
Clock Tree Resynthesis for Multi-corner Multi-mode Timing
Closure

Subhendu Roy‡, Pavlos M. Mattheakis†, Laurent Masse-Navette†, David Z. Pan‡

‡Department of Electrical and Computer Engineering, University of Texas at Austin, USA
†Mentor Graphics, Grenoble, France

subhendu@utexas.edu, {pavlos_matthaiakis,Laurent_Masse-Navette}@mentor.com,
dpan@ece.utexas.edu

ABSTRACT

With aggressive technology scaling and complex design sce-
narios, timing closure has become a challenging and tedious
job for the designers. Timing violations persist for multi-
corner, multi-mode designs in the deep-routing stage al-
though careful optimization has been applied at every step
after synthesis. Useful clock skew optimization has been
suggested as an effective way to achieve design convergence
and timing closure. Existing approaches on useful skew op-
timization (i) calculate clock skew at sequential elements
before the actual tree is synthesized, and (ii) do not ac-
count for the implementability of the calculated schedules
at the later stages of design cycle. Our approach is based on
a skew scheduling engine which works on an already built
clock tree. The output of the engine is a set of positive and
negative offsets which translate to the delay and accelera-
tions respectively in clock arrival at the clock tree pins. A
novel algorithm is presented to accurately realize these off-
sets in the clock tree. Experimental results on large-scale
industrial designs demonstrate that our approach achieves
respectively 57%, 12% and 42% average improvement in to-
tal negative slack (TNS), worst negative slack (WNS) and
failure-end-point (FEP) with an average overhead of 26% in
clock tree area.

Categories and Subject Descriptors

B.7.2 [Hardware, Integrated Circuits]: Design Aids;

Keywords

Useful skew, clock skew scheduling, ECO, MCMM, CTS

1. INTRODUCTION
Clock skew is the difference in clock arrival times at dif-

ferent sequential elements in the clock-distribution network.
A lot of work has been done in the past to minimize clock-
skew [1][2][3]. Targeting global zero skew not only costs
in area and power, but also limits the achievable operating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISPD’14, March 30 - April 02 2014, Petaluma, CA, USA.
Copyright 2014 ACM 978-1-4503-2592-9/14/03 ...$15.00.
http://dx.doi.org/10.1145/2560519.2560524

frequency to the maximum data path delay in the circuit.
This has led to a paradigm shift from skew minimization to
useful skew optimization as the latter has the potential to
significantly improve design performance [4][5][6][7][8][9].

As technology scales aggressively in the nanometer regime,
interconnects play a determining role in timing and uncer-
tainty due to process variations [10][11] and the multi-corner
analysis becomes more and more tedious. [12] has proposed
an algorithm for chip-level clock tree synthesis (CTS) to
tackle clock divergence issue in different corners. However,
it does not take into account the timing information on data
path for CTS. Also, a chip has to operate in several modes
to reduce power dissipation. For instance, a design can be
in active and sleep modes when performance and power
are the main concerns respectively. Consequently, timing
closure has posed a challenging job for designers to meet
stringent silicon delivery targets [13], especially with multi-
corner, multi-mode (MCMM) designs. In [14][15] clock tree
aware placements are performed with the objective of re-
ducing total wire-length and/or switching power, but they
do not account for any timing improvements. Several works
have focused on timing optimization during placement and
routing as well [16][17][18]. But in spite of all these efforts,
timing violations still exist after detail routing in MCMM
designs. So the designers have to intervene manually to an-
alyze and fix the timing violations considering every mode
and process variation altogether in an iterative and non-
convergent way, where as the verification engineers need to
run timing analysis for each scenario1.

Engineering change order (ECO) is always used after de-
tail routing in order to fix existing timing violations by in-
cremental adjustment of pertaining cells and nets [19][20].
These ECO adjustments, focused mainly on data path op-
timization, are not sufficient to handle all timing violations.
So data path aware clock scheduling becomes an important
step for timing closure, as it allows modifications in the clock
tree which is towards timing closure. Several works study
the clock scheduling problem. In [7] clock skew scheduling is
formulated as a constrained quadratic problem, minimizing
the least square error between the computed clock sched-
ule, consistent to the interconnection between the registers,
and the target clock schedule. [21] presents a fast primal-
dual based approach for minimal clock period, improving
over Burn’s algorithm [22] in run-time complexity. [9] even
tackles the clock scheduling problem in presence of process
variations by ILP formulation. But the issues with these ap-
proaches are (i) actual implementation of that clock schedul-

1any mode/corner combination

69

ing is difficult to achieve in real designs, especially at later
design stages (ii) they are unaware of MCMM scenarios.

