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Abstract—This work proposes a novel latch placement methodology
by computing optimized placement templates with significantly lower
local clock tree capacitance at a one-time cost per standard cell li-
brary. By directly minimizing local clock tree capacitance, overall chip
power is reduced. The proposed methodology first generates optimized
placement solutions for a wide range of input configurations. Then, a
redundancy removal approach using set-theoretic annotation is proposed
demonstrating it is possible to remove over 99% of the templates with
no information loss. Finally, a decision tree induction algorithm with
novel impurity metric enables extremely fast template selection during the
clock optimization stage of a modern physical design flow. The proposed
approach reduces the local clock tree capacitance by 20-30% on average
roughly equating to between a 1 and 4 watt reduction in total dynamic
power on a 100-watt 22-nm microprocessor. Additionally, because of a
priori generation, template selection during physical design is extremely
fast.

Index Terms—Algorithms, optimization, physical design, layout, clock
placement, power

I. INTRODUCTION

Predicted for many years, power constraints have throttled per-
formance scaling once experienced in multi-Ghz microprocessor
design. These constraints now relegate process enhancements to
minor speedups with little change expected in the near future. This
necessitates costly power savings techniques such as multiple supply
voltage islands, multiple threshold voltages, and aggressive power
gating techniques. In spite of these efforts, power persists as the
greatest challenge to both modern multi-GHz designs and low-
power SoCs in nanometer CMOS technologies. Complicating the
issue is the increasing on-chip variation (OCV), which produces a
significant drop in yield [1] [2] resulting in stricter design guide
rules. These effects are particularly poignant for clock design. Clock
power often contributes between 40% and 50% [3] [4] [5] of total
CPU power and any improvement results in meaningful overall chip
power savings. Though clock design has been heavily researched, it
is still a challenging and critical aspect of physical design as shown
by the recent clock synthesis contest [6].

Compounding the power problem, skew requirements of multi-
Ghz design has necessitated the need for a hybrid clock routing
methodology where a low-skew global clock mesh overlays the entire
die area followed by locally buffered clock trees [4] [5] [7] often
described as multi-source clock tree synthesis (MSCTS). An example
of this methodology is shown in Fig. 1. Design rules enforce strict
skew constraints on the global clock mesh, which is located on
upper metal layers and shown in green. The local clock buffer (LCB)
connects to the global clock mesh at specific locations providing latch
placement flexibility to the physical design (PD) automation tools.

This two-tiered approach came about for a number of reasons.
First, though clock trees are lower power than clock meshes, trees do
not offer enough skew performance for multi-Ghz designs. Second,
clock meshes are very power hungry and local clock trees (LCT)s
offer a significant power savings. Third, LCTs reduce the local wire
routing demands for routing the clock compared to full meshes at
lower level metal layers. This methodology still faces challenges
from increases in process variation and tightening design and OCV
constraints making it difficult to generate correct-by-construction
LCTs. Additionally, within an individual design, there could be
thousands of these LCTs making accurate design time modeling
and optimization difficult because of the runtime impact. In practice,
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Fig. 1. State-of-the-art high performance clock mesh methodology. The
global clock grid uses a clock mesh with tight skew requirements. Local
clock buffers (LCB)s connect to the grid and drive local clock trees (LCT)s
to each individual latch. Design guide rules maintain strict skew and nominal
delay constraints for each LCT.

overly pessimistic constraints are often applied to minimize electrical
violations on the LCT, which results in extra timing closure cycles,
significant redesign, or even engineering change orders (ECO)’s.

The key contributions of this work are as follows:
1) A methodology for significant power reduction is proposed by

generating optimized latch cluster placement templates once for
each technology library.

2) A correct-by-construction optimized latch cluster placement
template flow is developed to meet electrical constraints re-
ducing design time.

3) A framework is developed for reducing the required cardinality
of the structured templates through set-theoretic annotation.

4) A machine learning based decision tree induction model with
a novel distance metric is trained to quickly select the correct
optimized template within the PD flow.

Section II outlines the background and presents a motivating exam-
ple displaying the significant capacitance reduction possible through
structured latch cluster placement templates. Section III presents
the proposed overall template development flow and Section IV
details a genetic latch placement algorithm for identifying optimized
placement solutions. Structured template generation and redundancy
removal is proposed in Section V and the decision tree classification
with novel distance metric is described in Section VI. Section VII
illustrates how the templates integrate into a modern physical design
flow and lastly, experimental results are presented in Section VIII.
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Fig. 2. Multi-Ghz design showing conventional “clustered” latches. Red cells
are latches and purple cells are LCBs. One-time computation of optimized
templates for a technology library make it possible to significantly decrease
local clock tree (LCT) capacitance resulting in reduced total power.

II. BACKGROUND AND MOTIVATION

Clock skew is the fundamental metric for evaluating clock perfor-
mance. Optimizing the clock tree in the presence of this constraint has
been approached from many aspects including clock gating, multiple
clock domains, reducing local clock buffers (LCB) and register (latch)
placement. Modern System-on-a-chip (SoC) and multi-Ghz designs
utilize many, if not all, of these techniques to build robust low skew
clock networks [1] [8] [9] [10]. Recently, it has been shown that
modifying the latch placement locations is an effective approach
producing significant reduction in overall local clock tree (LCT)
capacitance when compared to unconstrained placement [1] [2] [11]
[12]. By minimizing the clock tree capacitance in this manner, clock
power is directly reduced.

