
BOB-Router: A New Buffering-Aware Global Router with Over-the-Block Routing
Resources Optimization

Yilin Zhang1, Salim Chowdhury2 and David Z. Pan1

1 Department of ECE, University of Texas at Austin, Austin, TX, USA
2 Oracle, Austin, TX, USA

Abstract—In this paper, we propose a new global router, BOB-
Router, endowed with the ability to use over-the-block routing
resources to the greatest extent in addition to traditional routing
concepts of minimizing wirelength, via count and overflow. In
previous global routing formulations, the routing resources over
the IP blocks were either dealt as routing blockages leading to a
significant waste, or simply treated in the same way as outside-
the-block routing resources, which violates the slew constraints
and thus fail buffering. Utilizing over-the-block routing resources
could dramatically improve the routing solution, yet requires
special attention, since the slew, affected by different RC on
different metal layers, must be constrained by buffering and
is easily violated. Moreover, even all nets are slew-legalized,
the routing solution could still suffer from heavy congestion
problem. For the first time, BOB-Router tries to solve the over-
the-block global routing problem through minimizing overflows,
wirelength and via count simultaneously without violating slew
constraints. BOB-Router generates a slew-legalized initial solu-
tion followed by a Lagrangian-multiplier-based pricing phase and
RC-constrained A* search to help explore new buffering-aware
topologies on all metal layers. Our experimental results show
that BOB-Router completely satisfies the slew constraints and
significantly outperforms the obstacle-avoiding global routers in
terms of wirelength, via count and overflows.

I. INTRODUCTION

As semiconductor technology keeps scaling into deeper sub-

micron domain, interconnect delay becomes more critical in

determining chip performance. Routing is one of the most

important stages regarding performance of chip interconnec-

tion. The CEDA-sponsored ISPD Global Routing Contests [2]

and [3] attract attention from dozens of academic and indus-

trial participants. Inspired by the competitions, many high-

performance global routers are published, including but not

limited to, FastRoute 3.0 [22], FastRoute 4.0 [20], BoxRouter

2.0 [7], NTUgr [6], NTHU-Route [10], NTHU-Route 2.0 [5],

GRIP [19], FGR [18], MaizeRouter [16], Archer [17] and

NCTU-GR [9].

Those global routers can be roughly divided into two

categories: sequential and concurrent algorithms. Sequential

works [22], [20], [6], [10], [5], [16], [17], [9] route the nets

based on heuristic rip-up and reroute (RNR) techniques, which

tend to run 2D global routing followed by layer assignment.

On the other hand, works such as [19] and [18] directly address

the problem by running a full 3D global routing.

Meanwhile, extensively using IP-blocks to shorten

turnaround time nowadays packs SOC designs with IP blocks

or macros. To avoid routing over those blocks, obstacle-

avoiding rectilinear Steiner minimum tree (OA-RSMT)

problem has been actively studied over the years (e.g. [4],

[12]–[14]). However, completely avoiding those routing areas

will result in significant underutilization of high-level metal

layers which is the key to save power and close timing. To

tackle that issue, new ideas of intelligently utilizing part of,

instead of completely avoiding, the over-the-block routing

resources with buffering awareness are proposed by [21]

and [11] as BOB-RSMT [21] problem, as well as studied as

scenic constraints in [15].

Since the guidance from two ISPD Global Routing Contests

are similar, most published modern routers aim at the same

problem: minimizing wirelength and via count in addition to

alleviating congestion. However, the global routing problem

has never been touched upon to not only consider wire-

length, vias and overflows, but also properly use over-the-

block routing resources. Studying this new problem is essential

as to shorten the design cycle and improve the chip quality.

If over-the-block routing resources are treated the same as

that for outside-the-block, long nets over the block will fail

buffering, leading to additional manual work; whereas if over-

the-block routing resources are totally avoided, less remaining

routing resources will significantly deteriorate the quality of

the routing solution.