[23] formulates an LP problem to optimize clock period
in the post-CTS stage by bounded delay buffering at the
leaves of the clock tree. But since this work only consid-
ers inserting delay but not speeding up clock arrival at the
leaves, the scope of the optimization is limited and buffer-
ing at the leaf level introduces a high area overhead in clock
tree. Furthermore, [23] does not tackle MCMM scenarios.
A recent work [24] focuses on the realization of the use-
ful skew on industrial-scale designs at post-routing stage.
It also performs local transformations at the leaf-level by
inserting/removing buffers to minimize negative D-slack/Q-
slack2 violations. For instance, if Dslack < 0, it means the
data arrives too late or clock arrives too early. Fig. 1 shows
an example to mitigate D-slack violation by delaying the
clock arrival. But it might cause Q-slack violation if there
is no enough positive Q-slack available. The main issues of
this work are (i) it does not have the global view of the clock
tree, instead performs timing optimization greedily. So this
approach can not handle negative slacks at both sides (D and
Q) or negative slack at one side with very less available pos-
itive slack at the other side, which is a common situation in
today’s high-performance time-constrained real designs, (ii)
area-overhead in clock tree is high as it works only at leaf-
level, (iii) Speeding up clock arrival to fix Q-slack violations
by only removing buffer is hardly realizable in practice to
be discussed in Section 2.3 (Fig. 5).

D DQ Q
Dslack < 0 Dslack > 0Qslack > 0 Qslack < 0

clk
clk

Figure 1: Buffer insertion to mitigate D-slack viola-

tion can cause Q-slack violation

To tackle these issues, a novel clock tree resynthesis method-
ology is presented in this paper. Instead of estimating clock
schedule at the leaf level registers, our approach considers
offsets in clock arrival at the clock tree driver pins of any
placed design with already synthesized and routed clock
tree. To consider MCMM scenarios, we develop an LP solver
based on [25], for calculating these offsets. We illustrate in
Section 2.2 that it is easier to realize the positive offsets by
inserting buffer chains, but at the cost of clock tree area. On
the other hand, the negative offset realization is disruptive
and can have catastrophic effects on the timing profile of
the design unless handled properly. As a result, realization
of an arbitrarily large negative offset is not feasible. We
run experiments with the LP solver for industrial designs
and come to the conclusion that a significant gain in timing
metrics is possible by realizing positive offsets and bounded
negative offsets. We develop a slack manager infrastructure
which keeps track of the available slacks for clock arrival at
the clock pins of the clock tree network. By utilizing the
positive slack at the fan-out cone of the clock tree elements

2The slack at the input/output pin of a register is defined
as D-slack/Q-slack

Floorplanning, Placement

Pre-CTS Optimization

Clock Tree Synthesis and Clock Tree Routing

Post-CTS Timing Closure

Clock Tree Resynthesis

Figure 2: Our methodology in a conventional back-

end flow

as a safe margin, our algorithm realizes the negative offsets
incrementally through clock tree restructuring or sizing.

Fig. 2 illustrates the steps of a conventional back-end
flow and where our methodology for clock tree resynthe-
sis fits into this. The benefits of our methodology are two
fold. Firstly, it helps to lead to the timing closure. Secondly,
post-CTS timing closure involves ECO adjustments, such as
data path optimization etc., which generally cost a signifi-
cant area/power penalty. So more we advance towards the
timing closure by clock tree resynthesis, better is the savings
in terms of area/power. The key contributions of our paper
are as follows.

• To the best of our knowledge, this is the first work to
consider offsets at output pins of clock tree cells for im-
proving timing metrics in a placed design with already
routed clock tree instead of estimating clock schedule
at the leaf level registers. Moreover, the offset calcula-
tion is tightly coupled with feasibility in realizing those
offsets.

• A novel algorithm which is non-intrusive and area-
efficient is presented that realizes negative offsets.

• A methodology for clock tree resynthesis is presented
which has significantly improved timing metrics of large
scale industrial designs (after placement and clock tree
routing) under MCMM scenarios.

The rest of the paper is organized as follows. Section 2
illustrates the concept of feasibility aware clock scheduling
in presence of MCMM scenarios using an LP solver. Section
3 presents our novel algorithm to realize the negative offsets
predicted by the LP solver and the overall methodology for
clock tree resynthesis. Section 4 presents the experimental
results of our approach for industry-strength designs. Sec-
tion 5 discusses about the applicability of our methodology
and future work with a conclusion in Section 6.

2. FEASIBILITY AWARECLOCKSCHEDUL-

ING
In this section we first present an LP solver based on [25]

to calculate the offsets in clock arrival at the clock driver
pins under MCMM scenarios. Although this LP solver is

70

not our main contribution in this work, it is imperative to
address concisely how the LP solver tackles various modes
and corners in the design. Then we illustrate the approach
for positive offset realization and the issues in realizing neg-
ative offsets. Finally, the notion of feasibility aware clock
scheduling is introduced.

2.1 LP Solver
In [25] an LP engine is presented, which estimates the

clock-scheduling for a design under MCMM scenarios tar-
geting the minimization of timing metrics, such as the total
negative slack (TNS) and total hold slack (THS)3. To in-
clude the various corners in the design, scaling factors (ci)
for each corner i are calculated having as reference the con-
straint corner i.e., ci = 1 for the constraint corner and ci < 1
for any other corner. These scaling factors are used in the
set-up/hold time analysis for different corners. With re-
spect to multiple mode handling, the functional timing paths
across all active modes are analyzed. Additionally, on-chip-
variation (OCV) derates [26] calculated on the already built
tree are introduced in the LP solver as means to reduce the
variability effects on the resultant timing profile.

