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Abstract
TSV-induced stress is an important issue in 3D IC design since it leads
to serious reliability problems and influences device performance. Ex-
isting finite element method can provide accurate analysis for the stress
of simple TSV placement, but is not scalable to larger designs due to its
expensive memory consumption and high run time. On the contrary,
linear superposition method is efficient to analyze stress in full-chip
scale, but sometimes it fails to provide an accurate estimation since it
neglects the stress induced by interactions between TSVs. In this paper
we propose an accurate two-stage semi-analytical framework for full-
chip TSV-induced stress modeling. In addition to the linear superposi-
tion, we characterize the stress induced by interactions between TSVs to
provide more accurate full-chip modeling. Experimental results demon-
strate that the proposed framework can significantly improve the accu-
racy of linear superposition method with reasonable overhead in run
time.
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B.7.2 [Hardware, Integrated Circuits]: Design Aids
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Design
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1. Introduction
Through-silicon-via (TSV) induces thermo-mechanical stress during the
fabrication process and operation phase of 3D IC due to the mismatch of
coefficients of thermal expansion (CTE) between the materials of TSV
and substrate. The thermo-mechanical stress further induces mobility
variation and influences the device performance [1, 2], and may cause
serious reliability issues like crack growth in the chip [3, 4]. Hence,
it is important to accurately analyze the TSV-induced stress in the
design phase in order to predict circuit performance and avoid reliability
issues. Most previous works on thermo-mechanical stress employ finite
element method (FEM) to characterize the stress [5–7]. While FEM can
accurately analyze the stress of simple TSV placement, it encounters
enormous difficulties when tackling larger design due to its expensive
memory consumption and high run time. To overcome the difficulties
of FEM, some analytical methods have been proposed [3, 8]. Although
these analytical methods are generally efficient, they usually assume
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an over-simplified TSV structure and sometimes lead to results with
unacceptable error [9].

Besides FEM and analytical methods, linear superposition method
has been proposed in [9–11] to both consider realistic TSV structure and
complete the simulation within reasonable run time and memory usage.
The fundamental idea of linear superposition method is to calculate
the stress contribution of each TSV separately, and then superpose
them. However, when calculating the stress contribution of a certain
TSV, linear superposition method assumes the TSV is a single one in
isolation and neglects the influence of nearby TSVs. This assumption
neglects the fact that nearby TSVs have different mechanical properties
compared with substrate and will behave differently, and therefore they
have considerable influences on stress contribution of the TSV. We term
the stress induced by the interactions between TSVs interactive stress.
Since linear superposition method fails to characterize interactive stress,
its accuracy will suffer with high TSV integration density.

To overcome the limitations of previous works, we propose in
this paper an accurate semi-analytical framework for full-chip TSV-
induced stress modeling. The proposed framework uses complex vari-
able method in elasticity to characterize the interactive stress between
TSVs, and achieves an analytical solution to it. Based on the analytical
solution, the proposed framework calculates the interactive stress for
each simulation point on chip, and uses it to adjust the analysis result
of linear superposition method. Experimental results demonstrate the
proposed framework significantly benefits the accuracy of linear su-
perposition method under short additional run time. For example, in a
placement consisting of two baseline TSVs with 8um pitch, the pro-
posed framework reduces the average error rate of linear superposition
from 36.8% to 14.3% in the region surrounding TSVs with only 1%
additional run time.

The main contributions of this paper include the following: (1) For
the first time, the paper proposes the concept of interactive stress, an-
alyzes its mechanism and points out its importance to stress modeling.
(2) The paper shows that the existing linear superposition method will
induce more error when the pitch between TSVs decreases due to the
neglect of interactive stress. (3) The paper applies the complex variable
method in elasticity to interactive stress, and proposes an analytical so-
lution. (4) The paper proposes a semi-analytical framework which can
accurately characterize the TSV-induced stress in full-chip scale within
reasonable run time and memory usage.

The rest of paper is organized as follows. In Section 2, we will first
introduce the baseline TSV structure and stress simulation methodol-
ogy used in the paper. Then we will define and analyze the interactive
stress between TSVs, and point out its importance for stress modeling.
In Section 3, we will first propose a 2D analytical stress model for a
single TSV which considers the influence of liner on stress field. And
then we apply the complex variable method in elasticity to character-
ize the interactive stress. In Section 4, based on the analytical solution
to interactive stress, we will propose an accurate semi-analytical frame-
work for full-chip TSV-induced stress modeling. In Section 5, we will
validate our proposed framework on several placements, and justify its
accuracy and scalability. Conclusions are drawn in Section 6. More de-
tails of the theory and experimental results can be found in Appendix.



2. Preliminary
2.1 Baseline TSV Structure and Stress Simulation

Figure 1. A typical TSV structure.

Various TSV structures have been reported in previous literature
[9, 12, 13]. Our baseline TSV structure shown in Figure 1 is based on a
typical one [9]. In the structure, TSV consists of copper TSV body and a
benzocyclobutene (BCB) liner. We validate our proposed framework on
the baseline TSV structure. However, we also use SiO2 as an alternative
liner material and test the proposed framework on it (Appendix A.2).

We use commercial FEM tool to obtain the golden result of the stress
simulation. In our FEM simulation, the entire structure is assumed to be
linear elastic and isotropic with constant material properties. We also
assume it is stress free at the annealing temperature, and bears a -250K
thermal load during the annealing process.