Our key contributions include:

1) We study the over-the-block global routing problem

for the first time, providing global routing solution

with overflows, wirelength, via count and buffering-

awareness considered simultaneously.

2) We improve BOB-RSMT algorithm [21] by addressing

its two limitations. Then we apply modified BOB-RSMT

algorithm for our initial legal inside-tree generation.

3) For any block with overflow, in each iteration we evolve

new topologies from inside trees confined within that

block, with less cost associated with congestion, wire-

length and via count,

4) We conduct Lagrangian-multipliers-based cost function

to reflect the weighted impact from all generated topolo-

gies. It turns out that topologies with less cost will have

more impact on determining the cost of covered edges.

5) An RC-constrained A* search is proposed to help in-

crementally evolve new topologies with minimum cost

while meeting slew constraints.

The rest of paper is organized as follow. We first introduce

basic concepts of inside trees, slew model and problem formu-

lation in Section II. Our over-the-block routing algorithm will

be presented in Section III, which includes three subsections.

978-1-4799-2816-3/14/$31.00 ©2014 IEEE 513

6B-2

Section III-A discusses how to modify BOB-RSMT to gener-

ate initial legal inside topologies. Section III-B illustrates the

process of incrementally evolving new topologies according to

Lagrangian-multiplier-based cost function and RC-constrained

A* search. Experimental results are shown and analyzed in

Section IV, followed by conclusions in Section V.

II. PRELIMINARIES

A. Basic over-the-block concepts

(a) (b)

Fig. 1. 3D grid-graph G of three metal layers with each one divided into
3*3 global routing bins

In global routing, the chip is partitioned into rectangular

global routing bins where a 3D grid-graph G = (V,E) is

used to model the multi-layer design. As depicted in Fig. 1(a)

and Fig. 1(b), each global routing bin is a vertex v ∈ V . The

boundary between two adjacent global routing bins on the

same layer is modeled as an edge e ∈ E with a capacity ce
reflecting the maximum routing resources between the cells.

After placement, the chip is packed with IP blocks or

macros which occupy the low metal layers and forbid buffer

insertion over the IP blocks. In our formulation, we set

B = {b1, b2, . . . , bm} as the set of blocks. Each block is

modeled by a box in the 3D grid-graph G as the shadowed

part in Fig. 1.

A set of multi-terminal nets N = {n1, n2, . . . , nk} is

required to be connected in the 3D graph G. The tree topology

of each net ni will enter and leave the blocks in the graph,

which divides the whole tree topology into a set of outside

trees TOi and a set of inside trees TIi.
For any inside tree t, the leaf nodes of t are on the

boundaries of a block. Among all leaf nodes, one must be

driving the signal and others are receiving. We name these leaf

nodes that receive signals escaping points (EP), and the set of

escaping points for t is EP t = {EP t
1 , EP t

2 , . . . , EP t
|EP t|}.

We use the same model as in [21] to check if any inside

tree satisfies slew constraints. In our formulation, every inside

tree is forced to be legal (i.e. satisfy slew constraints).

B. Problem Formulation

Matrices including wirelength, via cost and total overflow

(TOF) are used to evaluate our routing solution. TOF is

preferred to be zero since slightly overflowed global routing

can still make detail routing considerably more difficult.

Our proposed buffering-aware global router will connect

each net in N with the target of minimizing total wirelength in

addition to reducing TOF. Over-the-block trees have to satisfy

Fig. 2. Overall flow of BOB-Router

the slew constraints which ensure that every topology has

feasible buffering solutions.

III. BOB-ROUTER ALGORITHMS

The overall flow of BOB-Router approach is depicted in

Fig.2. The procedures in the “Main loop” frame consists

of routing algorithm for inside trees while the rest part is

composed of initial legal RSMT generation along with routing

for outside trees.

In the BOB-Router problem formulation, any inside tree has

to satisfy slew constraints to accomodate buffering. Due to

this extra requirement, routing for inside trees becomes more

challenging than that for outside trees. Our BOB-Router will

route inside trees ahead of outside trees, as we algorithmically

emphasize on inside-tree routing which prefers topologies with

least downside or even betterment on the cost of outside-tree

routing.