We develop an LP solver based on [25], to calculate the
positive and negative offsets at the output pins of the leaf-
level gates/buffers (driving sequential leaf cells) in terms of
clock tree level which corresponds to intrinsic buffer delay
(minimum buffer delay in the design), denoted by Dbuf

min.
Positive (negative) offset of doff at any pin signifies that
the clock-arrival at that pin is to be delayed (fastened) by
doff . Any offset doff in the constraint corner is equivalent
to an offset of ci × doff in the ith corner. We can specify
the range of these offsets by constraining minimum level
(Loff

min) and maximum level (Loff
max). For instance, suppose

the Dbuf
min of a design is 60 pico seconds (ps) and we specify

Loff
min = −2 and Loff

max = 3, then the LP solver will estimate
the offsets of values−120ps, −60ps, 60ps, 120ps, 180ps along
with a prediction of timing improvement. The calculation
and realization of the offsets are tightly coupled in this work.
Additionally, the realization maintains the timing profile of
the parts of the design which should not be affected.

2.2 Positive Offset Realization
Positive offset realization is accomplished by inserting route

aware delay elements. Fig. 3 illustrates the realization of a
positive offset at the output pin of repeater B1. Initially,
the LP solver predicts that a positive offset (doff) should
be realized at the output pin (op) of the buffer B1, i.e. the
clock arrival of the buffers/leaf-cells driven by B1 should be
delayed by doff . We can implement this positive offset by
incorporating a delay element D (merely a buffer chain) of
doff at op. While doing this, we consider various corners
and insert/size/place the delay block accordingly to realize
this positive offset as accurate as possible across all corners.
Additionally it should be guaranteed that the offset realiza-
tion does not degrade the quality of the clock tree e.g. design
rule check (DRC) violations are not increased. It should be
stressed that the positive offset realization is not intrusive
as the parts of the clock tree which are irrelevant to the in-
serted offset are not affected. For instance in the example
shown in Fig. 3 there is no impact of D on B2 and B3,
the siblings of B1, as B1 effectively acts as a shield buffer.

3Here THS signifies total negative hold slack

Consequently, there is no side-effect on the clock tree.

B1

B1

D1

B2 B2B3 B3

B4

B4 B5

B5

B0B0

op +doff

Figure 3: Positive offset realization

B1 B2

B0

B3

B4 B5 B6
−doff

(a) B5 output pin
should be acceler-
ated by doff

B1 B2

B0

B3

B4

B5

B6

(b) B5 is shifted one level
upwards the tree

Figure 4: Negative offset realization

2.3 Issues in Negative Offset Realization
The negative offset realization poses more challenges. A

representative example is the following. Let us assume that
the LP engine predicts a negative offset (doff) for the out-
put pin of buffer B5 as shown in Fig. 4. This offset can be
realized by placing, sizing, or changing the clock tree struc-
ture. Each one of the aforementioned approaches has its own
drawbacks. For instance, placing B5 at another location will
force its parent (B2) to drive a different amount of load than
before, altering thus the arrival time of all clock tree nodes
at B2’s transitive fanout (TFO). Sizing has similar effects
on B5’s siblings as B2 will again have to drive a different
amount of load defined by the gate sizing result. Another
option is to restructure the clock tree, moving upwards cell
B5. In this case, the arrival time to FFs at the TFO of B5

is reduced but multiple side effects alter the arrival times
to the old and the new siblings of B5. This is due to the
load decrease and increase at the nets driven by B2 and B0

respectively and that affect all the FFs at the TFO of B0.
[24] has illustrated that clock arrivals could be accelerated
by removing the corresponding buffer B1 (Fig. 5). But this
can be useful only when it does not have any sibling, which is
not common in practice. Furthermore, this technique might
not be effective in that case as well as (i) B0 is now driving
3 buffers instead of 1, viz. B2, B3 and B4, (ii) B0 has to
drive more wire-load. When B1 is far away from B0, then
the wire-load increase is even more. As a result the clock
arrival is delayed at the TFO cone of B0.

71

replacemen

B1

B2B2
B3

B3

B4B4

B0B0

Figure 5: Buffer removal might not be effective in

realizing negative offset

From the above it can be concluded that realizing negative
offsets in the clock tree imposes side effects which may signif-
icantly change the timing profile of the design and possibly
cancel the expected timing gains. Additionally, it should be
noted that the more the negative an offset is, the more the
pin should be moved upwards the tree. As a consequence,
more FFs downwards the tree will be affected increasing the
probability of degrading the timing instead of optimizing it.

2.4 Offset Bounds
Any positive offset can be realized by injecting a delay el-

ement with delay equal/close to the offset. Negative offsets,
on the other side, can not always be realized. For instance,
if a pin has a negative offset with delay greater than the
arrival time from the clock root to this pin, then it can be
deduced that this offset is infeasible for this pin. Hence, the
pins which can carry offsets should be bounded to guarantee
that the calculated negative offset can be realized. A per-
pin negative offset bound would be cumbersome as the side
effects of each negative offset realization should be modeled
into the LP solver, thus a global bound was selected for all
pins. An experiment was performed to calculate a negative
bound which should deliver as much timing gain as possible
and at the same time be as less disruptive as possible, i.e.,
closer to zero.