There are three prior latch placement modification techniques, latch
shifting, latch clustering, and latch banking. Latch shifting is the least
disruptive approach where [11] showed that incremental shifts in
latch placement toward preferred locations resulted in smaller clock
trees. Though latch shifting is less disruptive, the reduction in LCT
capacitance is also limited. Latch clustering is the most common LCT
reduction approach when modifying latch placement. The work in [2]
showed that clustering latches around LCB’s significantly improved
latch power and helped to meet design rule requirements. Clustering
the latches around the LCB in this manner reduced LCT capacitance
up to 50% when compared to unconstrained placement. “Length-
constrained latch clustering” [3] generalized this concept, where a
maximum latch displacement parameter provided a tunable trade-
off in LCB numbers versus layout disruption. Latch banking is the
third approach. By automatically placing registers into fixed “banks”,
it is possible to reduce both clock power and skew [12]. Relative
placement constraints are used to implement this approach but it is
often not flexible enough to deal well with industrial challenges such
as fixed obstacles and congestion [1]. Additionally, the LCT, though
simplified, must still be implemented at runtime.

For all approaches, modifying the placement location of latches
causes a timing degradation [3] because the clock optimization
(clock opt) stage occurs after initial timing corrections have occurred.
Banking is the most disruptive because it applies a fixed placement
constraint without giving flexibility to the PD tool to select a more
optimal structure. In spite of the disruptive nature, clustering has been
widely adopted as a balanced approach because of the significant
power savings. As such, modern PD flows have enhanced post clock
opt steps to address the performance degradation [3] [13] [14] [15].
The result is that PD flows are robust enough to overcome disruptions
caused by the modified latch placement producing significant power
savings with little delay impact. Because of this, latch clustering has
become the de facto methodology for multi-Ghz designs.

Figure 2 shows snapshot of a multi-Ghz design employing the
conventional clustering approach. As can be seen, small groups of
latches are tightly clustered around an LCB significantly reducing
the total LCT length resulting in direct power savings. With local
clock trees contributing between 20-30% of the total dynamic power
[4] [5] [16], even small improvements in the LCT equate to large
overall power savings.

(a) (b)

Fig. 3. Placement of 20 latches around an LCB where (a) is a conventional
clustered solution with latches pulled close to the LCB producing lower skew
and (b) is the proposed structured latch placement solution with higher skew
but still meeting design requirements. With only 20 latches, (b) reduces total
capacitance on this LCT by 33%. The red wires show the LCT routing
solution.

A. Conventional verses Structured Latch Clusters
Extending the concept of conventional latch placement approaches,

this work generates a set of optimized placement templates called
structured latch clusters one time for the technology library. Gener-
ated a priori, the templates specifically reduce clock tree capacitance
on the LCB while meeting the maximum skew constraint. This
provides the flexibility of the clustered approach with the power
savings of the banked approach. In this work, as in the 2010
ISPD Clock Contest [6], the clock tree capacitance is the primary
evaluation metric for comparing multiple latch cluster placement
solutions because, as Equ. 1 shows, reducing the Cload of the LCT
directly reduces overall dynamic power. In addition to the reduction
in capacitance, the placement templates are correct-by-construction
resulting in reduced design iterations after clock optimization.

Pavg =
1

T

∫ T

0

v(t) ∗ i(t)dt = Cload ∗ V 2
DD ∗ f (1)

Fig. 3 shows an example of the potential impact of structured
latch placement verses a common tightly clustered solution. First,
with only 20 latches, the structured latch solution reduces the total
capacitance of the LCT by 33%. Second, even though the skew
on 3(a) is better, both (a) and (b) meet maximum skew and delay
constraints making both valid solutions. Third, 3(b) requires fewer
local clock routing resources than (a). Fourth, current placement
legalization techniques are much better suited at effectively legalizing
solution (b) than solution (a) resulting in improved overall quality of
results. Though not shown, the clock routing solution for conventional
clustered approaches is also often more complex than a structured
template. In the example presented, a single trunk route was required
to meet the slew and skew constraints for both approaches. However,
often that is not the case for conventional approaches. In cases where
a horizontal and vertical trunk route is required, the capacitive savings
of a structured solution can be much larger.

A key fundamental observation of this work is that current physical
design flows are already producing packed latch cluster placements.
Instead of calculating placement solutions during runtime, this work
is identifying more optimal solutions a priori for the technology
library and providing the physical design flow a runtime choice in
which template to choose from. Additionally, by generating a wide
range of placement templates, the PD flow has the flexibility to
choose the correct placement template as opposed to a rigid latch
banking approach.

B. Problem Complexity
Simply building a library of all possible structured template solu-

tions is not practical. Modern microprocessor designs often contain
more than ten million latches. With average latch cluster sizes
between 20 and 30, that equates to over three hundred thousand
local latch clusters on the microprocessor. However, any individual
cluster can range between just a few or more than sixty. Additionally,
twenty or more clock domains are common each with a unique set of
latches. Within an individual clock domain, the standard cell library
often contains latches with multiple drive strengths each resulting
in different placement footprints. To optimize power, multiple LCB
sizes are also needed each with different requirements for skew, slew
and placement footprint. Complicating the issue, multiple placement
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footprints for the latch cluster itself are required to balance tradeoffs
between capacitance, skew, LCB count, placement density, fixed
blockages and local routing congestion. For example, if there is
significant horizontal congestion, selecting a latch cluster that has
minimal horizontal routing constraints is beneficial. Combined, these
requirements contribute to over one hundred thousand possible input
combinations, each with a potentially different structured latch cluster
solution. Additionally, latch clusters commonly contain multiple latch
sizes, pushing the number of possible solutions into the millions.

Clearly selecting between millions of placement templates during
run time is not practical. Three key components are required to
make this tractable: first, a systematic framework to reduce the
cardinality of the optimized template set, second, a generalized
method for selecting the correct template, based on an unknown input
combination, third, designer control because manual tuning is still a
significant portion of the timing closure flow.

