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ABSTRACT
Optical Proximity Correction (OPC) has been widely adopted
for resolution enhancement to achieve nanolithography. How-
ever, conventional rule-based and model-based OPCs en-
counter severe difficulties at advanced technology nodes. In-
verse Lithography Technique (ILT) that solves the inverse
problem of the imaging system becomes a promising solu-
tion for OPC. In this paper, we consider simultaneously 1)
the design target optimization under nominal process con-
dition and 2) process window minimization with different
process corners, and solve the mask optimization problem
based on ILT. The proposed method is tested on 32nm de-
signs released by IBM for the ICCAD 2013 contest. Our op-
timization is implemented in two modes, MOSAIC fast and
MOSAIC exact, which outperform the first place winner of
the ICCAD 2013 contest by 7% and 11%, respectively.

1. INTRODUCTION
As technology nodes continue shrinking, semiconductor

industry is still stuck at 193nm lithography. Due to the
resolution limit, various resolution enhancement techniques
(RETs) have been proposed to achieve deep sub-wavelength
lithography. Optical Proximity Correction (OPC) is one of
the RETs that have been widely used.

Typical OPC approaches can be divided into two cate-
gories: rule-based approach [1] and forward model-based
approach [2]. Rule-based OPC is simple and fast, but only
suitable for less aggressive designs. Forward model-based
OPC usually relies on edge fragmentation and movement,
where mask is adjusted iteratively based on mathematical
models. To allow more flexibility, a topological invariant
pixel based OPC [3] was proposed. However, the solution
space of these approaches is natively limited and thus OPC
in advance technology nodes has become more challenging.
Inverse models-based method, also referred as Inverse lithog-
raphy technique (ILT) [4, 5], is one of the strong OPC can-
didates for 32nm and beyond [6].

ILT-based OPC solves the inverse problem of the imaging
system through optimizing an objective function. The ILT
process starts from the target printed patterns and itera-
tively optimizes the mask. ILT approaches are expected to
achieve better results than conventional OPC methods be-
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cause its pixelated mask optimization enables better contour
fidelity.

In recent years, ILT has drawn more attention because of
its great flexibility in mask optimization. Granik [7] pro-
posed a fast solution based on constrained nonlinear formu-
lation. Shen et al. [8] formulated ILT as a nonlinear im-
age restoration problem, and solved it by a level-set time-
dependent model. Poonawala et al. [9] formulated the in-
verse problem as a continuous function and optimized the
mask by the gradient descent approach. Various enhance-
ment techniques [10–12] have been presented based on the
gradient descent framework. Zhang et al. proposed cost
function reduction methods [13, 14] to make the optimiza-
tion less dependent on the initial condition. However, most
of these approaches only optimized image contour, and only
[11] considered the focus variation. Moreover, none of them
can directly optimize edge placement error (EPE), which is
an important measurement for yield impact.

The main objective for OPC is to obtain an optimized
mask that can compensate the pattern distortion. However,
as the feature size is getting smaller, the yield impact of
layout uncertainty during the manufacturing process is get-
ting larger. Considering manufacturing variability has thus
become an important issue for mask optimization and has
been studied in several forward model-based OPC meth-
ods [15–17]. In order to tackle the above issues in ILT, in
this paper, we propose new mask optimization approaches
considering simultaneously 1) the design target optimiza-
tion under nominal process condition and 2) process win-
dow minimization with different process corners. The main
contributions include:

• We propose mask optimizing approaches considering
design target and process window simultaneously.

• We formulate the EPE violation as a sigmoid func-
tion and derive the closed form of its gradient for EPE
minimization.

• We present MOSAIC exact that achieves the best re-
sults among all compared approaches, and MOSAIC fast
with efficient gradient computation.

• We perform experiments on 32nm M1 designs released
by IBM and show that our two approaches outperform
the first place winner of the ICCAD 2013 contest by
7% and 11%, respectively.

The rest of the paper is organized as follows. We first give
an introduction of the forward lithography process in Sec. 2.
Our mask optimization approaches are explained in Sec. 3.
Finally, we show our experimental results and comparison
in Sec. 4, followed by the conclusion in Sec. 5.



Table 1: Variable and symbol definitions.