2.2 Mechanism of Interactive Stress
Interactive stress is defined as the stress induced by the interactions
between TSVs due to the mismatch of mechanical properties (Young’s
modulus and Poisson’s ratio) of TSV body, liner and substrate. Here
we use a placement consisting of two TSVs to illustrate how interactive
stress originates (Figure 2). To simplify the problem, we consider one
TSV as the aggressive TSV, and the other as the victim, and then vice
versa. In the stress field induced by the aggressive TSV, the victim
TSV just acts as a part of medium with different mechanical material
properties from substrate.

If we assume victim TSV has the same mechanical property as sub-
strate, the stress field of entire placement is the same as that of a single
TSV in isolation. Under this circumstance, we term the stress field of
entire placement ideal stress distribution, term the stress load along the
boundary Γ1 between the victim and substrate ideal stress load and term
the deformation of the victim and surrounding substrate ideal deforma-
tion. However, in reality, the stress load along the boundary Γ1 must
be different from ideal stress load. Otherwise surrounding substrate will
deform as ideal deformation, but the victim will deform more signifi-
cantly than ideal deformation since Young’s modulus of TSV is smaller
than that of substrate, hence under the same stress load, victim TSV
will deform more significantly. In that sense, if the stress load along the
boundary Γ1does not change, there will be some overlap or discrepancy
between victim TSV and substrate, which definitely cannot happen in
reality. Interactive stress just originates from the change of stress load
along the boundary Γ1 . And then, interactive stress will propagate into
the substrate and TSV, and influence the stress distribution in these re-
gions.

Linear superposition method [9] neglects the existence of victim
TSV when considering the stress contribution of aggressive TSV, and
thus fails to consider interactive stress induced by the interaction be-
tween TSVs. For the TSV structure with SiO2 liner, interactive stress
is not very severe due to a smaller Young’s modulus difference between
liner and substrate materials. And hence the linear superposition method
can achieve acceptable accuracy though our proposed framework can
still significantly improve the accuracy of stress analysis. However, the
interactive stress is considerable for the TSV structure with BCB liner
due to a much bigger Young’s modulus difference between liner and
substrate materials. Figure 3 shows the device layer distribution of stress
component σxx calculated by FEM and linear superposition method

Figure 2. Illustrations for the characterization of interactive stress.

Figure 3. Comparison between FEM and linear superposition method
on σxx distribution along the line through the centers of two TSVs.

along the line through the centers of two baseline TSVs. If we assume
FEM simulation contains negligible errors, the discrepancy of results
is totally caused by interactive stress. In this figure, we can see linear
superposition method overestimates stress level generally, and leads the
analysis to an error rate as high as 50% in some regions of interests.
Therefore, it is very necessary to consider and characterize interactive
stress.

The key points to characterize interactive stress lay in two aspects.
One is how to decouple the interaction between aggressive and victim
TSV; the other one is how to achieve equilibrium state between the de-
formation of TSV body, liner and substrate. Firstly, interactive stress
originates from the victim TSV under the stress field of the aggressive,
but reversely influences the deformation of the aggressive. The influ-
enced deformation might in turn change the stress field of the aggres-
sive, and lead to the change of interactive stress. Therefore, it is im-
portant to decouple the interaction between TSVs. Secondly, we need
to investigate what is the smart stress load of victim TSV that ensures
TSV body, liner and substrate deform harmonically and prevents the
occurrence of overlap or discrepancy between these regions.

3. Analysis of Interactive Stress
In this section, we analyze and characterize the interactive stress. We
first introduce the basics of elasticity theory which serves as the funda-
mental of derivation. Then we propose a 2D analytical stress model for
a single TSV which has considered the influence of liner on stress field.
This model can be used as the ideal stress distribution induced by the
aggressive TSV. Based on this model, we employ the complex variable
method in elasticity to characterize the interactive stress.

3.1 Basics of Elasticity Theory
Elasticity theory generally uses a second-order tensor to represent the
stress in solids. For example, in a 3D problem, a second-order stress
tensor is shown as (1).

σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (1)

In this tensor, the first subscript of each component represents the
normal direction of plane the stress component aims at. The second
subscript represents the direction of component. In a 3D Cartesian
coordinate system, index 1,2,3 represent index x,y,z respectively; while
in a cylindrical coordinate system, they represent index r,θ,and z. The
stress tensor is generally symmetric.

Since stress tensor and other tensors (like strain tensor) can be
represented in various coordinate systems, it is necessary to introduce
how to transform tensors between different coordinate systems. If the



original and new coordinate system are respectively cylindrical and
Cartesian system, the transform matrix and transform formula is shown
as (2).

Q =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , σxyz=Q·σrθz ·QT (2)

where σrθz and σxyz are stress tensors respectively in the cylindrical
and Cartesian coordinate system; θ is the angle between x-axis of the
Cartesian system and r-axis of the cylindrical system.

When we focus on the stress on the surface of solids, we can simplify
the problem into a 2D problem. In a 2D problem, we only consider the
stress component σrr , σrθ and σθθ . Other components are either null
or combinations of these components. Since the key issue of this paper
is to characterize the interactive stress in device layer, it is reasonable
to analyze the interactive stress using the complex variable method in
elasticity for 2D problems [14]. In the complex variable method, the
pursuit of stress tensor is transformed to the pursuit of two analytical
functions φ and ψ (in complex analysis meanings) which satisfy the
boundary condition. These two analytical functions are termed complex
potential. If complex potentials are successfully obtained, stress tensor
and displacement vector can be achieved through (3 - 5).