C. Benefits of “a priori” Optimized Placement Templates
In spite of these challenges, the proposed methodology offers five

key benefits when compared against prior approaches.
1) Capacitance reduction, significantly reducing clock power, is

possible through the use of optimized placement templates
when compared to conventional approaches. Because of a
priori generation, techniques to optimize the templates can
sustain much longer runtimes.

2) Correct-by-construction placement solutions are possible with
optimized placement templates unlike conventional approaches.
This means they are almost guaranteed to legalize, to be overlap
free, and meet design guide electrical and skew requirements.

3) Legalization of conventional clustered solutions can be chal-
lenging because the footprint is not guaranteed. This often
causes many placement overlaps requiring further perturbations
in the design closure flow. The placement footprint of the
structured template solution however is very compact and
known a priori reducing the number of timing and placement
disruptions.

4) Routing aware latch placement is possible with optimized
placement templates. Conventional approaches are unaware
of local clock routing topology often causing localized pin
accessibility issues and potentially severe congestion. With the
use of structured latch cluster templates, placement solutions
can be selected that mitigate congestion.

5) Runtime is a precious commodity during state-of-the-art phys-
ical design flows. By generating the optimized placement
templates a priori, once for each technology library, compute
time can be freed for other optimizations.

This work proposes a scalable solution to this problem by first gen-
erating a large set of initial placement templates. Then significantly
reduces the cardinality of the solutions by using the set theoretic
difference to remove redundancy. Finally, using a machine learning
technique called decision tree induction, a model is developed, using
a novel similarity metric for quickly selecting the correct template
during design automation. Additionally, the proposed framework
lends itself to be easily communicable to designers in a manner that
makes it easy to interpret. As results will demonstrate in Section VIII,
significant capacitance reduction on the LCT is possible through the
use of the proposed approach. The next section outlines the overall
flow of the proposed template design methodology.

III. STRUCTURED TEMPLATE DEVELOPMENT FLOW

This work proposes a fundamental shift in latch placement method-
ology by proactively identifying optimized placement configurations
with significantly lower capacitance one time per technology library.
The proposed a priori template development flow is segmented into
three key stages, Template Development, Decision Tree Classification,
and Classification Model Deployment as shown in Fig. 4. Template
development, (Section IV) is comprised of two stages, placement
search and template generation. The placement search stage uses a
genetic algorithm to search for a latch cluster placement solution that
is as close to optimal as possible. Then, the template development

M
od

el
 

D
ep

lo
ym

en
t 

Training 
Data Set 

Validation 
Data Set 

Structured Latch Placement Search 

Structured Template Generation 

Training and Calibration 

Model Validation 

Te
m

pl
at

e 
D

ev
el

op
m

en
t 

M
ac

hi
ne

 L
ea

rn
in

g 
C

la
ss

ifi
ca

tio
n 

Structured Latch Cluster 
Placement Templates 

Fig. 4. Overall optimized structured template development flow design flow
illustrating each stage of the proposed flow. Each is generated a priori per
technology library at a one time cost. resulting in little runtime impact from
the proposed approach.

section, (Section V), reduces the number of placement solutions by
calculating the set-theoretic difference of the redundant templates
and removing them. Decision tree classification, (Section VI), is a
machine learning based classifier comprised of two stages as well.
The first stage trains a supervised decision tree to map the input set
to the generated templates from the prior stage. The second stage
validates the decision tree on unseen patterns to verify generalization
of the model. Finally, Classification model deployment provides the
learned models for deployment during clock optimization of a normal
physical design flow. All of this is generated at a one time cost
resulting in little to no runtime impact from the proposed approach.
The next section provides the details of the template development
stage.

IV. STRUCTURED REGISTER PLACEMENT SEARCH

This section develops a latch cluster placement approach to implic-
itly reduce clock power through routed capacitance reduction while
meeting design guide rules. Let F be the set of possible templates.
An input vector E that results in a template t ∈ F consists of a
number of components. First is the latch cluster G consisting of
two types of placeable objects, a set of latches L and an LCB,
(L,LCB) ∈ G, where each latch and the LCB have a height h
and width w. Second bounding box ratio range βmax − βmin is
defined as the minimum and maximum value of the placement width
of the template divided by the placement height. Providing a ratio
constraint gives flexibility to select a “shape”. Third, the density
range δmax − δmin is defined as the structured template density.
A high-density template, as displayed in Fig. 3(a), often has slightly
increased capacitance requirements but is generally easier to legalize
than a template that is less dense. Therefore, templates with a range
of density requirements are generated. Fourth, a maximum skew
constraint dmax for the latch cluster is provided as input. Finally, a
minimum and maximum delay constraint rmax − rmin is defined as
an input requirement. In this work, exhaustive combinations of these
input requirements are passed to the template development stage.

Given an input vector E containing G, βmin,max, δmin,max,
rmin,max, and dmax, placement generates locations (xi, yi) for all
placeable objects in G such that routed capacitance Cr of the local
clock tree (LCT) is minimized. This is shown in Equ. 2.

minimize: Cr

subject to: d < dmax

rmin ≤ r < rmax

βmin ≤ β < βmax

δmin ≤ δ < δmax

(2)

A genetic search (GA) is proposed to generate the (xi, yi) place-
ment locations for a optimized structured template solution. Briefly,
a generic GA search begins with an initial population and applies
operators to create new populations to successive generations. Re-
production is the first operator where chromosomes are copied to the
next generation with some probability based on a fitness criterion.
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dmax 

λ 

Fig. 5. Skew constraint modeled as a cost function. ηd gives preference
to placement solutions meeting the skew constraint. For this work, λ is kept
default across all experiments.

