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ABSTRACT

Adders are the most fundamental arithmetic units, and often
on the timing critical paths of microprocessors. Among var-
ious adder configurations, parallel prefix structures provide
the high performance adders for higher bit-widths. With
aggressive technology scaling, the performance of a paral-
lel prefix adder, in addition to the dependence on the logic-
level, is determined by wire-length and congestion which can
be mitigated by adjusting fan-out. This paper proposes a
polynomial-time algorithm to synthesize n bit parallel pre-
fix adders targeting the minimization of the size of the pre-
fix graph with log2n logic level and any arbitrary fan-out
restriction. The design space exploration by our algorithm
provides a set of pareto-optimal solutions for delay vs. power
trade-off, and these pareto-optimal solutions can be used in
high-performance designs instead of picking from a fixed li-
brary (Kogge Stone, Sklansky etc.). Experimental results
demonstrate that our approach (i) excels highly competi-
tive industry standard Synopsys Design Compiler adder (128
bit) in performance (2%), area (25%) and power (13.3%) in
32nm technology node, and (ii) improves performance/area
over even 64 bit custom designed adders targeting 22nm
technology library and implemented in an industrial high-
performance design.

1. INTRODUCTION
Adders are the primary building blocks in the datapath

logic of a microprocessor, and thus adder design has been al-
ways a fundamental problem in VLSI industry. Several ad-
hoc adder structures such as the carry-skip adder, the carry
select adder and the carry-lookahead adder have been pro-
posed in the past [1]. Parallel prefix adders represent a class
of general adder structures that exhibit flexible performance-
area trade-off, where logic-level and fan-out play a key role.
Extreme corners have been realized through regular paral-
lel prefix structures [1] like Kogge-Stone [2] (minimal logic
level and fan-out), Sklansky [3] (minimal logic level and
wire-tracks) and Brent-Kung [4] (minimal fan-out and wire-
tracks). In addition to these structures, Ladner-Fischer [5],
Han-Carlson [6] and Knowles [7] implemented the trade-off
between each pair of these corners. Custom adders are typi-
cally designed by selecting a regular adder structure followed
by further refinement in design parameters. So they are very
effective in optimizing power and performance for a particu-
lar technology node [8][9] but need a significant engineering
effort and not suitable for today’s aggressive turn-around-
time requirement.

On the contrary, an algorithmic synthesis approach is more
flexible to Engineering Change Orders (ECOs), but gener-
ally does not achieve the performance of adders designed

in a custom methodology. The traditional parallel prefix
adder synthesis problem is to minimize the size of the pre-
fix graph (s) under given bit-width (n) and logic-level (L)
constraints. A lot of work [10][11][12][13] have been done
to target this problem. Most of them achieve the theoreti-
cal bound for s for L ≥ 2log2n − 2, given by Snir [14], but
yield sub-optimal result when L is reduced to log2n per-
taining to high-performance adders. Moreover, wire-length,
load-distribution and congestion play important roles in de-
termining the performance of the adders in modern space-
constrained designs. At the logic-synthesis level, congestion
and load-distribution can be controlled by constraining fan-
out. However, stringent fan-out restriction with logic-level
log2n can lead to significant wire-length cost as in Kogge-
Stone, and even Sklansky can give comparable timing to
Kogge-Stone with appropriate buffer-insertion [15]. There-
fore, more design space exploration is necessary to strike
the right balance between congestion, load distribution and
wire-length cost in order to achieve the best performance-
area/power trade-off.

No existing algorithm considers the restriction in fan-out
in synthesizing parallel prefix structures for L = log2n un-
til a very recent work [16], where a comprehensive pruning
based algorithm, exercised on exhaustive bottom-up enu-
meration, is presented to explore several parallel prefix struc-
tures at a time. However, there are certain limitations in this
work, (i) Although this approach scales well to provide min-
imum size solutions without any fan-out restriction, it does
not scale to higher bit adders with fan-out restriction. So
it can not explore the wide design space of parallel prefix
adders, especially for n ≥ 64. (ii) The algorithmic com-
plexity is exponential in n, so in spite of several pruning
techniques, the run time/memory overhead is very high.

This paper presents an O(n2 log2 n) algorithm to synthe-
size n-bit parallel prefix adders of logic level log2n with any
maximum fan-out restriction mfo. This is performed by
first constructing a graph computing outputs for odd bit-
indices with fan-out restriction of ⌊mfo

2
⌋ and then construct-

ing the prefix graph by computing outputs for even bit-
indices with fan-out restriction of mfo. Although the main
problem has been divided into two sub-problems, our algo-
rithm can still achieve the same solution quality with the
highly runtime/memory intensive approach [16] for adders
of lower bit-width (n ≤ 32). For higher bit-width, such as
n ≥ 64, [16] fails to provide solutions in most cases, whereas
our algorithm generates solution for any n. Our main con-
tributions are summarized as follows:

• To the best of our knowledge, this is the first work
to synthesize prefix adders of bit-width n with logic
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level log2n under any arbitrary fan-out restriction in
polynomial time.