To avoid simultaneously coping with wirelength, via count,

overflow and slew constraints in inside-tree-routing problem,

we decouple the slew constraints by legalizing all topologies

first and making sure every following step during the entire

inside-tree routing will not violate the slew constraints. This

decoupling process includes two steps. First, since the initial

inside trees could violate slew constraints, we apply an EP-

movement-based legalization procedure modified from [21] to

legalize any illegal inside topology with minimum wirelength

penalty. Second, during the “evolve new topologies” step

(shown in Fig.2) in the inside-tree routing, we use an RC-

constrained A* search to ensure that each operation during

new topology evolution will not break the slew constraints.

A. Generate Legal Initial Topologies

We modify BOB-RSMT algorithm in [21] to generate legal

initial inside trees. We will first briefly review BOB-RSMT

approach, and then study two insufficiencies of BOB-RSMT.

Lastly, we will present our modified BOB-RSMT (BOB-

RSMT-m) to provide upgraded initial legal inside trees.

In BOB-RSMT, an initial RSMT is generated for each net

by FLUTE [8]. Yet for any generated RSMT, it might violate

514

6B-2

(a) (b)

(c) (d)Fig. 3. Best move selection (a) shows an illegal inside tree. (b), (c) and (d)
exhibit and evaluate the best single-unit move from the driver, EP1 and EP2

respectively.

slew constraints and become illegal. First of all, in order

to legalize any illegal inside tree t in the illegal RSMT, all

illegal escaping points (EP) of t will be sorted according to

their slew violations. Next, in every iteration the first illegal

escaping point EP t
1 with the worst slew violation based on

sorting will be legalized. To legalize slew for EP t
1 , each

escaping point from {EP t
1 , EP t

2 , . . . EP t
|EP t|} may slide to

a different position by taking a combination of primitives

with inside Steiner nodes updated as well. These primitives

include parallel sliding which shifts the connected branch,

perpendicular sliding which stretches the connected branch

and EP merging with one of the neighboring EP. ILP is applied

to select the final location for each EP from its possible point
set. Finally, the location of EP t

1 will be fixed and next iteration

is launched to legalize the next illegal escaping point EP t
2 .

This process will be iterated until all escaping points satisfy

slew constraints.

BOB-RSMT approach efficiently generates a topology sat-

isfying slew constraints, however, it has two limitations. First,

movement of the driver for an inside tree is not considered.

Second, when two branches at the opposite end of the driver

move simultaneously, slew improvement may be underesti-

mated.

To address those two limitations, we keep the optimization

primitives but replace ILP with a greedy approach. Instead of

evaluating each possible point and applying ILP to selection,

we assess every single-unit move from all EPs and the driver,

and select the best move. For example Fig.3(a) presents an

illegal inside tree, while Fig.3(b), Fig.3(c) and Fig.3(d) give

the resulted topologies assuming the best moves from the

driver, EP1 and EP2 are selected respectively. In order to

directly show amount of slew improvement in Fig.3, we set

one for unit R and unit C, along with zero for buffer-output

resistance, buffer-input capacitance and output slew in our slew

model. As we can see, the best slew improvement occurs in

Fig.3(b), where the driver reduces worst slew by 19.88 slew

units with single-unit move. However, in BOB-RSMT, this

solution cannot be found since the move of the driver is not

considered.

The other benefit from proposed BOB-RSMT-m is that it

accurately catches the slew difference when multiple branches

at the opposite end of the driver moving simultaneously. In

this rare case, BOB-RSMT approach might disregard slew

improvement from antenna clearance and overestimate slew

improvement from branch sliding. As is shown in Fig.4,

moving EP1 to the right by one unit (Fig.4(b)) can improve

the worst slew for 9.89 slew units while moving EP2 in the

same way (Fig.4(c)) will improve the worst slew for 3.30 slew

units. If the ILP in BOB-RSMT is applied to choose both

slides, the total improvement will be summed up to 13.19 slew

units in an incorrect way. The actual improvement in Fig.4(e)

is 11.98 slew units which consists of the slew improvement

from moving EP1 to the right by one unit and removing of

antenna segment circled in 4(d).