The second operator is crossover where weighted random pairs of
chromosomes are mated creating new chromosomes. Mutation is the
third operator occasionally altering a portion of the chromosome.
The crossover is the most critical component for an effective GA
and mutation periodically diversifies the search space. The proposed
GA is summarized in Alg. 1. Further details of the GA are discussed
in the following subsections with the overall algorithm presented in
IV-D

A. Ordered Candidate Representation
An important requirement for utilizing a GA is the ability to

represent the solution space as a set of objects, referred to as the
genetic coding. In this case, each structured latch cluster (SLC) G is
represented as a strictly monotonically increasing register sequence
ai, where 1 ≤ i ≤ |G|. Each register ai ∈ G represents the tuple
(xi, yj) where xi and yi are the x-axis and y-axis respectively of the
placement coordinate locations for register ai within the placement
region. Strict monotonicity is maintained ∀ai ∈ G given by Equ.
3. This representation allows encoding each G in such a way that
crossovers of feasible chromosomes result in feasible chromosomes.

∀ai ∈ G
{
ai(y) ≤ ai+1(y)
ai(x) < ai+1(x) ⇐⇒ ai(y) = ai+1(y)

(3)

B. Fitness Function
A second important requirement for utilizing a GA is an effective

fitness function to score each solution. The fitness function reflects
the goal to minimize the total routed capacitance Cr of G. The first
component in the proposed fitness function, shown in Equ. 4, is the
total routed capacitance Cr of the structured latch cluster (SLC). The
second is the clock skew, modeled as the cost function shown in Equ.
5 where d is the skew of the placement solution. Figure 5 plots this
cost function ηd.

f(x) =
1

Cr(ηd + 1)
(4)

ηd =

{
0 dslc < dmax
λ · (1 + dslc − dmax) dslc ≥ dmax (5)

Maintaining the β, δ and r constraints is accomplished with an
infinite cost function. Namely, chromosomes in violation of those
constraints are immediately discarded. An infinite cost function for
skew was evaluated but proved suboptimal compared to the proposed
linear function. In the infinite case, crossing the skew boundary
guaranteed the candidate solution was discarded immediately and did
not mate into future valid chromosomes.

C. Order Crossover for Structured Latch Clusters
Crossover is the operator applied to a pair of parent chromosomes

selected from the best solutions in the prior population. Creating new
chromosomes from current ones (the crossover technique) effectively
searches the solution space in a GA. In this work, that means selecting
two initial parent placement solutions and generating a new placement
solution based on portions of the parents. A common crossover
technique [17], [18], the ordered crossover, quickly and effectively
generates new candidate solutions making it an attractive option. For
parent templates a1, a2, two child templates b1, b2 are generated as
copies of the parents. Next, two positions are selected at random

(a) (b)

Fig. 6. Two structured latch cluster templates are shown with clock routing
in red where (a), is a 15 latch template example and (b) is a 14 latch template
example. Template (b) is a redundant template because (a) has more latches
and the equivalent latches between (a) and (b) have identical placement.

in the interval [1, |a|] and a portion of a1 up to the first position is
mapped to b2 and a portion of a2 from the second position is mapped
onto b1. From the respective position on, the child template is filled
with the opposite parent chromosome. This approach maintains the
order from the parents in positions that were mapped over.

D. Overall Placement Algorithm

The overall GA algorithm is presented in Alg. 1 and begins by
randomly initializing a population. Correct-by-construction templates
require legalized SLC placement solutions so the next step is overlap
removal (step 2) using standard legalization techniques from [19].
Step 3, register collapsing, removes whitespace between registers
within a row by collapsing them toward the LCB.

Input: G, βmin,max, δmin,max, rmin,max and dmax
Output: Placement locations (xi, yi) for G
1: Initialize random population
2: Overlap removal
3: Register collapsing
4: Evaluate the population
while Termination criterion is not satisfied do

5: Select chromosomes by reproduction procedure
6: Perform Order Multiple crossover technique with probability Pc
7: Mutate
8: Overlap removal
9: Register collapsing
10: Evaluate the population

end
Algorithm 1: Proposed genetic placement algorithm for generating
highly optimized structured latch clusters.

Fitness calculation is next for the entire population with the
evaluation metric defined in Equ. 5. Reproduction chooses a weighted
selection of the best chromosomes in the prior population. Step
6 mates the two selected chromosomes using the ordered multiple
crossover technique and mutation randomly shifts a register to a new
location. Steps 8 and 9 remove overlaps in the new population and
collapse the registers toward the LCB. Finally, the new population
is evaluated. Termination of the GA is based on iteration count with
details provided in Sec. VIII.

V. STRUCTURED TEMPLATE GENERATION

The placement search from the prior section exhaustively generated
a set T of structured placement solutions for all input combinations
including latch and LCB types, sizes, densities, ratios, skew and
delay constraints, and latch cluster sizes. As section II-B shows,
clearly it is not practical to store all placement solutions for all input
combinations and in fact, many solutions are redundant.

Figure 6 illustrates such an example. As Fig. 6 shows, for all LCB
and latch placement locations in (b), (a) has identical placements.
By storing the difference between (a) and (b), template (b) no longer
adds any additional placement information compared to the template
in (a). Therefore (b) is redundant1. This section presents a method to
significantly reduce the cardinality of T by removing redundancy.

1The proposed approach is a form of delta-encoding that greatly reduces
data redundancy by storing information in the form of differences without
loss of information.
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A. Set-Theoretic Template Annotation
Given a structured latch cluster G = (L,LCB) with latches L

and LCB, each with placement locations (xi, yi) 0 ≤ i ≤ |L|, Def.
1 formalizes the definition of redundancy.