σrr + σθθ = 2[φ
′
(z) + φ′(z)] (3)

σθθ − σrr + 2iσrθ = 2 exp(2iθ)[z̄φ
′′

(z) + ψ
′
(z)] (4)

ur + ivθ =
1 + v

E
exp(−iθ)[

3− v
1 + v

φ(z)− zφ′(z)− ψ(z)] (5)

where z represents the position of the point (r, θ) in the complex plane,
z = r exp (iθ); ur and vθ are displacement of the point (r, θ) in r-
direction and θ-direction; φ(z) and ψ(z) are complex potentials; E and
v are Young’s modulus and Poisson’s ratio of corresponding materials.
3.2 Stress Field induced by the Aggressive TSV
In this section, we propose a 2D analytical stress model for a single
TSV. The model can be used to represent the stress field induced by
the aggressive TSV. As what is shown in [9, 15], liner has considerable
influences on the stress field of TSV. Hence, different from previous
2D analytical models, the proposed model incorporates the influence of
liner into its derivation. It can be applicable to liner with any material
and thickness. In this model, as we focus on the stress of device layer,
plane stress condition is assumed. Although it is a 2D model, it provides
a simple while accurate enough basis to characterize interactive stress
since interactive stress is kind of a second order effect of the original
stress field. Due to the page limit, we omit the derivation of model, and
directly give the formula for the stress field in the substrate shown in
(6). We adopt the cylindrical coordinate system S′ (Figure 2).

σrr |ideal=
K

r′2
σθθ |ideal= −

K

r′2
σrθ |ideal= 0, r

′
> R

′ (6)

whereR′ is the radius of TSV; r′ is the distance between the simulation
point and the center of TSV; K is a constant which can be directly
calculated from the material property and geometry specification of
TSV structure (Appendix A.4); σrr |ideal, σθθ |ideal and σrθ |ideal are
stress components. The formula shows stress components decrease with
r′−2 in the substrate.

Since we will take advantage of the boundary condition along Γ1

(Figure 2) to derive the interactive stress, we replace the current coor-
dinate system with the cylindrical coordinate system S (Figure 2), and
factorize the following stress combination along Γ1 based on (6). We
omit the derivation and give the result in (7). The corresponding dis-
placement combination factorized along Γ1 is shown in (8).

(σrr − iσrθ) |Γ1,ideal
=
∞∑
m=2

K(m− 1)

R′2
(
R
′

d
)
m

exp(imθ) (7)

(ur + ivθ) |Γ1,ideal
=

−1∑
m=−∞

K

R′
1 + vs

Es
(
d

R′
)
m

exp(imθ) (8)

In (7) and (8), ur and vθ represents the displacement in r-direction and
θ-direction; d is the pitch between TSVs; Es and vs are the Young’s
modulus and Poisson’s ratio of silicon. (7) and (8) are the ideal stress
distribution and displacement field factorized along Γ1. In next section,
we will investigate how they change in reality, and use them to derive
the interactive stress.

3.3 Characterization of Interactive Stress
To characterize the interactive stress, we need to decouple interactions
between TSVs, and establish an equilibrium state between the deforma-
tion of TSV body, liner and substrate. Similar to previous analysis, for
a TSV pair, we consider one as the aggressive and the other one as the
victim in one round, and then vice versa in another round. In each round,
we observe the phenomenon that the interactive stress between the ag-
gressive and victim TSV has little influence on the stress field around
aggressive TSV (Details can be referred to Appendix A.1). It infers that
the boundary condition around the aggressive can be ignored. Specifi-
cally, we can just consider the stress induced by the reaction of victim
under the stress field of aggressive, and ignore the influence of such re-
action on the deformation of aggressive. In this way, we avoid iterations
of interaction between the stress field of aggressive and victim TSV, and
thus decouple the interactions between them.

We use the complex variable method in elasticity to achieve the equi-
librium state between the deformation of victim TSV and substrate.
The general flow is as follows. First, we adopt the method of undeter-
mined coefficients, and assume a general form of complex potentials in
TSV body, liner and substrate respectively. We also assume a stress load
along the boundary of victim TSV. Second, we investigate how victim
TSV and substrate deform under this stress load, and establish the rela-
tions of assumed complex potentials to the assumed stress load. Finally,
based on the boundary condition between victim TSV and substrate,
we solve the assumed stress load and obtain the analytical solution to
interactive stress. Section 3.3.1 and 3.3.2 respectively investigate how
substrate and victim TSV deforms under the assumed stress load. Sec-
tion 3.3.3 solves the assumed stress load and obtains the solution to
interactive stress.

3.3.1 Elasticity Analysis of Substrate
In this section we investigate how substrate deforms under a certain
stress load. The stress load that the substrate bears comes from two
parts. One is from the boundary of aggressive TSV; the other one is from
the boundary of victim TSV. The stress load along the boundary of the
aggressive is almost known. But the stress load along the boundary of
the victim is unknown. Therefore, we need to find a general relation of
substrate deformation to arbitrary stress load along the boundary of the
victim. Additionally, the non-uniform distribution of stress load along
the boundary of the victim also increases the difficulty of solution.

To tackle the problem, we decompose the stress load along the
boundary Γ1 into two parts f̂0 and f̂1, where f̂0 is the ideal stress
load defined in Section 3.2, f̂1 is the change of ideal stress load along
Γ1 in reality. In section 3.2, we have obtained f̂0 and corresponding
displacement of substrate under the stress field of aggressive TSV and
f̂0, and factorize them along the boundary Γ1 shown in (7) and (8).
Hence, we only need to further investigate how the substrate deforms
under f̂1, and then superpose them to obtain the deformation of substrate
in reality. Since f̂1 is unknown, we represent it as a series factorized
along Γ1 in (9).