Variables Definitions
M Mask
I Intensity after optical system
Z Printed pattern after photoresist process
N Length/Width of the mask
⊗ Convolution operator
� Element-by-element multiplication

Optical 
Projection

Photorisist 
Process

Kernel convolution Sigmoid approximation

M
I

Z

Figure 1: Forward lithography process model.

2. FORWARD LITHOGRAPHY
We first explain the mathematical form of the forward

lithograph process. Table 1 gives the basic variables and
operators. The lithography process is shown as Fig. 1. The
mask M is projected through optical lens onto the wafer
plane, which is coated with photoresist. The aerial image
I then goes through development and etching processes to
form the final printed image Z. The forward lithography
process of obtaining printed image from a given mask can
be modeled with two phases, optical projection model and
photoresist model.

The Hopskins diffraction model [18] has been widely used
for partially coherent imaging system. To reduce the compu-
tational complexity, we adopt the singular value decomposi-
tion model (SVD) [19] to approximate the Hopskins model
in this paper. In SVD model, the Hopskins diffraction model
can be decomposed into a sum of coherent systems based on
eigenvalue decomposition as Eq. (1).

I(x, y) =

N2∑
k=1

wk|M(x, y)⊗ hk(x, y)|2, x, y = 1, 2, ...N (1)

where hk is the kth kernel of the model and wk is the cor-
responding weight of the coherent system. The Nhth order
approximation to the partially coherent system can be ob-
tained by

I(x, y) ≈
Nh∑
k=1

wk|M(x, y)⊗ hk(x, y)|2. (2)

In our implementation, the system is approximated with
Nh = 24 kernels.

The light transmitted through the mask is then exposed
on the photoresist. An image can be developed if the light
intensity of the exposed area exceeds a threshold thr. There-
fore, the photoresist effect can be defined by the following
step function:

Z(x, y) =

{
0 if I(x, y) 6 thr
1 if I(x, y) > thr

(3)

Later in this paper, we will derive the partial differential
of the imaging system. In order to obtain a continuous form,
we apply the sigmoid function to approximate the threshold
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Figure 2: Sigmoid function with θZ = 50 and thr =
0.225.

model:

Z(x, y) = sig(I(x, y)) = 1

1+e−θZ (I(x,y)−thr) (4)

where θZ defines the steepness of the sigmoid function. Fig.
2 illustrates our sigmoid function with θZ = 50 and thr =
0.225.

3. MASK OPTIMIZATION FOR DESIGN TAR-
GET AND PROCESS WINDOW

3.1 Inverse Lithography Based on Gradient De-
scent

The forward lithography process in Eq. (4) can be de-
scribed below:

Z = f(M) (5)

The OPC problem by inverse lithography tries to find:

Mopt = f−1(Zt) (6)

where Zt is the target pattern and Mopt is the optimized
mask with OPC. However, this is an ill-posed problem be-
cause different masks may yield the same result. Therefore,
there is no directed closed form solution to Eq. (6). In-
stead, gradient descent based approaches have been com-
monly used to solve the ILT problem.

The details of our methodologies to solve the ILT prob-
lem are shown in Alg. 1. The ILT problem is formulated
as a multivariable objective function F where each variable
p(x, y) ∈ P corresponds to a pixel of the mask. As ex-
plained previously, our objective in this work is to optimize
the design target and the process window, represented and
evaluated below.

Minimize: F = α×#EPE V iolation+ β × PV Band
Subject to: M(x, y) ∈ {0, 1}

(7)

Algorithm 1

1: F ← objective function of OPC
2: M ← Zt with rule-based SRAF
3: P ← initialize unconstrained variables corresponding to
M

4: repeat
5: g← calculate gradient ∇F
6: P ← P − stepSize× g
7: M ← recalculate pixel value based on P
8: until #iteration = thiter or RMS(g) < thg
9: Mopt ←M iter with the lowest objective value



where α and β are user-defined parameters to control the
tradeoff between the two terms. Edge placement error (EPE)
measures the manufacturing distortion by the difference of
edge placement between the final image and the target image
under nominal process condition. EPE may cause yield im-
pact if its value is larger then a certain threshold thepe and
this is referred to as a violation. Process variability band
(PV Band) [20] measures the layout sensitivity to process
variations, which indicates a range of feature edge place-
ment among possible lithography process variations.