Definition 1. Given templates (M,N) ∈ T , M is redundant ⇐⇒
• |M | < |N |,
• ∀(xi, yi) LCB and latch placement locations in M , there ∃ identical

(xi, yi) locations in N
• the bounding box width of M = N
• the bounding by height of M = N .

In this work, M CN denotes template M is made redundant by
template N . By simply annotating template N with the set-theoretic
difference ξ = N�M , it is possible to generate the placement
solution for both N and M with a single template representation.
Qualitatively, ξ is the set of latches in N that are not in M . Definition
2 formally defines ξ for two templates M and N.

Definition 2. The set-theoretic difference ξ for templates (M,N) ∈ T ,
where M CN is N�M = {l ∈ N |l /∈M} ∀l ∈ LM∪N

Proving that generating both placement solutions is possible using
a single template that contains ξ is trivial.

Proof: For templates (M,N) ∈ T s.t. M CN and the relative
compliment of N in M is ξ, let set C = N�ξ. The set C now
contains all latches in N except those from the set ξ. But by definition
2, all latches l /∈ ξ is the set M .

By storing ξ for each redundant template in this manner, it is
possible to fully reconstruct all optimized structured latch cluster
placement solutions from a single annotated template. The overall
reduction algorithm is presented next.

B. Proposed Redundancy Removal Algorithm
Algorithm 2 presents the proposed method for redundancy removal

from T without loss of quality. Starting with an initial template set
T , step (1) groups all templates into bins containing equal width
and height. Then, for each group, step (2) sorts those templates by
latch count. There can arise cases where multiple solutions exist
with equivalent register count and total capacitance. In that case,
step (3), an arbitrary solution is chosen and the others discarded.
Step (4) assigns the current template being evaluated to the first
element in w. The algorithm then checks for redundancy between
the current template currt and the next element in w. If template
wi is redundant, step (5) calculates the set-theoretic difference t[i]ξ
and step (6) annotates currt with t[i]ξ. Finally, step (7) drops the
redundant template t[i] and the algorithm continues to the next
template in w. If template t[i] is not redundant with currt, annotation
of currt is complete. Thus, currt is assigned the new template t[i]

Function: TemplateReduce(E,F );
Input: Initial Template Set T
Output: Reduced Template Set T annotated with ξ
1. Build template sets W of groups with equal width and height;
for each w ∈W do

2. ∀ templates t ∈ w, sort in descending order of latch count;
3. Remove duplicates from w;
4. Assign currt = w0;
for {i = 1, i < |w|, i++} do

if t[i] C currt then
5. Calculate t[i]ξ;
6. Annoate currt with t[i]ξ;
7. Drop t[i] from T ;

else
8. currt = t[i];

end
end

end
Algorithm 2: Algorithm for redundancy removal from T .

and the algorithm moves to the next template in w. The proposed
approach offers three key benefits. First, Alg. 2 is a form of delta
encoding offering no data loss. Second, it is very fast, running in
(O(n · log(n))). Third, it is parallelizable on template sets W . As
results will show, the proposed approach significantly reduces the
cardinality of T .

VI. DECISION TREE INDUCTION FOR STRUCTURED
TEMPLATE SELECTION

Storing a comprehensive library mapping all inputs to a particular
optimized template and ξ is neither practical nor required. Addi-
tionally, it is not possible to anticipate every situation for every
latch cluster considering there are hundreds of thousands in a full
design. The physical design (PD) flow needs a “decision” algorithm
to quickly choose the best template given an unknown set of
input requirements. Machine learning techniques offer many effective
approaches including: neural networks (ANN) [20], support vector
machines (SVM) [21] [22], and decision trees [23]. Additionally,
many have been used to successfully solve other design automation
challenges [24] [25].

Neural networks and SVMs are popular techniques because both
model nonlinear relationships between the input variables and han-
dle inter-variable interactions. However, both offer a number of
drawbacks. First, both ANN and SVM cannot natively handle cat-
egorical variables with multiple classes. Arbitrary value thresholds
are required for categorical discrimination (such as latch and LCB
types) but decision trees handle this elegantly. Second, ANN and
SVM do not present comprehensible models in a way designers will
understand. Lastly, it can be difficult to incorporate ANN or SVM
models into existing code without a dedicated interpreter requiring
further library development. Decision trees however naturally convert
to if...then...else statements leading to easy implementation or as a
reference for designers. As such, this work proposes machine learning
based decision tree induction for structured template selection.

A. Decision Tree Classification Overview
A decision tree classifier is a method that predicts a target class F ,

in this case a particular template, based on an input vector E where
(E,F ) = (e1, e2, e3, ..., ek, F ) with (1 ≤ k ≤ |E|). For this work,
E is the input parameters defined in Sec. IV. A decision tree learns by
recursively partitioning the source data into subsequent subsets based
on the attribute test. For this application, a decision tree classifier is
particularly effective because:

1) Classifying with decision trees is a nonparametric approach
meaning no prior probability distributions are required.

2) Finding an optimal decision tree is NP-complete [26] but in
practice the greedy induction approaches are very effective.

3) Decisioning after training is very fast with worst case O(ω)
[26], where ω is the depth of the tree.

The base decision tree induction algorithm is presented in Alg.
3. It is similar to prior techniques [23] with a critical enhancement
for the splitting index. Step 1 creates a new node with either a test
condition or a class label (in this case a specific template) and Step
2 and Step 3 classify and return the final decision in the case where
the stopping criterion is met. In this work, a minimum number of
test records within a leaf defines the stopping criterion. Let V be
the set of possible templates (class labels) in node leaf , the leaf
is labeled with the class that has the majority number of training
records. Thresholding in this manner avoids over-fitting the data
(avoids generalization errors). If the minimum criterion is not yet
met, a new node (Step 4) called root is created and Step 5 finds the
best split based on the novel measure presented in VI-B. Then, for
each possible outcome (class label) in root, Steps 7, 8, and 9 setup
the recursive call for evaluating a new node.