σrr − iσrθ |Γ1,change
=

∞∑
m=−∞

fm exp (imθ) (9)

where fmare undermined coefficients. We will continue to see how the
substrate deforms under this assumed stress load.

To investigate the deformation of substrate under f̂1, we assume the
corresponding complex potentials in the region of substrate. Based on
the fact that the interactive stress has little influence on the stress field
around the aggressive TSV (Appendix A.1), we ignore the boundary
condition of aggressive TSV, and consider the substrate as pure silicon.
Therefore, according to the theory of complex analysis, complex poten-
tials φs(z) and ψs(z), which are analytical functions in an infinite region
containing a circular hole, can be further represented as a series in the
complex plane as (10).

φ
′
s(z) =

0∑
m=−∞

As,mz
m

ψ
′
s(z) =

0∑
m=−∞

Bs,mz
m (10)



where φ′s(z)andψ′s(z)are derivatives of φs(z) and ψs(z);AS,m andBs,m
are undetermined coefficients; z represents the position of simulation
point in the complex plane. We can further adapt these complex po-
tentials to the stress load in (9) to determine the unknown coefficients
of complex potentials, and then achieve the displacement of substrate
under the assumed stress load.

Based on (3 - 5) and (9 - 10), we can achieve the displacement field
(ur + ivθ) |change under the stress load f̂1. Then we superpose it with
the displacement field (ur + ivθ) |ideal under ideal stress load f̂0 and
the stress load of aggressive TSV, and obtain the displacement field of
substrate (ur + ivθ) |substrate. Specifically, the displacement along the
boundary Γ1 will be
(ur + ivθ) |Γ1,substrate

= (ur + ivθ) |Γ1,ideal
+(ur + ivθ) |Γ1,change

(11)

We will further use the displacement field of substrate obtained from
(11) to fit the displacement field of TSV to determine the assumed stress
load along the boundary Γ1 .

3.3.2 Elasticity Analysis of TSV
In this section, we investigate how TSV body and liner deforms under
the assumed stress load f̂0 + f̂1. This problem encounters even more
complexity than the previous one since the mechanical properties of
TSV body and liner are generally different, and we need to preserve an
equilibrium state between their deformation under arbitrary stress load.

To tackle this problem, we assume different complex potentials for
TSV body and liner, and take advantage of the boundary condition
between TSV body and liner to establish their relationship. After that we
try to find their relation to the assumed stress load. Specifically, since the
region of TSV body is circular and the region of liner is ring, according
to the theory of complex analysis, the complex potentials of TSV body
φc(z) andψc(z), and the complex potentials of linerφl(z)and ψl(z) can
be assumed to be

φ
′
c(z) =

∞∑
m=0

Ac,mz
m

ψ
′
c(z) =

∞∑
m=0

Bc,mz
m (12)

φ
′
l(z) =

∞∑
m=−∞

Al,mz
m

ψ
′
l(z) =

∞∑
m=−∞

Bl,mz
m

(13)

where φ′c(z) , ψ′c(z) , φ′l(z) and ψ′l(z) are the derivatives of φc(z) , ψc(z)
, φl(z) and ψl(z); Ac,m, Bc,m, Al,mand Bl,m are undetermined coef-
ficients. We adapt these assumed complex potentials to the boundary
condition along Γ1 and Γ2, and obtain the corresponding displacement
field within TSV.

Specifically, these complex potentials need to satisfy the boundary
condition along Γ1 and Γ2. In details, they should satisfy the continuous
condition of stress component combination along Γ1 and Γ2 shown as
(14) and (15), and satisfy the continuous condition of displacement
along Γ2 shown as (16).

σrr − iσrθ |Γ1,liner
=
∞∑
m=2

K(m− 1)

R′2
(
R
′

d
)
m

exp (imθ)

+
∞∑

m=−∞
fm exp (imθ)

(14)

σrr − iσrθ |Γ2,liner
= σrr − iσrθ |Γ2,copper

(15)

(ur + ivθ) |Γ2,liner
= (ur + ivθ) |Γ2,copper (16)

Based on (3 - 5) and (12 - 16), we obtain the displacement field
in TSV body and liner (ur + ivθ) |copper and (ur + ivθ) |liner . We
will establish an equilibrium state between the displacement field of
liner (ur + ivθ) |liner and that of substrate (ur + ivθ) |Γ1,substrate to
determine the stress load along Γ1 in next section.

3.3.3 Analytical Solution to Interactive Stress
After finishing the elasticity analysis of substrate and TSV, we obtain

the displacement field within TSV and silicon. We further take advan-
tage of the continuous condition of displacement along the boundary
Γ1and obtain (17).

(ur + ivθ) |Γ1,substrate
= (ur + ivθ) |Γ1,liner

(17)

Algorithm 1 Full-chip TSV-induced stress modeling framework.

Up to now, all the necessary equations have been established. Based
on (3 - 5) and (7 - 17), we can solve the problem, and achieve the
ultimate analytical solution to the interactive stress represented in the
coordinate system S (Figure 2) shown in (18) .

