Table IV. Columns
5, 9, 13 illustrate the runtime for buffering on BOB-RSMT under
three slew constraints while columns 4, 8, 12 are for approach in
[12]. Buffering on BOB-RSMT is much faster because during the
buffering stage, the tree structure of BOB-RSMT has no need to be
changed to meet slew constraint, but in contrast [12] needs to find
LeastBlockedPath([3], [10]) during every step.

V. CONCLUSION

In this paper, we study an important new class of RSMT problems,
i.e., buffering-aware over-the-IP-block rectilinear Steiner minimum
tree. We propose an effective and efficient algorithm which can
reclaim the over-the-IP-block routing resources and is beneficial to
buffering. With our proposed approach, we can reduce the outside-
the-block wire length for more than 14% and use about 19% less
buffer cost than the approach in [12] to ensure slew correct RSMT
with blocks. Our proposed algorithm BOB-RSMT can be used in
both pre-routing and global routing stage to provide high quality
routing solutions. One example is to pre-route certain persistent

critical signals in large complex chips, such as a microprocessor,
using higher metal layers. Since this is the first work of this kind,
we expect more follow-up works to push the state-of-the-art of BOB-
RSMT, which is crucial for large SOC designs with many IP-blocks.

REFERENCES

[1] Gurobi Optimizer 4.52. http://www.gurobi.com/.
[2] G. Ajwani, Chris Chu, and Wai-Kei Mak. FOARS: FLUTE Based

Obstacle-Avoiding Rectilinear Steiner Tree Construction. In Proc. ISPD,
2010.

[3] Charles J. Alpert, G. Gandham, J. Hu, J.L. Neves, S.T. Quay, and S.S.
Sapatnekar. Steiner tree optimization for buffers, blockages. and bays.
In Proc. IEEE Int. Symp. on Circuits and Systems, 2001.

[4] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, S. T. Quay, and C. N.
Sze. Porosity aware buffered steiner tree construction. IEEE TCAD,
23(4):517–526, 2003.

[5] C.J. Alpert, M. Hrkic, J. Hu, and S. T. Quay. Fast and flexible buffer
trees that navigate the physical layout environment. In Proc. DAC, 2004.

[6] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI.
Addison-Wesley, 1990.

[7] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[8] Chris Chu and Yiu-Chung Wong. FLUTE: Fast Loopup Table Based
Rectilinear Steiner Minimal Tree Algorithm for VLSI Design. IEEE
TCAD, 27(1):70–83, 2008.

[9] Zhe Feng, Yu Hu, Tong Jing, Xianlong Hong, Xiaodong Hu, and
Guiying Yan. An O(nlogn) algorithm for obstacle-avoiding routing tree
construction in the -geometry plane. In Proc. ISPD, 2006.

[10] Jiang Hu, C.J. Alpert, S.T. Quay, and G. Gandham. Buffer insertion
with adaptive blockage avoidance. IEEE TCAD, 22(4):492–498, 2003.

[11] Jiang Hu and Sachin S. Sapatnekar. Simultaneous buffer insertion and
non-Hanan optimization for VLSI interconnect under a higher order
AWE model. In Proc. ISPD, 1999.

[12] Shiyan Hu, C.J. Alpert, J. Hu, S.K. Karandikar, Z. Li, W. Shi, and C.N.
Sze. Fast algorithms for slew-constrained minimum cost buffering. IEEE
TCAD, 26(11):2009–2022, 2007.

[13] T. Huang and Evangeline F.Y. Young. An Exact Algorithm for the
construction of Rectilinear Steiner Minimum Trees among Complex
Obstacles. In Proc. DAC, 2011.

[14] Chandramouli V. Kashyap, Charles J. Alpert, Frank Liu, and Anirudh
Devgan. Closed Form Expressions for Extending Step Delay and Slew
Metrics to Ramp Inputs. In Proc. ISPD, 2003.

[15] L. Li, Z. Qian, and Evangeline F.Y. Young. Generation of Optimal
Obstacle-avoiding Rectilinear Steiner Minimum Tree. In Proc. ICCAD,
2009.

[16] L. Li and Evangeline F.Y. Young. Obstacle-avoiding Rectilinear Steiner
Tree Construction. In Proc. ICCAD, 2008.

[17] Chung-Wei Lin, Szu-Yu Chen, Chi-Feng Li, Yao-Wen Chang, and Chia-
Lin Yang. Efficient obstacle-avoiding rectilinear steiner tree construction.
In Proc. ISPD, 2007.

[18] M.R.Garey and D.S.Johnson. The Rectilinear Steiner Tree Problem
is NP-Complete. Proceedings SIAM Journal on Applied Mathematics,
32(4):826–834, 1977.

[19] Takumi Okamoto and Jason Cong. Simultaneous routing and buffer
insertion with restrictions on buffer locations. In Proc. ICCAD, 1996.

[20] Peter J. Osler. placement driven synthesis case studies on two sets of
two chips: hierarchical and flat. In Proc. ISPD, 2004.

[21] Hai Zhou, D. F. Wong, I-Min Liu, and Adnan Aziz. Buffered Steiner
tree construction with wire sizing for interconnect layout optimization.
In Proc. DAC, 1999.

143