B. Novel Placement Similarity Impurity Measure
The key enhancement to decision tree induction for structured

latch templates is the observation that, inter class error rates are
not consistent. In other words, if two templates are similar, the
capacitance loss in choosing the wrong one is lower than choosing a
template that is less similar from the correct solution. The magnitude
of the impurity metric should be greater in the case where two class
solutions are very different and smaller in the case where the two
class solutions are very similar. Therefore, a distance measure is
proposed that defines an impurity measure in terms of the similarity
in placement solutions between two templates. Figure 6 will be used
as an example and assume both are in the same class. Using the
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Function TreeBuild(E,F );
Input: Training records (E)
Output: Decision Tree Model
if stopping condition(E,F ) = TRUE then

1. create a new node from the leaf ;
2. classify the leaf ;
3. return leaf ;

else
4. create a node root;
5. find the best split and set it equal to the root test condition;
6. let V = the set of possible outcome test conditions of the root
node;
for each v ∈ V do

7. Ev = training records given the root test condition;
8. child = TreeBuild(Ev , F );
9. add child as descendent of root and label;

end
end
10. return root

Algorithm 3: Decision tree induction algorithm.

ordered candidate representation, the bottom left latch in both (a)
and (b) will be labeled as the first latch. The second will be the next
latch directly to the right of it. This continues for all latches in that
row and then moves to the next row.

Once all latches are labeled in this order, it is possible to compare
the latch placement at a particular location between two templates.
For the example in Fig. 6, both latches have the same position for the
first latch so the class average position µ would equal the position of
that latch with a zero variance σ. Additionally, since template (a) has
more latches than template (b), the µ for the position of the missing
latch in (b) is simply the latch (a) position. This work splits each
node into two groups. The average and variance for each template
set for the two groups is calculated to measure the impurity. Let µin,
1 ≤ n ≤ |L| be the mean Euclidian distance belonging to class i
at a given latch n at a given node. Similarly, σin is the variance at
that position. Then, for each input variable E 1 ≤ k ≤ |E|, Equ. 6
calculates the information gain achieved by splitting the node based
on input k. By multiplying the inverse variance, classes with large
variations have reduced likelihood of being selected.

∆i,j =

K∑
k=0


√√√√ N∑
n=0

(µin − µjn)2 ∗ (1 + σin + σjn)−1

 (6)

C. Supervised Learning Model Build Flow
To classify and evaluate the compact and run-time efficient tem-

plate selection algorithm, the flow in Fig. 7 is proposed. In Step A,
the data learning algorithms are applied over a relatively small set of
input patterns with known templates. Since they are built a priori at
a one time cost, the CPU run-time penalty is negligible.

Training/
Calibration Structured  

Latch Cluster 
Placement Models Validation 

Template 
Classification 

and Evaluation 

Step A Step B 

Fig. 7. Major steps to build and apply the decision-tree learning model

There are 3 major procedures involved in this step: (1) training is
the process where the learning algorithms optimize structured tem-
plate accuracies; (2) calibration process further improves the accuracy
by adjusting the pruning rate, (3) validation process is performed over
a relatively large set of known design patterns exclusive from (1) to
assure the balance of learning accuracies between training data and
unknown testing data, especially in Step B. Once Step A is completed,
in Step B the data learning model is applied directly to classify and
evaluate new unknown input patterns. All of this is done at a one time
cost per technology library. To quantify the learning performance, we
define the following:

3. Clock Optimization 

3-a. LCB Cloning 

3-b. Latch Placement 

3-d. LCB Timing Opt 

3-e. Incremental 
ClockOpt Placement 

1. Initial Placement 

2. Timing Opt 

4. Post-CTS Timing Opt 

5. Routing 

6. Post-Route Opt 

3-c. Structured 
Latch Cluster 

Placement 
Templates 

Fig. 8. Modern physical design flow illustrating each stage of the automation
process. The shaded boxes are the current flow. Step 3-b displays where
the optimized placement templates integrate into the flow instead of the
conventional clustered approach.

Definition 3. Template evaluation accuracy: the rate of correctly
selected templates over the total number of predicted inputs.

In the next section, an overview of how the template solutions
integrate with a modern physical design flow is presented.

VII. OVERALL PHYSICAL DESIGN FLOW

At this point, a set of optimized placement templates have been
identified and a machine learning decision model has been trained to
correctly select a good template given an arbitrary input during the
design flow. This is done at a one time cost per standard cell library.
Before presenting the impact of the proposed work, it is worthwhile to
provide a brief overview of how the model integrates into a modern
state-of-the-art physical design flow. Figure 8 shows steps 1-6 in
such a flow [3] [13]. This work integrates into clock optimization
(Step 3) which consists of four major components: LCB cloning,
latch placement, LCB timing optimization, and incremental clock
optimization placement. The LCB cloning, (3-a) inserts redundant
LCBs to limit the fanout and assigns latches to a single LCB.
This step is important because maximum slew constraints limit the
number of latches per LCB. The next stage, latch placement (3-
b), modifies the position of the latches by reducing the distance
between each latch and the assigned LCB. It is at this stage the
latch cluster placement will be defined by the proposed structured
templates. Finishing up clock optimization, steps (3-c,d) attempt to
correct the timing disruption caused by latch movements within the
design. The following section demonstrates the effectiveness of the
proposed methodology by evaluating the capacitance ratio of the
structured latch clusters verses conventional approaches. As such,
Def. 4 defines the capacitance ratio used to compare the different
approaches in the following section.