σrr =
K

R′2

∞∑
m=2

cos (mθ)

[(
r

d

)m(
hi1 (m)−

R′2

r2
hi2 (m)

)

+

(
R′2

rd

)m(
hi3 (m)−

R′2

r2
hi4 (m)

)]

σθθ =
K

R′2

∞∑
m=2

cos (mθ)

[(
r

d

)m(
hi5 (m) +

R′2

r2
hi2 (m)

)

+

(
R′2

rd

)m(
hi6 (m) +

R′2

r2
hi4 (m)

)]

σrθ =
K

R′2

∞∑
m=2

sin (mθ)

[(
r

d

)m(
hi7 (m) +

R′2

r2
hi2 (m)

)

+

(
R′2

rd

)m(
hi8 (m)−

R′2

r2
hi4 (m)

)]

(18)

where r, θ are the position of simulation point in the coordinate system
S; hij(m), i = 1, 2, 3, j = 1, 2, . . . , 8, are functions which only depend
on material properties and geometry specification of TSV, and are ir-
relevant to TSV placement (Appendix A.4). In (18), if r < R (TSV
body), i = 1, h1j = 0, j = 3, 4, 6, 8; if R < r < R′(liner), i = 2; if
r > R′(substrate), i = 3, hij = 0, j = 1, 2, 5, 7.

In the above analytical solution, it is not hard to see each term of the
solution generally decreases with a speed no slower than (R′/d) as m
increases. Since R′/d < 0.5, the series will converge with a reasonable
amount of terms. We employ 9 terms in practice (mmax = 10).

4. Full-Chip Stress Modeling Framework
In this section, we propose an interactive stress aware two-stage semi-
analytical framework for full-chip TSV-induced stress modeling as
shown in Algorithm 1. The first stage performs linear superposition
[9] to obtain a rough stress estimation. Since stress decays to a negli-
gible intensity after a certain distance from TSV, the framework only
considers the stress induced by nearby TSVs, and ignores other TSVs’
contribution in order to improve the efficiency of algorithm. Hence, in
Stage I, we firstly determine what are the nearby TSVs for each simu-
lation point. Here, we consider a TSV with distance less than a certain
value (e.g. 25um) from the simulation point as nearby TSV. After that,
we employ a table look-up method to find the stress contribution of
nearby TSVs and superpose them for each simulation point. The com-



plexity of first stage is O(n) , where n is the amount of simulation
points.

The second stage calculates interactive stress for each simulation
point. The general idea is to first calculate the interactive stress con-
tribution of each TSV pair, and then superpose them together. Since a
certain TSV may interact with multiple TSVs and each induces interac-
tive stress, during the calculation, a TSV may form multiple pairs with
other TSVs. For each TSV pair, although there may exist other TSVs
nearby the pair and make the substrate not as pure silicon, we can still
use the analytical formula derived in Section 3.3. This is because of the
fact that the interactive stress induced by the interaction of a TSV pair is
nearly irrelevant to the existence of other TSVs nearby the pair (Details
can be referred to Appendix A.1).

Similar to the first stage, the second stage only considers the interac-
tive stress contribution of nearby TSV pairs, and firstly determines what
are the nearby pairs for each simulation point. Here, we consider any
two TSVs as a nearby pair for a certain point if the pair satisfies 1) the
pitch of pair is within a certain distance (e.g. 25um) and 2) the victim
TSV is located within a certain distance (e.g. 25um) from the point. For
a TSV pair, if the pitch is large, the interactive stress will become too
small to be considered. For a simulation point, since interactive stress
decreases no slower than r−2 (Section 3.3), r is the distance from the
victim TSV to the point, if the distance is too large, we can ignore the in-
teractive stress contribution of the pair in one round to the point. Please
note in a TSV pair, a TSV can both become aggressive and victim in
two rounds. Therefore, although a TSV pair may not become nearby
pair for a simulation point in one round due to the large distance from
the victim to the point, when the roles of TSVs exchange, the pair may
become a nearby pair for the same point. After determining the nearby
pairs, we use analytical formula to calculate and superpose the interac-
tive stress contribution of each nearby pair, and obtain the interactive
stress for each simulation point. Since we only consider nearby TSV
pair’s contribution, the complexity of second stage is nearly irrelevant
to the amount of TSVs for large designs but relevant to TSV integration
density. However, since TSV integration density faces a upper bound in
real applications, its influence on the run time of second stage also faces
a limit. Therefore, the complexity of second stage mainly depends on
the amount of simulation point and is linear in terms of it. Finally, we
superpose the stress contribution calculated in the first and second stage,
and obtain the stress analysis result.

5. Experimental Results
In this section, we validate the performance of proposed framework. We
implement the linear superposition method and proposed framework in
MATLAB. The golden result of stress analysis is generated by FEM
simulation tool COMSOL [16]. The main material properties used in
our modeling are as follows: Young’s modulus (GPa) for copper = 110,
BCB = 3, SiO2 = 71, silicon = 188; CTE (ppm/K) for copper = 17, BCB
= 40, SiO2 = 0.5, silicon = 2.3. The radius of TSV body is 2.5um. The
thickness of liner is 0.5um. And the dimension of landing pad is 6um.

5.1 Validation: A Placement of Two TSVs
We first validate the proposed framework in a placement containing two
TSVs. In this placement, we vary the pitch between TSVs from 8um
to 30um. Just as claimed by [17], the minimal pitch in the current pro-
cess technology is 10um. However, since future TSV-based design will
require higher TSV integration density to fully take advantage of the
benefit of vertical integration, we validate the proposed framework in a
broader range of pitch. Figure 4 compares the error of stress component
σxx obtained by the linear superposition method and proposed frame-
work under a 10um pitch. Due to symmetry, only right half analysis
result is provided. Figure 4(a) shows linear superposition method leads
to an error as much as 70MPa in some regions. Figure 4(b) shows the
proposed framework can significantly alleviate the error of linear super-
position method, and estimate the stress level around TSV with an error
less than 25MPa generally.