(a) (b)

(c) (d) (e)

Fig. 4. Slew calculation method in BOB-RSMT and BOB-RSMT-m. (a)
shows an illegal inside tree. (b) and (c) exhibit and evaluate the best single-
unit move from EP1 and EP2 respectively. (d) and (e) illustrates if both
EP1 and EP2 move.

B. Evolving Legal Congestion-Aware Min-Cost Topologies

The initial-inside-tree legalization guarantees one legalized

topology for each inside tree. Placing these legal topologies

simultaneously within each associated block could cause con-

gestion problem. To resolve this issue, our approach uses the

generated legalized topologies as seeds, giving birth to more

legal congestion-aware topologies with less cost than current

topologies. Finally, one topology will be chosen for each inside

tree to achieve least overflow and cost.

We keep our topologies in Steiner tree structures instead of

decomposing them into 2-pin nets in that (1) Steiner tree struc-

tures have more flexibility with unfixed Steiner points while

2-pin nets have to connect specified end points; (2) Steiner tree

structure allows for tracking non-linear slew calculation over

the entire tree, which is improbable for decomposed 2-pin nets.

In normal global routing problem, it is non-trivial regarding

how to come up with congestion-aware Steiner tree topologies

with minimum cost. However, the Steiner tree topologies we

demand for our inside trees have to satisfy additional slew

constraints.

515

6B-2

1) Formulations: First, we build an ILP formulation to de-

scribe the routing problem in each block. The ILP formulation

contains no slew constraints, as every topology presented in

the ILP formulation is legal.

min.

n∑

i=1

∑

t∈ζi

XitWit +M
n∑

i=1

Si (1)

s.t. ∀i, Si +
∑

t∈ζi

Xit = 1 (1a)

n∑

i=1

∑

t∈ζi

Xite <= Ce ∀e ≺ b, b is block (1b)

Xit ∈ {0, 1} ∀i ∈ {1, 2, . . . , n} ∀t ∈ ζi

Si ∈ {0, 1} ∀i ∈ {1, 2, . . . , n}
TI = {T1, T2, . . . , Tn} is the set of inside trees within block

b, and ζi in the formulation is the collection of all topologies

for Ti. For each Steiner tree topology t ∈ ζi, parameter Wit

represents the overall cost of the topology, including both

wirelength and vias. Variable Si denotes the routability of

Ti; if Si is positive, the inside tree Ti cannot be routed with

available Steiner tree topologies.
∑n

i=1

∑
t∈ζi

Xite contains

the amount of routing resources demanded on every edge e,

which is required to maintain under the edge capacity vector

Ce.

In order to minimize overflow, MSi is used in the objective

function to penalize any unroutable inside tree Ti. Parameter

M is a predefined large number which is greater than the

wirelength of any possible Steiner tree in the chip. Solving ILP

formulation (1) guarantees no inside-overflow and minimizes

total cost with maximum number of routed inside trees.

The ILP formulation has the following two purposes in our

approach: i) to select one topology for each inside tree to check

if overflow-free solution could be achieved at the end of each

iteration, ii) the dual problem of relaxed LP could provide cost

of each edge.

2) Pricing the Edges: Before solving the ILP and fixing the

topologies in current iteration, more Steiner tree topologies,

instead of the initial one solely, are wanted to effectuate least

TOF and cost routing solution. We use sensitivity analysis

on the edge capacity constraints to price each edge, which

provides a guidance for the evolution of new Steiner tree

topologies from current topologies.