When the gradient descent algorithm is applied, the solu-
tion converges to the local optimum of the objective function
closest to the initial condition. Starting from a good initial
solution gives us a better chance to obtain a good result.
An intuitive initial solution is the target mask. Instead of
using the target mask directly, we apply simple rule-based
OPC [21] by adding sub-resolution assist features (SRAF)
in line 2.

Because the mask M contains only binary values, the
ILT problem is an integer nonlinear problem and difficult
to solve. It is common to relax the binary constraint to
convert the ILT problem into an unconstrained optimiza-
tion problem. We adopt the sigmoid transformation [12] as
Eq. (8), which has been shown to provide effective solution
searching for gradient descent:

M = sig(P ) = 1

1+e−θM ·P , θM : steepness. (8)

The relaxed variable P is therefore unbounded. Line 3 and
line 7 in Alg. 1 perform the variable transformation based
on the above definition.

In our gradient descent, we start from an initial mask so-
lution and iteratively approach the optimum solution in the
direction of the negative gradient of F with the number pro-
portional to stepSize (line 6). In order to directly calculate
the gradient, F must be a differentiable function. We will
discuss in Sec. 3.2∼3.4 how to define F properly and derive
the closed form of its gradient. The optimization is repeated
until an user-defined iteration threshold thiter is reached or
the solution converges to a local optimum. The local op-
timum can be determined when the gradient becomes zero.
Since each pixel inside the mask has its own gradient, we cal-
culate the root mean square (RMS) of gradients of all pixels
and exit the loop when it is less then a tolerance value thg.
We further improve the solution quality by exploring multi-
ple local minima. Our implementation integrates the jump
technique [12], where the step size will be adjusted to en-
courage searching the solution from different local minima.

3.2 Design Target Formulation Based on EPE
In this section, we focus on the first half part of Eq. (7)

for design target optimization. Although EPE is a common
criterion to evaluate image contour, none of existed ILT ap-
proaches optimize EPE directly. Here, we propose an exact
objective formulation for EPE minimization. Fig. 3 (a) gives
an example of how EPE is measured. Measured points are
sampled along the boundary of the target patterns, which
includes a set of samples on horizontal edges (HS) and a
set of samples on vertical edges (V S). We observe that the
image distortion is continuous, producing either inner image
edges or outer image edges as shown in Fig. 3 (b). There-
fore, we can sum up the image difference as Dsum within
the range of the EPE constraint thepe. The mathematical
form is defined by Eq. (9).

Image

EPE

EPE

Target contour

VS

HS

(a)

! !
Dsum

Outer

Inner

(b)
Figure 3: EPE measurement illustration.

Dsumi,j =

j+thepe∑
k=j−thepe

Dik , if (i, j) ∈ HS

Dsumi,j =

i+thepe∑
k=i−thepe

Dkj , if (i, j) ∈ V S

(9)

where
D = (Znom − Zt)2 (10)

We can then determine if there is an EPE violation based
on Eq. (11). Again, since we need to formulate a differ-
entiable equation, this threshold model is approximated by
the sigmoid function with a steepness of θepe.

EPE Violation =

{
0 if Dsum < thepe
1 if Dsum > thepe

(11)

By checking Dsum at all sample points {HS, V S}, we
obtain the objective function for EPE minimization and its
gradient as follows:

Fepe =
∑

(i,j)∈HS

sig(Dsumi,j) +
∑

(i,j)∈V S

sig(Dsumi,j) (12)

∇Fepe =
∂Fepe
∂p(x, y)

=
∑

(i,j)∈HS

∂sig(Dsumi,j)

∂p(x, y)
+

∑
(i,j)∈V S

∂sig(Dsumi,j)

∂p(x, y)

(13)
The closed form of the former part of Eq. (13) can be

derived as Eq. (14), similarly for the later part.∑
(i,j) ∈HS

∂sig(Dsumi,j)

∂p(x, y)

=
∑

(i,j)∈HS

θepe

· sig(Dsumi,j)(1− sig(Dsumi,j))

j+thepe∑
k=j−thepe

∂Dik
∂p(x, y)

(14)
where

∂Dik
∂p(x, y)

=
∂(Znom(i, k)− Zt(i, k))2

∂p(x, y)

= 2θZθM

× (Znom(i, k)− Zt(i, k))Znom(i, k)(1− Znom(i, k))

× {[M(i, k)⊗H∗nom(i, k)]Hnom(i− x, k − y)

+ [M(i, k)⊗Hnom(i, k)]H∗nom(i− x, k − y)}
×M(i, k)(1−M(i, k)).