Figure 4. Comparison on the error of stress component σxx obtained
by linear superposition and proposed framework for the placement of
two TSVs (right half shot). (a) linear superposition method. (b) pro-
posed framework.

d
(um)

Avg.
Error
(MPa)

Threshold
10MPa

Threshold
50MPa

Threshold 50MPa
Critical Region

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg. Error
Rate(%)

LS

8 3.24 6.42 13.5 20.5 20.7 35.3 36.8
9 2.63 5.35 11.3 16.0 16.1 27.6 28.9
10 2.22 4.67 9.62 13.1 13.1 22.7 23.7
11 1.90 4.16 7.99 10.9 10.9 19.4 19.9
12 1.65 3.63 6.76 9.27 9.14 17.0 16.9
18 0.92 1.88 3.20 4.82 4.84 10.4 8.58
30 0.54 0.95 1.39 3.57 2.96 7.83 5.14

PF

8 1.96 4.01 8.94 11.7 11.0 16.0 14.3
9 1.47 3.05 6.43 8.81 8.25 13.2 11.8
10 1.19 2.58 4.85 7.35 6.78 11.8 10.4
11 1.01 2.30 3.86 6.29 5.77 10.8 9.33
12 0.89 2.07 3.28 5.57 5.04 10.1 8.48
18 0.61 1.31 1.87 3.55 3.16 8.12 5.81
30 0.47 0.87 1.12 3.44 2.77 7.64 4.97

Table 1. Comparison on the error of stress component σxx obtained by
linear superposition and proposed framework for the placement of two
TSVs. LS: linear superposition; PF: proposed framework.

Table 1 presents a quantitative comparison on the error of linear
superposition method and proposed framework. Before we talk about
this comparison, we need to define two concepts which facilitate the
comparison. The first concept “monitored region” refers to the region
which is influenced by TSV-induced stress to a certain extent. In this
placement, we use a rectangular region as the monitored region. The
center of monitored region is on the midpoint of the segment through
the centers of two TSVs. Along x and y dimension shown in Figure 4,
the dimensions of monitored region are respectively 60um and 30um.
We use it as a baseline region of concern, and do the comparison listed
in Table 1 in the monitored region except for the last two columns.
The second concept “critical region” refers to the region influenced
considerably by stress. We define it as the region within 3.3um to the
center of each TSV, which is shown as the region within the dashed line
around each of TSVs in Figure 4. The last two columns of Table 1 are the
comparison for the critical region. We compare the linear superposition
method and proposed framework in monitored region to give a general
comparison on the stress estimation capability of two methods, while
still compare them in the critical region which shows the difference
on estimating stress in the region of more reliability concern. When
we perform the comparison, we set a threshold on the stress intensity
of simulation point, and only consider the point with intensity exceed
the threshold. It is logical since only point with large stress intensity
matters the reliability and mobility variation most, and thus should be
emphasized.

Table 1 shows that the proposed framework considerably improves
the accuracy of linear superposition method. For example, under the
8um pitch, the proposed framework can achieve a 14.3% average error
rate for the stress component σxx in the critical region with 50MPa as
threshold while the linear superposition method only achieve a 36.8%
average error rate under the same condition. Since the interactive stress



Figure 5. A placement of five TSVs.

Figure 6. Comparison on the error of stress component σxx obtained
by the linear superposition method and proposed framework for the
placement of five TSVs. (a) linear superposition method. (b) proposed
framework.

diminishes as the TSV pitch increases, linear superposition method and
proposed framework achieve similar accuracy under the pitch of 30um.
We also compare the run time of two methods, and find the proposed
framework only takes around 1% additional run time compared to the
linear superposition method. More results including the comparison on
von Mises stress and comparison on the TSV structure with SiO2 liner
are provided in Appendix A.2.

5.2 Validation: A Placement of Five TSVs
We also validate the proposed framework in a placement containing five
TSVs shown as Figure 5. The minimal pitch is 10um in this placement.
In this experiment, we also define monitored region and critical region.
Since the placement has been changed, we slightly change the definition
of monitored region in Section 5.1, and use a square region with dimen-
sion of 60um as the monitored region. We follow the previous definition
of critical region, and the radius of each critical region is 3.3um. Fig-
ure 6 shows the comparison on stress component σxx obtained by linear
superposition method and proposed framework. Figure 6(a) shows that
linear superposition method leads to a stress error as high as 60MPa.
While Figure 6(b) shows that the proposed framework generally ensures
stress error within 25MPa. Table 5 shows the quantitative comparison on
stress error obtained by the linear superposition method and proposed
framework for this placement. We can see that the proposed framework
significantly improves the accuracy of linear superposition method. For
example, under the 50MPa threshold, the proposed framework achieves
an average error rate of 12.6% and 8.22% respectively for the stress
component σxx and von Mises stress in the critical region, while the
linear superposition only achieves an error rate of 23.0% and 15.1%
under the same circumstance. Though we use von Mises stress as a reli-
ability metric here, since our proposed framework can achieve accurate
stress tensor, it is also applicable to other reliability metric like max-
imum tensile stress. In the experiment, the proposed framework takes
4% additional run time compared to the linear superposition method.