Three LP runs were performed with real industry-strength
benchmarks. The first run corresponds to LP solutions with
only positive offsets, whereas the second and the third allow
for one and three levels of negative offset respectively. For all
three runs the positive offset bound was set to three. The
results are shown in Fig. 6, where TNS predicted by the
solver for each one of the three aforementioned experiments
are normalized w.r.t. the original TNS of each design, which
is the TNS after placement, clock tree synthesis and routing
by an industrial tool. We observe that there is a significant
improvement from original TNS to the TNS predicted in first
run and from predicted TNS in first run to the second run,
but the same trend does not continue as the bound further
decreases. From the above it can be concluded that most of
the potential TNS gain can be acquired by pairing a single
level of negative offset with many levels of positive offset.
This finding will be used throughout this work as the solver
will be bounded to produce solutions with a single level of
negative offset.

3. CLOCK TREE RESYNTHESIS
Section 2.4 showed that significant TNS gains can be en-

joyed if pins which can carry offsets are bounded to -1 level
(Loff

min = −1). In this section we present a methodology for
clock tree resynthesis to improve timing in a routed clock

Figure 6: Normalized TNS prediction by LP solver

for industrial designs

tree. A novel algorithm is presented which realizes accu-
rately one level of negative offset, so that the predicted TNS
gain is maintained after offset realization. The two basic
operations used are sizing and restructuring. It should be
stressed that the restructuring is always performed within
the scope of a hyper-net to guarantee that the clock gating
function will be preserved by the clock tree restructuring. A
hyper-net is a set of logically equivalent or opposite polar-
ity nets separated by buffers/inverters in the same physical
partition as the root driver of the top net, and thus this set
is necessarily connected in a tree topology. The root of this
tree (hyper-root) is either the driver pin of a clock gate or
a clock root. The elements of any hyper-net are comprised
of all the nets traversed until another hyper-root is visited.
Fig. 7 demonstrates a clock tree comprised of 3 hyper-nets.
The datapath logic and the enable signals at the clock tree
clock gates are omitted in the figure.

HyperNet0

HyperNet1

HyperNet2

Figure 7: Clock tree decomposition to hyper-nets

The key to accurately realizing negative offsets is the uti-
lization of the positive slack. If a clock tree driver pin has
only sequential cells with positive slack (more specifically Q-
slack) at its transitive fanout it is annotated as a potential
acceptor of pins with negative offset. In this way, negative
offsets are realized accurately without degrading the total
negative slack. We develop an engine, called slack manager,
which helps to extract the potential acceptors for pins with
negative offset.

3.1 Slack Manager
The slack manager is an engine, that keeps track of cer-

tain parameters at any pin corresponding to the D-slack

72

and Q-slack of the leaf-cells in the TFO cone of that pin
(leafCellsfo(pin)). We define the following parameters.

• Qslacksum(pin)/Dslacksum(pin) = sum of the nega-
tive Q/D-slacks at leafCellsfo(pin)

• Qslackcnt(pin)/Dslackcnt(pin) = count of leafCellsfo(pin)

having negative Q/D-slack

We store these parameters per scenario, i.e. corner and
mode combination. These parameters are calculated recur-
sively in a bottom-up fashion. Algorithm 1 presents the pro-
cedure ‘BUSlackParamCalculate(pin, mode)’, which stores
the slack-parameters in any pin for all the scenarios active
in that mode. Lines 3-7 first initialize the parameter values
at each scenario. Then at Line 8 it is checked whether the
pin is a leaf, and in this case it gets the Q-slack value from
the timer (Line 5). If the Q-slack is less than a threshold,
then (Lines 13-14) we set Qslackcnt to be 1 and Qslacksum

to be the Q-slack value. In the other case, i.e., for non-
leaf pins, Line 22 calls the procedure recursively for all of
its children pins (Note children of a pin depends on mode)
and then it accumulates the values of its children (Lines 23-
24). In our implementation, we have set this threshold to
be 0, and thus these parameters respectively estimates the
count of leafCellsfo(pin) with negative Q-slack and sum of
negative Q-slacks of leafCellsfo(pin).

Algorithm 1 Procedure to calculate slack parameters

1: Procedure BUSlackParamCalculate(pin, mode);
2: activeCorners ← corners active in mode;
3: for all cor ∈ activeCorners do

4: scn ← combination(mode, cor);
5: Qslacksum(pin, scn)← 0;
6: Qslackcnt(pin, scn)← 0;
7: end for

8: if isLeaf(pin) then

9: for all cor ∈ activeCorners do

10: scn ← combination(mode, cor);
11: Qslack← getQslack(pin, scn);
12: if Qslack < slackThreshold then

13: Qslackcnt(pin, scn)← 1;
14: Qslacksum(pin, scn)← Qslack;
15: return

16: end if

17: end for

18: end if

19: for all childP in ∈ childList(pin, mode) do

20: for all cor ∈ activeCorners do

21: scn ← combination(mode, cor);
22: BUSlackParamCalculate(childP in, scn);
23: Qslackcnt(pin, scn) ← Qslackcnt(pin, scn) +