Different edges on different layers have various values in the

routing since some of them are in congested area while some

are not. We calculate price to describe the potential overflow

on each edge. To obtain the prices for edges, we first relax the

ILP formulation (1) into an LP formulation by relaxing binary

variables {Xij}.

The relaxation on binary variables {Xij} splits the con-

straint of choosing only one topology for each inside tree

into a set of fractional numbers indicating several potentially

preferred topologies. A topology avoiding congested area and

costing less wirelength and vias will be preferred and assigned

positive Xij which depends on the quality of the topology.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f S
el

ec
te

d
To

po
lo

gi
es

O
bj

ec
tiv

e
Va

lu
e

Iterations

LV-1 Value LV-2 Value LV-3 Value

LV-1 Number LV-2 Number LV-3 Number

Level-two Level-threeLevel-one

Fig. 5. Progression of objective value and number of selected “to-be-evolved”
topologies over optimization rounds for one block on ADAPTEC1

The price of each edge comes from the dual of this LP

formulation exhibited in (2). The variable λi is the La-

grange multiplier associated with relaxed topology-selection

constraint (1a) for Ti and ρe is the Lagrange multiplier

associated with relaxed capacity constraint (1b) for edge e.

According to complementary slackness theorem, for optimal

primal variables X∗
i , i ∈ {1, 2, . . . , n} and optimal dual

variable ρ∗e , there exists ρ∗e ∗ (
∑n

i=1

∑
t∈ζi

Xite − Ce) = 0.

When the ρ∗e is positive,
∑n

i=1

∑
t∈ζi

Xite − Ce = 0 will be

true, which means corresponding edge e has no “leftovers”

in capacity. If the primal optimal solution exists, according

to strong duality, the optimal dual variable ρ∗e reflects how

much improvement on the objective value we can make if the

capacity of edge e increases by one. Therefore, we use the

optimal dual variable ρ∗e as the price for edge e. Compared

with history-based cost in other routers, our price is more

comprehensive because it considers all topologies we have and

weights them according to their worth optimally.

max.

n∑

i=1

(−λi) +
∑

e≺b

(−ρe)ce (2)

s.t. λi +
∑

e≺t

ρe +Wit >= 0 (2a)

λi >= −M ∀i ∈ {1, 2, . . . , n}
ρe >= 0 ∀e ≺ b

3) Three-level Topology Selection: If we evolve new

topologies for each existing topology, the size of our topology

pools will dramatically increase without corresponding speed

of TOF mitigation. Therefore, we control the number of new

evolved topologies in each iteration by only considering the

most costly topologies.

We use a dynamic three-level topology-selection approach

to determine certain topologies for evolution in each iteration.

Only if current stage fails to further improve TOF, will next

stage be launched. The following level selects topologies in a

more broad way which enables further TOF reduction.

• Level-one: After we find all inside trees with positive

Si, all topologies associated with these unroutable inside

trees will be evolved.

• Level-two: If evolution of topologies from level-one is

unable to keep optimizing the LP formulation, we as-

516

6B-2

semble an inside-tree-routing solution by selecting the

topology with largest Xij for each inside tree. Then the

overflow of each edge could be counted. In addition to

the topologies from level-one, any topology containing

overflowed edge(s) will be added.

• Level-three: If the topology evolution in level-two fails to

keep optimizing the LP formulation, we evolve topologies

covering edges with positive price in addition.

We gradually loosen our requirement for topology evolution,

pushing the optimization with control over the number of

processed topologies. Fig.5 evaluates the three-level topology-

selection during optimization iterations for one single block

on ADAPTEC1. It shows that the first iterations in level-one

increases the size of topologies slowly. As optimization halts

during any iteration, next level will be launched to reduce

TOF.

4) RC-constrained A* Search: After pricing and topol-

ogy selection in every optimization iteration, we evolve new

topologies with slew-aware rip-up and reroute. The pricy part

will be ripped up and an RC-constrained A* search algorithm

is applied to reroute disconnected parts without violating the

slew constraints.

For any selected topology t, we find all wires with non-

zero price, and sort them by their prices in descending order.