6. Conclusions
In this paper, we have proposed the concept of interactive stress, an-
alyzed its mechanism and characterized this stress using the complex
variable method in elasticity. Based on the analytical solution to in-
teractive stress, we have further proposed an accurate semi-analytical

Stress
Type

Avg.
Error
(MPa)

Threshold
10MPa

Threshold
50MPa

Threshold 50MPa
Critical Region

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg. Error
Rate(%)

LS
σxx 2.84 5.45 11.6 13.9 13.1 22.8 23.0
Von

Mises
3.11 3.41 5.63 8.39 6.39 20.1 15.1

PF
σxx 1.60 3.05 5.74 8.19 7.19 13.8 12.6
Von

Mises
1.75 1.94 2.66 5.14 3.00 14.3 8.22

Table 2. Comparison on the stress error obtained by the linear superpo-
sition method and proposed framework for the placement consisting of
five TSVs. LS: linear superposition; PF: proposed framework.

framework for full-chip TSV-induced stress modeling. Experimental re-
sults have demonstrated that the proposed framework can significantly
reduce the error of linear superposition method with short additional
run time. The remaining error of proposed framework is caused by the
2D nature of the analytical interactive stress model. Due to the general-
ity of proposed framework, it can be applicable to TSV structures with
various kinds of materials and geometry specifications. Therefore, we
expect the proposed framework can be widely used in full-chip 3D IC
reliability analysis and layout optimization.
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A. Appendix
A.1 Characteristics of Interactive Stress

1. The interactive stress between the aggressive and victim TSV has
little influence on the stress distribution around aggressive TSV.

It is because interactive stress originates from the boundary of the
victim, and has a similar stress level as the ideal stress distribution
in that region. Suppose the stress level around the aggressive is N ,
according to [9], the level of ideal stress distribution around the victim
will roughly be N (R′/d)2, d is the pitch between TSVs, R′ is the
radius of TSV, R′/d ≤ 0.5 . Hence, the interactive stress has an
intensity of αN (R′/d)2 around the victim. Since the interactive stress
also decays with similar speed in the substrate, it will roughly decay to
an negligible intensity of αN (R′/d)4 around the aggressive and thus
have little influence on the stress distribution around the aggressive.

2. The interactive stress induced by the interaction of a TSV pair is
nearly irrelevant to the existence of other TSVs nearby the pair.

Similar to the previous analysis, suppose the stress level around
the aggressive is N , the interactive stress around the victim will be
αN (R′/d)2 . Suppose the distance between the victim TSV to the third
TSV is also d , then the level of interactive stress around the third TSV
will be αN (R′/d)4 . Due to the mechanical property mismatch between
the third TSV and substrate, the interactive stress will be changed
around the third TSV, but the changes will still be in the similar level of
αN (R′/d)4 and thus is negligible. Please note the interaction between
victim TSV and the third TSV also induces interactive stress, but that is
not a portion of interactive stress induced by the interaction between the
original TSV pair.

A.2 Validation: More Results for the Case of Two TSVs
We employ von Mises yield criterion as a metric to access the reliability
of 3D IC. Von Mises yield criterion determines whether a material starts
to yield under a certain stress load. It can be calculated via

σv =

√√√√√ 1
2

(σxx − σyy)2 + 1
2

(σyy − σzz)2 + 1
2

(σzz − σxx)2

+3(σ2
xy + σ2

yz + σ2
zx)

Where σxx, σxy , σxz , σyy , σyz and σzz are stress components defined
in Section 3.1. Please note that although von Mises yield criterion is
used here, since our proposed framework can accurately calculate stress
tensor, it is also applicable to other reliability metric like maximum
tensile stress which is the maximum eigenvalue of stress tensor.

The comparison of von Mises stress obtained by linear superposition
method and the proposed framework for the placement of two TSVs
(Section 5.1) is given in Table 3. In this table, the definition of monitored
region (column 3 - 7), critical region (column 8 - 9) and threshold
is the same as those in Section 5.1. Table 3 shows that our proposed
framework improves the accuracy of linear superposition method. For
example, it improves the average error rate from 24.3% to 10.4% for the
pitch of 8um case in the critical region under the threshold 50MPa.

We have demonstrated the performance of the proposed framework
for TSV structure with BCB liner. As for SiO2 liner, we also compare
the performance of linear superposition method and proposed frame-
work for the placement of two TSVs, and list the comparison on stress
component σxxand von Mises stress respectively in Table 4 and 5. The
definition of monitored region (column 3 - 7), critical region (column
8 - 9) and threshold in these tables also follow those defined in Section
5.1. These tables show that linear superposition method can achieve ac-
ceptable accuracy. However, the proposed framework still improves the
accuracy of linear superposition method. For example, it improves the
average error of von Mises stress within critical region from 22.4MPa
to 14.1MPa under the threshold of 50MPa in the case of 8um pitch.

d
(um)

Avg.
Error
(MPa)

Threshold
10MPa

Threshold
50MPa

Threshold 50MPa
Critical Region

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg. Error
Rate(%)

LS

8 3.43 4.54 7.80 9.26 8.98 28.2 24.3
9 2.62 3.41 5.95 7.15 6.33 20.6 15.6
10 2.14 2.74 4.73 6.20 5.05 16.5 10.9
11 1.81 2.29 3.87 5.42 4.21 14.3 8.25
12 1.60 2.00 3.26 4.87 3.62 13.3 6.64
18 0.98 1.14 1.64 2.85 1.83 10.8 3.70
30 0.70 0.76 0.93 2.08 1.05 10.6 3.43

PF

8 2.22 2.91 3.98 6.73 5.59 17.3 10.4
9 1.65 2.13 2.82 5.22 4.06 14.1 7.28
10 1.34 1.73 2.16 4.56 3.22 12.5 5.69
11 1.16 1.48 1.74 4.05 2.70 11.8 4.87
12 1.06 1.34 1.46 3.76 2.36 11.6 4.42
18 0.75 0.89 0.89 2.51 1.44 10.6 3.39
30 0.64 0.70 0.77 2.00 0.95 10.6 3.42

Table 3. Comparison on the error of von Mises stress obtained by linear
superposition and proposed framework for the placement of two TSVs.
LS: linear superposition; PF: proposed framework.