Qslackcnt(childP in, scn);
24: Qslacksum(pin, scn) ← Qslacksum(pin, scn) +

Qslacksum(childP in, scn);
25: end for

26: end for

27: return

28: end Procedure

The execution of the algorithm is demonstrated with a
representative example in Fig. 8. Cells B2 and B3’s output
pins have Qslackcnt equal to 1 due to cells ff3 and ff5 re-
spectively. B1’s output pin has Qslackcnt equal to 2 which

Qslkcnt = 2
Qslksum = −8

Qslkcnt = 1
Qslksum = −6

Qslkcnt = 1
Qslksum = −2

Qslk = −6Qslk = 8Qslk = −2Qslk = 4Qslk = 8

B1

B2 B3

ff1 ff2 ff3 ff4 ff5

Figure 8: Q-slack parameter calculation

results from the addition of its children’s corresponding val-
ues. The Qslacksum values are calculated accordingly.

Similar calculation is done for D-slack parameters and it
has not been shown in Algorithm 1 or Fig. 8 for brevity.

3.2 Negative Offset Realization Algorithm
The slack manager exposes the space that is available for

negative offset realization in terms of slack. The Negative
Offset Realization Algorithm (NORA) utilizes this space to
(i) accurately realize all negative offsets and (ii) gain the
improvement in total negative slack calculated by the LP
solver.

Algorithm 2 captures the functionality of NORA for a sin-
gle pin, p (output pin of a cell c), with negative offset. Ini-
tially, a reference (constraint) scenario is chosen along with
p’s parent, ppar. Then, (Line 5) it is decided whether the
negative offset will be realized by restructuring the clock tree
or by sizing. This decision is made after the slack param-
eters calculated by the slack manager for ppar are modified
to compensate for the case when p is detached from ppar.

These new values are named Qslackeff
sum and Qslackeff

cnt and
they are calculated according to the following formulas:

Qslackeff
sum(ppar, scn) = Qslacksum(ppar, scn)

−Qslacksum(p, scn) (1)

Qslackeff
cnt (ppar, scn) = Qslackcnt(ppar, scn)

−Qslackcnt(p, scn) (2)

The effective Dslack values are calculated accordingly.
If Qslackeff

count is greater than Dslackeff
count for ppar, then it

is preferable to reduce the load at ppar fanout as in this
way the clock will arrive faster to the sequential cells and
the negative slack at the Q side will be reduced. Thus, it
is chosen to detach p from ppar and connect it to another
node higher in the tree, as in this way not only the negative
offset will be realized, but also the negative slack at the Q-
side of the sequential cells at ppar’s TFO will be reduced.
The above will have a negative impact on the D-side of the
sequential cells at ppar’s TFO, but it is better to optimize in
favor of the Q-side, as the latter affects multiple endpoints
with negative slack.

In order to realize the negative offset at p, a driver pin is
found higher in the clock tree, so that if p is connected to
it, the difference in Arrival Time (AT) will effectively realize
the offset. However, these driver pins, called from now on
acceptors, should reside at the same scope of hyper-net as
p to guarantee the same functionality as mentioned earlier.
In addition, the polarity is also matched to take care of

73

Algorithm 2 Procedure to realize a negative offset

1: Procedure NORA(p, offset);
2: scn← getConstratintSchenario;
3: ppar ← parent(p);
4: bestSol ← currentSol;
5: if Qslackeff

cnt (ppar, scn) ≥ Dslackeff
cnt (ppar, scn) then

6: acand ← driver pins in p′s hyper-root;
7: prune acand based on level;
8: remove acand elements if their AT is ≥ AT(p)−2 ∗

offset;
9: for all a ∈ acand do

10: if Qslackcnt(inP in(a), scn) > 0 then

11: remove a from acand;
12: end if

13: end for

14: sort acand according to geometric distance from p;
15: for all a ∈ acand do

16: connect p with a;
17: buffer(p);
18: if cost(currentSol) < cost(bestSol) then

19: bestSol ← currentSol;
20: end if

21: end for

22: else

23: size(p);
24: if cost(currentSol) < cost(bestSol) then

25: bestSol ← currentSol;
26: end if

27: end if

28: return bestSol;

inverters in the clock tree.
We use the level of any clock-element within the scope of

the hyper-net as a coarse knob to identify these acceptor pins
acand (Line 7), i.e., any driver pin which is at higher level
than p in the hyper-net would be considered for a potential
candidate acceptor. Out of all the candidate driver pins, a
finer tuning is done on the basis of AT. The candidates which
have AT greater than AT(p) - 2 × offset are disregarded
(Line 8) as connecting p to them would not result to the
desired arrival time AT(p) - offset, considering a best case
delay of offset (which is also equal to the intrinsic buffer
delay in the design) from the input pin to the output pin p
of the corresponding cell c. Finally we prune acand on the
basis of available slack in the TFO of the acceptor pin a
(Line 9-13). If there is no available slack, then we remove
the element from acand. This is to ensure that although a
would drive more load in case c is connected to a and might
worsen Qslack at TFO of a, the available slack is sufficient
to account for that (not shown in Algorithm 2).