After sorting, we sequentially rip-up and reroute each wire.

For one wire w on t, signaling from U to V , we remove w
from t first and notate the remaining part as t\w. Then we

calculate RCp and Cp for each point p ∈ t\w. RCp and Cp

are the maximum allowed RC and C connected to p without

violation to the slew constraints. The maximum possible RC
and C for all points on t\w will be:

RCmax = max{RCp, p ∈ {t\w}} (3)

Cmax = max{Cp, p ∈ {t\w}} (4)

Afterwards, an RC-constrained A* search is applied to

reconnect V to the remaining part t\w. We will only accept

connections to point p with RC and C less than RCp and

Cp respectively. During RC-constrained A* search, any search

path with RC exceeding RCmax or C exceeding Cmax will

be pruned away. The cost of each edge e in our A* search

is the price of e plus one. The heuristic cost function we use

is the 3-D Manhattan distance to the nearest point in t\w,

which clearly is a lower bound. This RC-constrained A* search

guarantees least cost solution under slew constraints.

C. Outside-tree Routing

After topologies of inside trees are fixed, capacities of all

edges within blocks are set to zero before blockage-avoiding

outside-tree routing, which will be solved by existing academic

routers.

IV. EXPERIMENTAL RESULTS

BOB-Router has been implemented in the C++ program-

ming language. All experiments are conducted on an Intel

Core 3.0GHz Linux machine with 16GB memory. We use 3D

global routing benchmarks adaptec1 ∼ 4 and bigblue1 ∼ 4

from ISPD 2007 and 2008 Global Routing Contests for our

experiments. Benchmarks from global routing contests are

not annotated with blockage information explicitly. As far

as we know, the block porosity information in the global

routing benchmarks are derived from fixed macros in certain

placement benchmarks. Owing to abutting blocks, it is arduous

to directly retrieve geometric information of porosity areas

from the routing benchmarks. Instead, we find the corre-

sponding placement benchmarks, from which we are able

to extract fixed macro geometric information. Besides, we

remove nets containing pins inside blocks, which is beyond

our formulation.

The wire resistance and capacitance for each metal layer

are derived from ITRS [1], and we use 70ps as our maximal

allowed slew.

We first evaluate the slew violation for each benchmark.

Table II calibrates the slew numbers for all inside trees after

RSMT topologies are generated by FLUTE and applied with

a simple-layer-assignment heuristic. The heuristic will assign

all inside trees on the lowest allowable pair of layers first.

Then for all inside trees with slew violation, we will bring

them to higher pair of metal layers according to extents

of slew violations. From Table II, we can see that some

benchmarks with no slew problem initially, such as bigblue2,

may encounter slew problem because it is possible that most

of inside trees have been promoted to the highest pair of metal

layers.

TABLE II
SLEW DISTRIBUTION OF INSIDE TREES

Benchmarks # nets # inside trees max slew average slew

adaptec1 219794 57852 1713.8 36.9
adaptec2 260159 34769 494.4 28.5
adaptec3 466295 105137 23785.5 141.6
adaptec4 515304 86199 3986.7 65.8
bigblue1 282974 18763 380.1 22.1
bigblue2 576816 117259 69.9 4.0
bigblue3 1122340 79659 2025.1 22.1
bigblue4 2228930 234692 631.1 5.0

Since we eliminate all slew violation during initialization

and keep slew under constraints, our final routing solution

will not suffer from any slew problem. In Fig.6, we compare

the slew distribution of inside trees from Table II with final

routing solution for benchmark adpatec1. Initially, we observe

the existence of inside trees with worst slew up to 1714ps. But

after the benchmark is processed by BOB-Router, no inside

tree has slew more than 70ps which is the maximum allowed

slew rate in our slew constraints. The number of inside trees

with slew between 60ps to 70ps is dramatically increased as

most nets with slew violations originally are legalized to be

just under 70ps.