d
(um)

Avg.
Error
(MPa)

Threshold
10MPa

Threshold
50MPa

Threshold 50MPa
Critical Region

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg. Error
Rate(%)

LS

8 2.15 3.10 7.27 8.69 7.07 27.3 21.6
9 1.75 2.55 5.91 7.12 5.63 21.7 17.0
10 1.47 2.14 4.89 5.97 4.61 18.0 13.9
11 1.26 1.84 4.13 5.12 3.88 15.6 11.7
12 1.10 1.60 3.54 4.45 3.33 13.7 9.97
18 0.62 0.97 1.57 2.58 1.97 8.66 5.68
30 0.49 0.70 1.18 2.07 1.47 7.76 5.51

PF

8 1.99 3.15 6.77 8.80 7.32 14.6 10.1
9 1.50 2.34 5.16 6.56 5.23 11.8 7.94
10 1.17 1.81 4.05 5.07 3.94 10.0 6.64
11 0.97 1.47 3.26 4.15 3.13 9.37 5.96
12 0.81 1.23 2.68 3.43 2.56 8.57 5.40
18 0.48 0.75 1.25 1.97 1.39 7.37 4.38
30 0.47 0.63 1.11 1.88 1.27 7.20 4.94

Table 4. SiO2 liner: comparison on the error of stress component σxx
obtained by linear superposition and proposed framework for the place-
ment of two TSVs. LS: linear superposition; PF: proposed framework.

d
(um)

Avg.
Error
(MPa)

Threshold
10MPa

Threshold
50MPa

Threshold 50MPa
Critical Region

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg.
Error

Rate(%)

Avg.
Error
(MPa)

Avg. Error
Rate(%)

LS

8 2.19 2.31 3.03 4.51 3.29 22.4 12.5
9 1.70 1.78 2.38 3.47 2.48 16.7 9.43
10 1.38 1.43 1.92 2.84 1.93 13.1 7.16
11 1.18 1.21 1.58 2.49 1.57 11.0 5.53
12 1.03 1.06 1.33 2.30 1.36 9.48 4.34
18 0.70 0.71 0.71 1.56 0.73 6.74 2.02
30 0.66 0.68 0.69 1.25 0.63 6.40 1.82

PF

8 1.91 2.02 2.54 3.91 2.33 14.1 5.07
9 1.51 1.58 1.93 3.15 1.87 11.2 3.94
10 1.25 1.30 1.53 2.67 1.55 9.45 3.16
11 1.09 1.12 1.25 2.42 1.35 8.47 2.66
12 0.96 0.99 1.05 2.24 1.19 7.60 2.27
18 0.68 0.68 0.57 1.58 0.75 6.49 1.86
30 0.64 0.65 0.65 1.21 0.57 6.38 1.81

Table 5. SiO2 liner: comparison on the error of von Mises stress ob-
tained by linear superposition and proposed framework for the place-
ment of two TSVs. LS: linear superposition; PF: proposed framework.



Case # 1 2 3 4 5 6 7

TSV # 100 500 1000 100 100 100 100
TSV Density

(×10−2 · µm−2)
1 1 1 0.69 0.25 1 1

Simulation Point # 0.5M 0.5M 0.5M 0.5M 0.5M 1M 2M
AR (%) 12 13 14 7.9 3.9 13 13

Table 6. Run time of the proposed framework. AR = additional run
time of proposed framework / run time of linear superposition.

A.3 Run Time of the Proposed Framework
In order to examine the scalability of proposed framework, we run it
on several placements which contain large amount of TSVs, and list
the run time in Table 6. Case1, 2 and 3 show that AR (ratio of addi-
tional run time of proposed framework to the run time of linear super-
position) nearly remains constant when the amount of TSVs increase.
It accords with the theoretical analysis that both the run time of pro-
posed framework and linear superposition method is irrelevant to the
amount of TSVs. Case 1, 4 and 5 show that AR increases when TSV in-
tegration density increases. However, since the TSV integration density
faces a upper bound in real application, the increase of run time due to
the increase of TSV integration density also faces a upper bound. For
example, in a very dense square TSV array with 10um pitch [18], the
TSV integration density is only 1.0×10−2um−2 . Hence, the TSV inte-
gration density in Case 1 approximates the upper bound but only makes
AR as 12%. Case 1, 6 and 7 show that AR nearly remains constant when
the amount of simulation points increases. It also accords with the pre-
vious theoretical analysis that both the run time of proposed framework
and linear superposition method is linear with the amount of simulation
points.

A.4 Constants & Functions
Ec, El and Es , vc, vl and vs, αc, αl and αs are respectively Young’s
modulus, Poisson’s ratio and CTE of corresponding materials, where
subscript c, l and s respectively represent copper, BCB and silicon; T is
the thermal load; R is the radius of TSV body; R′ is the radius of TSV
(including liner); k = R/R′.
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(m− 1)H(m)

h15 (m) = (1− a2) (2 +m)H (m)

h17 (m) = (1− a2)mH (m)

h13(m) = h14(m) = h16(m) = h18(m) = 0

h21 (m) = (2−m)H (m)
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2
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H (−m)
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H (m)

h25 (m) = mH (m)

h26 (m) = mH (−m)

h27 (m) = (2 +m)H (m)

h28 (m) = (2−m)H (−m)

h33 (m) = − (2 +m)F (m)

h34 (m) = F (−m)−(m+ 1)F (m)

h36 (m) = (m− 2)F (m)

h38 (m) = −mF (m)

h31(m) = h32(m) = h35(m) = h37(m) = 0