Then the candidate acceptor pins are sorted according to
their proximity to the pin p as it is assumed that the accep-
tors which are closer will be directly connected realizing the
desired offset without incurring extra buffering which would
increase the total area (Line 14).

Afterwards, the sorted candidate acceptor pins are exam-
ined. Initially, p is connected to the candidate acceptor pin
a and buffering is applied on the net between them. Then
the cost of the current solution is estimated. The solution
with the minimum cost is committed by backtracking mech-
anism. This cost estimation depends on the accuracy of
realizing the offset. The closer the AT difference seen at

p approaches the desired negative offset value, lesser is the
cost. In addition, if it introduces any new DRC violation,
then the cost is set to infinity making the solution infeasible.
If there are lot of candidate acceptors, the first 10 acceptors
are explored. This reduces run time, and at the same time
helps to achieve area-efficient restructuring due to the prox-
imity of the acceptors to the pin p. If there is no potential
acceptor with available slack, the acceptor with maximum
Qslacksum across all scenarios is chosen.

In the case where buffering was chosen instead of clock
tree restructuring (Line 5), p is sized and the solution is
committed. Interestingly, sizing can approximately realize
the offset as the amount of negative offset is only 1 level of
intrinsic buffer delay or Dbuf

min.
The execution of the above algorithm is illustrated with a

representative example shown in Fig. 9(a). In this example,
pin p of clock tree buffer B1 is annotated with a negative
offset which is equal to one clock tree level. Assuming that
restructuring is selected instead of sizing, the candidate ac-
ceptors are initially extracted and suppose B6 driver pin is
the best acceptor for p that can realize the offset most accu-
rately. Then, the restructuring is applied by detaching B1

from B0’s fanout and connecting it at B6. The resultant
clock tree is shown in Fig. 9(b).

B1B2 B3

B4 B5

B6

B7 B8B0

level = x− 1

level = x

level = x + 1p

(a) Clock tree hyper-net where p has neg-
ative offset of 1 clock tree level.

B1

B2 B3
B4 B5

B6

B7 B8B0

level = x− 1

level = x

level = x + 1
p

(b) Resultant clock tree hyper-net where
the negative offset at p is realized by re-
structuring.

Figure 9: Negative offset realization example

3.3 Our Methodology
Algorithm 3 shows the steps of our methodology for clock

tree resynthesis. Initially, the LP solver calculates the off-
sets in the clock tree. In the case that the offset at a pin is
positive, a buffer chain is inserted according to the method-

74

ology presented in section 2.2 (Line 5). Otherwise, if the
offset is negative, the slack manager is updated (Line 7) and
then ‘NORA’ is used to realize the offset (Line 8).

Algorithm 3 Clock Tree Resynthesis

1: Calculate clock tree offsets, Soffset by LP solver;
2: Execute ‘BUSlackParamCalculate’ for all clock tree

roots and operating modes;
3: for all (p, offset) ∈ Soffset do

4: if offset > 0 then

5: Insert route-aware buffer(s) at p;
6: else

7: Update slack manager;
8: NORA(p, offset);
9: end if

10: end for

4. EXPERIMENTAL RESULTS
We have implemented the algorithms presented in this

work in C++ and ran it on a Linux machine with 16-Core
3GHz CPU and 256GB RAM. Table 1 presents the charac-
teristics of 7 industrial designs using cutting-edge technol-
ogy nodes (20-32nm), in terms of total number of cells (Col-
umn 2), number of scenarios (Column 3) and initial timing
metrics after placement, clock tree synthesis and routing by
an industrial tool. Columns 4, 5 and 6 respectively specify
the TNS, worst negative slack (WNS) and failure-end-point
(FEP) across all scenarios.

Table 1: Design Specification

Design Cells Scenarios TNS WNS FEP
(M) (ps) (ps)

A 0.35 5 -789723 -4433 1907
B 0.62 8 -1586320 -414 12850
C 0.62 8 -82529 -218 1262
D 0.7 8 -1129784 -6433 2408
E 0.85 1 -8032671 -1483 17491
F 1.17 5 -8968128 -6394 43938
G 2.03 6 -4289746 -15418 31946

Table 2 presents the results of our approach. Columns
2-6 exhibit that if the LP solver is constrained to use only
one level of negative offset and none of positive ones, then
an average improvement of 15.85%, 1.05% and 11.64% is
achieved in TNS, WNS and FEP respectively with average
clock tree area overhead less than 2%. If three positive offset
levels are allowed as well (Columns 7-11), then an average
improvement of 56.68%, 12.04% and 41.82% in TNS, WNS
and FEP respectively is achieved with an average clock tree
area overhead of 26.17%.

Results show that negative offset realization does not in-
crease the clock tree area significantly, as it is only gate up-
sizing which introduces area in this case and this reinforces
our claim of area-efficient negative offset implementation. If
positive offsets are allowed as well, the area overhead in-
creases on average to 26.17% as positive offsets are typically
realized by introducing delay chains comprised of multiple
buffers. The aforementioned percentage in area increase is in
terms of buffers/inverters/combinational elements in clock
tree network only and this does not include sequential leaf
cells and data path combinational logic, which dominate the
total area of the design. So if we consider the total design
area or even include the registers, the percentage increase

would be negligible. For instance, for design ‘E’, the per-
centage increase in area in clock tree is maximum (55%),
but if we consider the total area of the design, the percent-
age area increase is less than 1%.