If one router is not able to properly use the over-the-

block routing resources, the safest way without breaking slew

constraints thus involving manual work is to avoid the blocks

completely by setting over-the-block routing capacity as zero

(or large penalty). We compare our proposed BOB-Router

with an obstacle-avoiding router (OA-Router) in terms of

wirelength, via count and TOF. We modify NTHU-Router

2.0 [5] to be the OA-Router and the solver for outside-the-

517

6B-2

TABLE I
COMPARISONS BETWEEN OUR PROPOSED BOB-ROUTER AND OA-ROUTER

Bench over-the-block outside-the-block overall OA-Router
-marks WL Vias TOF cpu(s) WL Vias TOF cpu(s) WL Vias TOF cpu(s) WL Vias TOF cpu(s)

adaptec1 431886 138207 0 5690 2733837 1344218 199565 1421 3165723 1482425 199565 7111 3317320 1724765 450300 3463
adaptec2 261957 57838 265 4523 2615068 1258131 28847 1038 2877025 1315969 29112 5561 3371453 1836853 107498 4577
adaptec3 1235721 154123 1333 100210 8355049 2849048 639049 16527 9590770 3003171 640382 116737 10100613 3740726 1276779 18845
adaptec4 836840 105953 0 32718 8831370 2580484 329221 13202 9668210 2686437 329221 45920 11326871 3498262 438954 13455
bigblue1 98044 42090 0 55 3248498 1367350 22612 1637 3346542 1409440 22612 1692 3637249 1967568 70853 2232
bigblue2 258699 350385 0 520 3730497 2985365 3795 1131 3989196 3335750 3795 1651 4799773 3800398 5145 1346
bigblue3 522841 141885 0 2119 7800699 3847139 15148 2621 8323540 3989024 15148 4740 8961863 5267470 83416 8603
bigblue4 575639 731836 0 303 9358521 7489968 5266 2266 9934160 8221804 5266 2569 12363167 10444398 27939 5784

average 0.08 0.06 0.00 0.51 0.92 0.94 1.00 0.49 1.00 1.00 1.00 1.00 1.13 1.28 3.07 1.00

0

5000

10000

15000

20000

25000

30000

of

 in
si

de
 tr

ee
s

Slew (ps)

Before legalization After legalization

Fig. 6. Slew distribution of all inside trees in adpatec1 initially and finally.
Each y coordinates number of inside trees with slew in the slot between
current and previous x

block routing for its good performance. The results are shown

in Table I. From the last row in the table, we can see that

BOB-Router pushes about 8% of wirelength and 6% via count

to the over-the-block part on average. The TOF of over-the-

block routing is zero for most benchmarks. By using over-

the-block routing resources, BOB-Router achieves about only

33% TOF, 88% wirelength and 78% via count of the OA-

Router. We think more decrease of via count than wirelength

is partially because BOB-Router performs full 3D routing for

over-the-block part without layer assignment. Average runtime

of BOB-Router is same with OA-Router. However, we notice

that BOB-Router spends more time on bigger and tougher

benchmarks, such as adaptec3, because more iterations and

topologies are required.

V. CONCLUSION

In the past few years, traditional global routing has been ex-

tensively studied, which in turn makes it hard even to improve

performance by 1%. We propose a new formulation of global

routing problem from a different perspective. Solving this new

BOB-Routing problem could keep shortening design cycle and

improving routing quality. With our proposed approach, we

can generate slew-violation-free solution with 66% less TOF,

12% less wirelength and 22% less via count compared with

the obstacle-avoiding approach.

VI. ACKNOWLEDGMENT

This work is supported in part by NSF, SRC and Oracle.

REFERENCES

[1] 2012 Overall Roadmap Technology Characteristics (ORTC) Tables.
[2] ISPD 2007 Global Routing Contest and Benchmark Suite.

http://archive.sigda.org/ispd2007/contest.html.
[3] ISPD 2008 Global Routing Contest and Benchmark Suite.

http://archive.sigda.org/ispd2008/contests/ispd08rc.html.
[4] G. Ajwani, C. Chu, and W. Mak. FOARS: FLUTE Based Obstacle-

Avoiding Rectilinear Steiner Tree Construction. In Proc. ISPD, pages
194–204, 2010.