(15)



Here H∗nom denotes the conjugate transpose of the kernel
matrix Hnom.

Note that the complexity of the gradient calculation is
proportional to the size of the sample points |HS|+|VS|. If
the target patterns are very complicated, the sample points
would increase, and so does the computational time.

3.3 Design Target Formulation Based on Im-
age Difference

To improve the complexity of gradient calculation, we pro-
pose another objective formulation for design target opti-
mization. The concept is to minimize the image difference
(id) between the nominal image and the target image, as
shown in Eq. (16).

(16)Fid =

N∑
i=1

N∑
j=1

(Znom(i, j)− Zt(i, j))γ

where γ is used to control the weight of the impact made by
the image difference. The gradient can be derived as:

∇Fid = γθZθM · {Hnom
⊗ [(Znom − Zt)γ−1 � Znom � (1− Znom)� (M ⊗H∗nom)]

+H∗nom

⊗ [(Znom−Zt)γ−1�Znom� (1−Znom)� (M ⊗Hnom)]}

�M � (1−M)

(17)
The quadratic form (γ = 2) of Eq. (16) has been used

in previous ILT studies. We find that when performing the
co-optimization of design target and process window, set-
ting different γ can help make a trade-off between these two
objectives. In our implementation, γ is set as 4.

3.4 Co-optimization for Design Target and Pro-
cess Window

PV Band is the area between the outermost printed edge
and the innermost printed edge among all process condi-
tions. However, the outermost/innermost edge may be formed
by more than one process condition [20]. As illustrated
in Fig. 4, the calculation of PV Band requires a series
of boolean operations through all possible printed images.
However, these boolean operations are difficult to model
with a continuous form.

Therefore, we try to minimize the difference between pos-
sible images and the target image, as defined in Eq. (18)
where Np is the number of possible process conditions. With
this formulation, we expect that inner edges and outer edges
can be optimized toward the target edges which reduces the
overall PV Band.

(18)Fpvb =

Np∑
k=1

(Zk − Zt)2

By combining Eq. (12) and Eq. (16) with Eq. (18), we
can obtain the following objective functions that optimize
design target and process window simultaneously. Both of
the two functions are applied into Alg. 1 as MOSAICexact
and MOSAICfast respectively, and evaluated in Sec. 4.

Fexact = αFepe + βFpvb (19)

Ffast = αFid + βFpvb (20)

(a) (b) (c)

PV Band

(d)
Figure 4: PV Band demonstration. (a)∼(c) Printed
images under different process conditions. (d) Re-
sulted PV Band.

3.5 Speedup for Kernel Convolution
The gradient calculation requires a large amount of com-

putational efforts from convolution operations, which is the
main overhead of our approaches. We transform the non-
quadratic form of Eq. (2) into Eq. (21) based on the prop-
erties of convolution, associativity with scalar multiplication
and distributivity. With the new formulation of the kernel
function, we can precompute H by combing all kernel mod-
els without losing the accuracy. This reduces the convolu-
tion operations by Nh times and significantly improves the
efficiency of our approaches.

(21)

M ⊗H =

Nh∑
k=1

wk · (M ⊗ hk) =

Nh∑
k=1

M ⊗ (wk · hk)

= M ⊗
Nh∑
k=1

wk · hk

4. EXPERIMENTAL RESULTS
Our ILT methods are implemented in C/C++ and tested

on Linux machine with 3.4 GHz CPUs and 32 GB mem-
ory. We adopt the optical parameters from [22], with 193nm
wavelength, a defocus range of ±25nm and a dose range of
±2%. Ten benchmarks released by IBM for the ICCAD 2013
contest [22] are tested, which represent the most challenging
shapes to print. Each benchmark is a layout clip of 32nm
M1 layer, with a size of 1024nm×1024nm. The resolution of
the pixelated mask is 1nm per pixel. EPE constraint thepe is
set as 15nm. EPE sample points are measured every 40nm
along the pattern boundaries.