With respect to the timing optimization, using only neg-
ative offsets suffices to reduce TNS for designs D and G by
more than 30%. On the contrary, TNS improvement for de-
signs E and F is below 10%. WNS is almost not reduced,
as the realized offsets correspond to a single clock tree level
which is a relatively small portion of WNS. FEP reduction
follows the corresponding reduction of TNS for all the de-
signs but A and B, for which FEP reduction is significantly
smaller than the one of TNS.

In the case that three levels of positive offset are allowed as
well, TNS reduction reaches 56.68% on overage, with most
of the designs exhibiting TNS reduction by more than 62%.
WNS is improved more when compared to only using a sin-
gle level of negative offset as offset values now span from
-1 to 3 levels. FEP reduction again follows the TNS reduc-
tion, with designs A and D exhibiting significantly less FEP
optimization compared to TNS.

It should be stressed that for designs ‘B’ and ‘D’, besides
TNS, THS is optimized as well, by 88% and 15% respectively
with positive and negative offset realization and by 14.5%
and 13% respectively with only negative offset realization
(not mentioned in Table 2). For rest of the designs, hold cor-
ner analysis is not enabled. For design ‘D’, compared to the
case of realizing only negative offsets, TNS/FEP improve-
ment decreases while realizing both positive and negative
offsets, but WNS and THS improvement is more.

The biggest design in this benchmark suite contains more
than 2M cells and it has 6 scenarios. Our approach achieves
62% improvement in TNS with 11% overhead in clock tree
area. Runtime for this benchmark is less than 7 hours, which
is quite reasonable. However, it is counter-intuitive that run
time is high in few designs (‘C’ and ‘G’) for realizing only
negative offsets than for realizing both positive and negative
offsets. This is due to the behavior of the LP engine, as
for those designs the total number of negative offsets to be
realized in the case where only negative offsets are allowed
is more than the total number of offsets when both positive
and negative ones are allowed.

5. DISCUSSION AND FUTUREWORK
In Fig. 2, we place the block of our methodology just be-

fore the post-CTS timing closure. Nevertheless it is worth
mentioning that this is not the limitation and we can per-
form the clock tree resynthesis after the post-CTS data-path
optimizations as well. But then the post-CTS data path op-
timizations would cost a significant area/power penalty and
the potential of our approach to recover timing with mi-
nor area overhead in the design would not have been fully
exploited. Furthermore, our approach can be suitably used
for reducing design frequency as well by targeting aggressive
clock cycle period. It should also be noted that although the
realization of bounded negative offsets is feasible for deep
clock-trees, the scope to introduce any negative offset might
be limited for short-depth trees. In that case, our approach
can tackle this situation by only realizing the positive off-
sets (by running the LP solver accordingly), but that would
introduce larger area overhead in the clock tree.

We plan to extend this framework to improve on the area
overhead in the clock tree. We can see that the area over-

75

Table 2: Timing metric improvement in industrial designs by our approach
Design Only Negative Offset Positive and Negative

Realization Offset Realization
% TNS % WNS % FEP % Clock Tree Run time % TNS % WNS % FEP % Clock Tree Run Time
Imprv. Imprv. Imprv. Overhead (min) Imprv. Imprv. Imprv. Overhead (min)

A 10.70 -0.13 5.61 2.56 43 77.65 1.20 39.54 20.10 46
B 11.67 0.24 3.61 7.33 175 56.25 0.97 47.32 47.09 189
C 13.35 0.92 9.75 1.05 178 76.62 49.08 57.84 8.63 140
D 32.80 2.64 25.46 1.11 125 31.58 18.51 17.57 11.51 129
E 2.24 2.83 2.20 1.36 98 69.79 10.05 44.43 54.98 306
F 5.91 0.75 7.31 0.17 161 22.80 0.72 35.69 29.78 250
G 34.30 0.08 27.54 0.04 410 62.09 3.80 50.33 11.12 368

Average 15.85 1.05 11.64 1.95 - 56.68 12.04 41.82 26.17 -

head in the clock tree is mainly due to the positive offset
realization. It should be noted that restructuring might not
be helpful in realizing positive offset at any pin as the place-
holders for offsets are typically leaf-level gates/buffers and
so it is difficult to find an acceptor in the clock tree which
can match the desired arrival time of the pin on restructur-
ing. But we can consider the partial realization of the pos-
itive offsets, while realizing the negative offsets so that the
size of the buffer to be inserted for realizing positive offsets
decreases and area overhead improves. For instance, when
we choose potential acceptor for realizing negative offset, a
priority can be given (by modifying the cost function in Al-
gorithm 2) to the acceptors which have place-holders (driver
pins) for positive offsets in its TFO cone as the restructur-
ing would result some delay in clock arrival for those pins,
thereby realizing the positive offsets partially. It will be also
interesting to study the impact of OCV derates on our result.
Incorporating buffers (to realize positive offsets) might have
adverse OCV impact, and on the other hand as restructuring
(to realize negative offsets) involves moving clock elements
upward (as discussed in Section 3.2), the chance of common
paths between launch flop and capture flop might increase,
leading to improve OCV due to common-path-pessimism-
removal (CPPR) [26].