[5] Y. Chang, Y. Lee, J. Gao, W. Wu, and T. Wang. NTHU-Route 2.0: A
Robust Global Router for Modern Designs. In IEEE TCAD, volume
29(12), pages 1931–1944, 2010.

[6] H. Chen, C. Hsu, and Y. Chang. High-Performance Global Routing with
Fast Overflow Reduction. In Proc. ASPDAC, pages 582–587, 2009.

[7] M. Cho, K. Lu, K. Yuan, and D. Z. Pan. BoxRouter 2.0: Architecture and
implementation of a hybrid and robust global router. In Proc. ICCAD,
pages 503–508, 2007.

[8] C. Chu and Y. Wong. FLUTE: Fast Loopup Table Based Rectilinear
Steiner Minimal Tree Algorithm for VLSI Design. IEEE TCAD,
27(1):70–83, 2008.

[9] K. Dai, W. Liu, and Y. Li. Efficient Simulated Evolution Based
Rerouting and Congestion-Relaxed Layer Assignment on 3-D Global
Routing. In Proc. ASPDAC, pages 570–575, 2009.

[10] J. Gao, P. Wu, and T. Wang. A New Global Router for Modern Designs.
In Proc. ASPDAC, pages 232–237, 2008.

[11] T. Huang and E. F.Y. Young. Construction of rectilinear Steiner
minimum trees with slew constraints over obstacles. In Proc. ICCAD,
pages 144–151, 2012.

[12] T. Huang and Evangeline F.Y. Young. An Exact Algorithm for the
construction of Rectilinear Steiner Minimum Trees among Complex
Obstacles. In Proc. DAC, pages 164–169, 2011.

[13] L. Li, Z. Qian, and Evangeline F.Y. Young. Generation of Optimal
Obstacle-avoiding Rectilinear Steiner Minimum Tree. In Proc. ICCAD,
pages 21–25, 2009.

[14] L. Li and Evangeline F.Y. Young. Obstacle-avoiding Rectilinear Steiner
Tree Construction. In Proc. ICCAD, pages 523–528, 2008.

[15] W. Liu, Y. Wei, C. N. Sze, C. J. Alpert, Z. Li, Y. Li, and N. Viswanathan.
Routing Congestion Estimation with Real Design Constraints. In Proc.
DAC, 2013.

[16] M. D. Moffitt. MaizeRouter: engineering an effective global router. In
Proc. ASPDAC, pages 226–231, 2008.

[17] M. Mustafa Ozdal and M. D. F. Wong. Archer: a history-driven global
routing algorithm. In Proc. ICCAD, pages 488–495, 2007.

[18] J. A. Roy and I. L. Markov. High-Performance Routing at the Nanometer
Scale. In IEEE TCAD, volume 27(6), pages 1066–1077, 2008.

[19] T. Wu, A. Davoodi, and J. T. Linderoth. GRIP: Scalable 3D Global
Routing Using Integer Programming. In Proc. DAC, pages 320–325,
2009.

[20] Y. Xu, Y. Zhang, and C. Chu. FastRoute 4.0: Global Router with
Efficient Via Minimization. In Proc. ASPDAC, pages 576–581, 2009.

[21] Y. Zhang, A. Chakraborty, S. Chowdhury, and D. Z. Pan. Reclaiming
Over-the-IP-Block Routing Resources With Buffering-Aware Rectilinear
Steiner Minimum Tree Construction. In Proc. ICCAD, pages 137–143,
2012.

[22] Y. Zhang, Y. Xu, and C. Chu. FastRoute3.0: A Fast and High Quality
Global Router Based on Virtual Capacity. In Proc. ICCAD, pages 344–
349, 2008.

518

6B-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