Definition 4. Capacitance Ratio is defined as the routed capacitance
of a structured template divided by the routed capacitance of an
equivalent clustered latch cluster.

VIII. EXPERIMENTAL RESULTS

The proposed framework was implemented in C++ and the place-
ment search, Section IV, was successively called over all input
combinations. Input parameters, latch types and LCB sizes were
selected based on library requirements from a state-of-the-art 22nm
technology library. All resistance and capacitance values were taken
from this library and clock routing and delay measurements remained
consistent across all experiments. To quantify the effectiveness of
the proposed methodology, results are compared against the latch
clustering technique as presented in [2] and register banking in
[12]. The experimental results are presented in three stages. First,
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Fig. 9. Capacitance ratio of banking versus the structured template method-
ologies corresponding to columns 3 and 4 in Table I.

a overview of the template generation inputs are outlined and the
effectiveness of the template reduction from Section V is presented.
Then, the capacitance reduction from using the generated templates
is presented. Finally, the results are presented for the decision tree
induction model demonstrating the effectiveness of the approach to
identify good placement templates on unknown input combinations.

A. Template Generation and Redundancy Removal Results
The proposed methodology developed a set of latch placement

templates optimized for minimizing local clock tree capacitance.
These templates were generated over a large operating range of
values expected to be encountered during a design lifecycle. Input
parameters to the placement search were selected, derived from a
multi-Ghz design, as follows. Latch clusters of size 7 to 67 were
evaluated with four different LCB sizes. Five different bounding
box ratios [0.1 : 0.5), [0.5 : 1.0), [0.5 : 1.5), [1.0 : 1.5) and
[1.5 : 10) and five different density ranges [0.7 : 1.0], [0.75 : 1.0],
[0.8 : 1.0], [0.85 : 1.0] and [0.9 : 1.0] were evaluated against four
skew 4(ps), 5(ps), 6(ps) and 7(ps) and four max delay requirements
5(ps), 6(ps), 7(ps) and 8(ps). Placement solutions were generated
exhaustively for all input combinations resulting in 96, 000 initial
solutions. For each, the GA termination criterion was bounded at 1
million populations with 100 candidates per population and a constant
mutation rate of 1%. The λ value from Equ. 5 was held constant at
0.05.

After placement solutions were generated, redundant placement
cluster removal was applied as presented in Sec. V. The initial
cardinality of the template set T was 96, 000. By removing invalid
solutions and applying redundant template removal, the total number
of templates reduced to only 534 total annotated templates. This re-
sulted in only 0.56% of the original possibilities clearly demonstrating
the effectiveness of the proposed approach.

B. Advantage of the Proposed Structured Latch Placement Templates
Because capacitance reduction directly reduces chip power, after

generating the template set, four latch placement approaches are
compared in terms of total routed local clock capacitance. The four
techniques are summarized as follows:
• Clustered: Local clock tree (LCT) capacitances are different for

each instance of a clustered solution therefore the average routed
LCT of one hundred latch clusters is used as a baseline.

• Banking: A bank of latches is generated for all latch counts
within that range of parameter requirements.

• Structured: This is the proposed approach with optimized struc-
tured latch templates selected based on the input parameter set.

• Trained: This is the template selected based on decision tree
induction.

All approaches are compared relative to the conventional clustered
approach using the capacitance ratio. Clearly presenting every input
combination is not feasible. As such, Table I presents four sets of
ratio sizes across selected latch counts with the last row displaying
the average for each of the techniques.

From the selected samples, the structured approach uses 0.71 of
the clock tree capacitance compared to a clustered solution with a
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Fig. 10. Capacitance ratio of structured verses trained solutions. The shaded
regions illustrate the latch cluster sizes where the learning model on average
did not select the correct template.

beta ratio between 1.5 and 10. Assuming clock power consumes up
to 50% of a design and the local clock tree consists of 30% of the
total clock power, this results in roughly a 4% reduction in total
power when compared to the clustered approach. When compared to
the banked approach, of the same shape, it results in roughly over
a 3% reduction in power. Assuming a 100-watt microprocessor, that
equates to a potential 2 to 4 watt savings. At a beta ratio between
0.1 and .5, structured used 0.80 of the clustered solution resulting
in up to 3% reduction in dynamic power and still produced roughly
1 watt of savings for a 100-watt microprocessor. Though templates
will be technology and possibly chip specific, results clearly show
the potential power savings.

To further illustrate the range of capacitance savings, figure 9
plots the capacitance ratio of both banking versus structured tem-
plate methodologies corresponding to columns 3 and 4 in Table I.
For local register group between 19 to 31, the two methodologies
produce very similar routed capacitance. However, for latch groups
of larger sizes, there is significant benefit to applying the structured
latch template methodology. By increasing the number of available
templates, capacitance reduces for a wider range of inputs. Next,
results are presented showing it is possible to train a decision tree to
effectively select the appropriate template solution.

C. Decision Tree Induction Results

This subsection presents the results from the proposed method in
Section VI where a decision tree was described with a modified
distance function. As the results will show, it is not necessary to
record all possible input combinations and corresponding templates
in a huge lookup table. Instead, it is possible to apply decision tree
induction that is implemented as a series of if..and..else statements.
As Fig. 7 shows, the model building process happens in two parts.
First, on a small sample of data, we apply training and validation
using the proposed training methodology. In this work, our training
set is randomly sampled from 75% of the total data (75% training
and 25% validation). Care must be made to ensure representative
templates of all class labels are represented. Therefore, if there
are not enough samples from a particular class, samples from an
overpopulated class are discarded and a new sample is selected at
random. Once training is complete, the evaluation step (Fig. 7 Step
B) runs the model on untrained data samples (the remaining 25% of
the population).