The parameters α and β in our objective functions are set
based on the scoring function provided in [22] as follows:

Minimize: Score = Runtime+ 4× PV Band+
5000×#EPE V iolation+ 10000× ShapeV iolation

(22)
where ShapeV iolation is based on the existence of holes in

the final contour. All our results produce zero ShapeV iolation.
We compare our results with the top 3 winners of the IC-

CAD 2013 contest, where those approaches are also designed
to optimize Eq. (22). The results are shown in Table 2 in
terms of the number of EPE violations (#EPE), the area of
process variability band (PVB), and Score. With the given
scoring function, our approaches successfully achieve the
best result (lowest score). Table 3 shows the runtime com-
parison of different OPC approaches. Note that the com-
pared approaches are run on a different machine (2.65GHz
CPU) from ours. However, we can still see that the runtime
of MOSAIC fast is around the same scale as the contest re-
sults. Moreover, runtime only accounts for a small portion
of the overall score, which accounts 0.12% for MOSAIC fast
and 0.75% for MOSAIC exact, respectively. Examples of
our OPC result can be seen in Fig. 5.



Table 2: Comparison with the winners of the ICCAD 2013 contest.

Testcases 1st place 2nd place 3rd place MOSAIC fast MOSAIC exact
Name Pattern Area #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score

B1 215344 0 65743 263578 6 57190 259242 2 70014 290329 6 58232 263246 9 56890 274267
B2 169280 1 53335 218659 13 45776 248589 0 58927 235838 10 47139 238812 4 48312 214493
B3 213504 25 143993 701266 39 90493 557459 35 106676 602009 59 82195 624101 52 84608 600955
B4 82560 0 31654 127030 14 24276 167591 1 38401 158891 1 28244 118298 3 24723 115161
B5 281958 0 65529 262378 16 55754 303505 4 69796 299394 6 56253 255327 2 56299 237363
B6 286234 1 62164 254086 18 49059 286718 0 59315 237351 1 50981 209238 1 49285 204224
B7 229149 0 51098 204787 8 43663 215134 8 56972 268241 0 46309 185475 0 46280 186761
B8 128544 0 25802 103447 0 23810 95771 0 26106 104504 2 22482 100186 2 22342 100031
B9 317581 2 74931 310008 15 62164 324225 12 78781 375533 6 65331 291646 3 62529 268138
B10 102400 0 18433 73904 0 19585 78829 0 18579 74376 0 18868 75703 0 18141 73276

Ratio 1.11 1.12 1.16 1.04 1.00

Pattern Area/PVB unit: nm2

Table 3: Runtime comparison with the winners of the ICCAD 2013 contest.

Testcases 1st place 2nd place 3rd place MOSAIC fast MOSAIC exact

B1 606 482 273 318 1707
B2 319 485 130 256 1245
B3 294 487 305 321 2523
B4 414 487 287 322 1269
B5 262 489 210 315 2167
B6 430 482 91 314 2084
B7 395 482 353 239 1641
B8 239 531 80 258 663
B9 284 569 409 322 3022
B10 172 489 60 231 712

Average 341.5 498.3 219.8 289.6 1703.3

unit: second

4.1 Convergence of Gradient Descent
We further investigate the convergence of our gradient de-

scent based ILT. In our experiments of Alg. 1, the maximum
iteration number thiter is 20 and the optimization is stopped
at thg = 0.015. Fig. 6 shows the convergence curves of
testcase B4 and B6. We can see that the number of EPE
violations gradually decreases while PV Band goes the oppo-
site. This is because EPE has higher weight in the objective
function. In the first few iterations, the mask patterns are
nearly non-printable, and thus the result is less stable. The
patterns become printable after a few optimization proce-
dures, which also reflects the increase of PV Band as more
iterations applied. In general, the optimization can converge
quite effectively within 20 iterations.

5. CONCLUSION
As the increasing challenges of semiconductor manufac-

turing, OPC becomes much more difficult. ILT based ap-
proaches have been a promising candidate for advanced tech-
nology nodes. We propose new mask optimizing solutions
considering design target and process window simultane-
ously. Two approaches, MOSAIC exact based on exact EPE
minimization and MOSAIC fast with efficient gradient com-
putation are tested on 32nm designs. The results show that
both of our approaches outperform the winners of the IC-
CAD 2013 contest.
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