6. CONCLUSION
This work introduces algorithms which significantly im-

prove timing metrics in large-scale industrial designs under
MCMM scenarios. To our best knowledge this is the first
work to implement a feasibility aware clock scheduling, real-
ized by solving a constrained LP problem globally, and using
the clock tree elements as place holders for the resultant off-
sets. Our approach has achieved an average TNS improve-
ment of 57% in industrial designs with an average overhead
of 26% in clock tree area. We have proposed to extend our
current framework to improve in clock tree area overhead.
In the future we plan to study the impact of OCV derates
on our approach and examine the space between solutions
with only negative offsets and that with both negative and
positive offsets by using area and power bounds.

7. REFERENCES
[1] R. Tsay, “Exact zero skew clock routing algorithm,” Computer

Aided Design of Integrated Circuits and Systems, pp. 242–249,
1993.

[2] K. D. Boese and A. B. Kahng, “Zero skew clock-routing trees
with minimum wirelength,” ASIC Conference and Exhibit,
pp. 17–21, 1992.

[3] J. L. Tsai, T. H. Chen, and C. C. Chen, “Zero skew clock-tree
optimization with buffer insertion/sizing and wire sizing,”

Computer Aided Design of Integrated Circuits and Systems,
pp. 565–572, 2004.

[4] J. P. Fishburn, “Clock skew optimization,” IEEE Trans. on
Computers, pp. 945–51, 1990.

[5] R. Deokar and S. Sapatnekar, “A graph-theoretic approach to
clock skew optimization,” ISCAS, pp. 407–10, 1994.

[6] L. F. Chao and H. M. Sha, “Retiming and clock skew for
synchronous systems,” ISCAS, pp. 283–86, 1994.

[7] I. S. Kourtev and E. G. Friedman, “Clock skew scheduling for
improved reliability via quadratic programming,” ICCAD,
pp. 239–43, 1999.

[8] X. Liu, M. C. Papaefthymiou, and E. G. Friedman,
“Maximizing performance by retiming and clock skew
scheduling,” DAC, pp. 231–36, 1999.

[9] V. Nawale and T. W. Chen, “Optimal useful clock skew
scheduling in the presence of variations using robust ILP
formulations,” ICCAD, pp. 27–32, 2006.

[10] Y. Taur and D. Buchanan, “CMOS scaling in nanometer
regime,” Proc. IEEE, pp. 486–503, 1997.

[11] V. Mehrotra and D. Boning, “Technology scaling impact of
variation on clock skew and interconnecet delay,” Interconnect

Tech. Conference, pp. 4–6, 2001.

[12] A. Rajaram and D. Z. Pan, “Robust chip-level clock tree
synthesis for SOC designs,” DAC, pp. 720–723, 2008.

[13] S. Jilla, “Multi-corner multi-mode signal integrity
optimization,” EDA Tech Forum, 2008.

[14] D. Lee and I. L. Markov, “Obstacle-aware clock-tree shaping
during placement,” ISPD, pp. 123–130, 2011.

[15] Y. Wang, Q. Zhou, X. Hong, and Y. Cai, “Clock-tree aware
placement based on dynamic clock-tree building,” ISCAS,
pp. 2040–43, 2007.

[16] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao,
A. Chowdhury, and B. Halpin, “Timing driven force directed
placement with physical net constraints,” ISPD, pp. 60–66,
2003.

[17] Y. Liu, R. S. Shelar, and J. Hu, “Delay-optimal simultaneous
technology mapping and placement with applications to timing
optimization,” ICCAD, pp. 101–106, 2008.

[18] S. W. Hur, A. Jagannathan, and J. Lillis, “Timing driven maze
routing,” TCAD, pp. 234–241, 2000.

[19] K. Sato, H. E. M. Kawarabayashi, and N. Maeda, “Post-layout
optimization for deep sub-micron design,” DAC, pp. 740–745,
1996.

[20] Y. P. Chen, J. W. Fang, and Y. W. Chang, “ECO timing
optimization using spare cells,” ICCAD, pp. 530–535, 2007.

[21] M. Ni and S. O. Memik, “A revisit to the primal-dual based
clock skew scheduling algorithm,” ISQED, pp. 755–764, 2010.

[22] S. M. Burns, Performance Analysis and Optimization of
Asynchronous Circuits. PhD thesis, California Institute of
Technology, 1991.

[23] J. Lu and B. Taskin, “Post-CTS clock skew scheduling with
limited delay buffering,” International Midwest Symposium on
Circuits and Systems, pp. 224–227, 2009.

[24] W. Shen, Y. Cai, W. Chen, Y. Lu, Q. Zhou, and J. Hu, “Useful
clock skew optimization under a multi-corner multi-mode
design framework,” ISQED, pp. 62–68, 2010.

[25] V. Ramachandran, “Functional skew aware clock tree
synthesis,” ISPD, 2012.

[26] J. Bhaskar and R. Chadha, Static Timing Analysis for
Nanometer Designs: A Practical Approach. Springer, 2009.

76