Using the proposed approach, the classification accuracy was
0.918, indicating the correct template was selected approximately
91% of the time across all validation samples. To further illustrate
the effectiveness of this approach, Fig. 10 displays a graph of the
average capacitance ratio of the correct template and the template
selected by the learning model. The latch cluster size is presented on
the x-axis. The y-axis is the average capacitance ratio of all templates
from the untrained data samples. The shaded regions indicate where
the learning model selects a template other than one identified as the
“optimal” template.
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TABLE I
TOTAL CAPACITANCE RATIO COMPARING CLUSTERED, BANKED, STRUCTURED, AND TRAINED MODEL TECHNIQUES WITH DENSITY RATIO GREATER

THAN 0.7. THE BANKED AND STRUCTURED COLUMNS ARE THE RESULTS WHEN ALWAYS SELECTING THE CORRECT TEMPLATE. THE TRAINED COLUMN
IS THE RESULTS PRODUCED FROM THE LEARNING MODEL.

1.5 < β < 10 1.0 < β < 1.5 0.5 < β < 1.0 0.1 < β < 0.5
Latch
Count Clustered Banked Structured Trained Clustered Banked Structured Trained Clustered Banked Structured Trained Clustered Banked Structured Trained

7 1.00 1.99 0.85 0.85 1.00 0.99 0.87 0.90 1.00 0.99 0.89 0.89 1.00 0.96 0.86 0.86
11 1.00 0.98 0.81 0.83 1.00 0.94 0.83 0.83 1.00 0.98 0.85 0.85 1.00 0.98 0.88 0.88
15 1.00 0.97 0.83 0.84 1.00 0.96 0.84 0.86 1.00 0.97 0.84 0.88 1.00 0.99 0.88 0.90
19 1.00 0.91 0.80 0.80 1.00 0.93 0.81 0.81 1.00 0.96 0.85 0.85 1.00 0.97 0.90 0.90
23 1.00 0.91 0.79 0.79 1.00 0.98 0.79 0.81 1.00 0.96 0.85 0.85 1.00 0.95 0.89 0.89
27 1.00 0.90 0.78 0.78 1.00 0.96 0.78 0.78 1.00 0.93 0.82 0.83 1.00 0.96 0.88 0.88
31 1.00 0.83 0.75 0.83 1.00 0.88 0.77 0.77 1.00 0.88 0.81 0.81 1.00 0.88 0.82 0.82
35 1.00 0.87 0.72 0.87 1.00 0.88 0.74 0.74 1.00 0.88 0.75 0.75 1.00 0.87 0.82 0.82
39 1.00 0.87 0.68 0.87 1.00 0.87 0.73 0.73 1.00 0.87 0.75 0.75 1.00 0.87 0.81 0.81
43 1.00 0.84 0.68 0.85 1.00 0.83 0.73 0.75 1.00 0.84 0.74 0.74 1.00 0.83 0.77 0.80
47 1.00 0.83 0.65 0.65 1.00 0.82 0.71 0.71 1.00 0.83 0.71 0.75 1.00 0.82 0.76 0.76
51 1.00 0.80 0.63 0.63 1.00 0.79 0.70 0.70 1.00 0.80 0.69 0.69 1.00 0.79 0.73 0.73
55 1.00 0.80 0.61 0.61 1.00 0.79 0.69 0.69 1.00 0.81 0.68 0.68 1.00 0.79 0.70 0.70
59 1.00 0.77 0.60 0.63 1.00 0.77 0.68 0.68 1.00 0.78 0.67 0.67 1.00 0.77 0.71 0.73
63 1.00 0.78 0.59 0.64 1.00 0.77 0.67 0.69 1.00 0.78 0.64 0.67 1.00 0.76 0.70 0.70
67 1.00 0.78 0.58 0.61 1.00 0.75 0.67 0.67 1.00 0.78 0.64 0.64 1.00 0.75 0.69 0.69

Ave. 1.00 0.93 0.71 0.76 1.00 0.87 0.75 0.76 1.00 0.88 0.76 0.77 1.00 0.87 0.80 0.80

D. Runtime Results
The proposed flow is precharacterizing optimized placement tem-

plates at a one time cost for each technology library thus only
template selection influences actual PD runtimes. For brevity, results
are presented for all sections. Initial placement search, Section IV
averaged 562 seconds(s) per template but is fully parallelizable with
total iterations bounded to 1 million. Infeasible template solutions
were discarded and not included in the average search time. Template
redundancy removal, Section V, executed in 108(s) and model
training, Section VI, completed in 419(s).

The key runtime impact is the amount of time to evaluate a
decision tree. Decisioning, based on an unknown input during PD,
ranges between 2 and 7 milliseconds (ms) and averages 5.3(ms)
depending on the number of branches between the root node and the
leaf. Additionally, template selection is fully parallelizable per latch
cluster. Thus, the proposed approach offers an extremely fast and
effective method for latch cluster placement because the optimization
of the template is one time for all designs.

IX. CONCLUSIONS

Microprocessor power design constraints significantly limit perfor-
mance enhancements. By minimizing routed capacitance of the latch
clusters, this work shows that significant power savings is possible on
the local clock tree which can contribute up to 30% of the total power
in a design. First, a set of structured templates is generated. Then,
using machine learning based decision tree induction, a learning
model is trained using a novel distance measurement. The decision
tree enables the design flow to “decide”, based on arbitrary input
combinations, the best template to use during clock optimization of
the physical design flow. Using these approaches, this work shows it
is possible to reduce local clock tree capacitance by 20-30% com-
pared to the state-of-the-art. Assuming the clock power contributes
50% of the total dynamic power, on a 100-watt microprocessor that
results in roughly between a 1 and 4 watt reduction.
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