• The design space exploration by our algorithm has pro-
vided adders which excel in timing, area/power over
highly competitive Design Compiler adder and fast
regular adders, such as Sklansky and Kogge-Stone.

• Our approach even beats 64 bit custom designed adders
implemented in an industrial high-performance design.
It also improves in area/power (and timing for higher
bit adders) over a recent highly run-time/memory in-
tensive algorithmic synthesis approach [16].

In the next section, we give the background of the binary
addition problem. The problem formulation is illustrated in
Section 3. Section 4 describes our algorithm to synthesize an
n bit adder with log2n level and arbitrary fan-out restriction.
Finally, Section 5 presents the experimental results at both
logic-synthesis level and after placement/routing followed by
conclusion in Section 6.

2. PRELIMINARIES
Binary addition problem is defined as follows: given two

n bit numbers A = an−1..a1a0 and B = bn−1..b1b0, compute
the sum S = sn−1..s1s0 and carry out Cout = cn−1, where
si = ai ⊕ bi ⊕ ci−1 and ci = aibi + aici−1 + bici−1.

With bitwise (group) generate function g (G) and propa-
gate function p (P ), n bit binary addition can be represented
by the Weinberger’s recurrence equations as follows [17]:

• Pre-processing: Bitwise generation of g, p

gi = ai.bi and pi = ai ⊕ bi (1)

• Prefix processing: This part is the carry-propagation
component where the concept of generate/propagate is
extended to multiple bits and G[i:j], P[i:j] (i ≥ j) are
defined as

P[i:j] =



pi if i = j
P[i:k].P[k−1:j] otherwise

G[i:j] =



gi if i = j
G[i:k] + P[i:k].G[k−1:j] otherwise

(2)

The associative operation o is defined for (G, P ) as:

(G, P )[i:j] = (G, P )[i:k] o (G, P )[k−1:j] (3)

= (G[i:k] + P[i:k].G[k−1:j], P[i:k].P[k−1:j])

• Post-processing: Sum/Carry-out generation

si = pi ⊕ ci−1, ci = G[i:0] and Cout = cn−1 (4)

The ‘Prefix processing’ part can be mapped to a prefix
graph problem with inputs xi = (pi, gi) and outputs yi = ci,
such that yi depends on all previous inputs xj (j ≤ i). Fig.
1 shows an example of such prefix graph of 8 bit and we can
see that Cout = c7 = y7 is given by

y7 = ((x7 o x6) o (x5 o x4)) o ((x3 o x2) o (x1 o x0)) (5)

x0x1x2x3x4x5x6x7

y0

y1

y2

y3

y4y5y6y7

size = 13

level = 3
mfo = 3

Figure 1: An example 8 bit prefix graph

3. PROBLEM FORMULATION
The performance of a parallel prefix adder depends on

how efficiently the prefix-processing unit is realized in terms
of logic-level, fan-out and size. Size (s) and mfo of any
prefix graph are respectively defined as the number of prefix
nodes and the maximum fan-out in that prefix graph. For
instance, mfo = 3, s = 13 and L = 3 in Fig. 1.

Lower logic level helps in improving timing and size of the
prefix graph gives a measure of area and wire-length at the
logic-synthesis stage. Also, smaller size of prefix graph offers
better flexibility during post-synthesis optimizations, such
as gate sizing, buffer-insertion etc., thus indirectly improving
timing as well. Lower fan-out gives better timing by improv-
ing wire-congestion and load-distribution. So logic-level,
size and maximum fan-out of the prefix graph at the logic-
synthesis stage altogether determine the area/performance
of an adder after placement/routing.

To target high-performance designs, we fix L = ⌈log2n⌉,
i.e., the minimum feasible logic level, and focus to explore
the design space of adders by optimizing s under different
fan-out restrictions. We formulate our problem as follows.
Given maximum fan-out (mfo) constraint of a parallel prefix
adder of bit-width n with L = ⌈log2n⌉, minimize the size
(s) of the prefix graph. However, this ⌈log2n⌉ logic level
restriction can be realized in 2 ways, - (a) the maximum
level for each output bit-index m is ⌈log2n⌉, which can be
termed as fixed level restriction and (b) the maximum level
for each output bit-index m is ⌈log2(m + 1)⌉, which can be
termed as bit-wise level restriction.

4. OUR APPROACH
A prefix graph of bit-width n computes output bits for

bit-indices 1 to n − 1. An n bit prefix graph will have ⌊n
2
⌋

odd bit-indices, i.e., 1, 3, ... (2×⌊n
2
⌋− 1) and ⌈n

2
⌉ even bit-

indices, i.e., 0, 2, ... (2×⌊n
2
⌋). We divide the main problem

into 2 sub-problems, (a) Construct a graph (Godd) which
computes the outputs for odd bits with fan-out restriction
of ⌊mfo

2
⌋ and (b) Construct the prefix graph G from Godd

by computing the even bit outputs with fan-out restriction
of mfo. This division of the problem into 2 sub-problems
of computing odd and even bit outputs is motivated by the
regular adder structures, such as Han-Carlson[6] or Brent-
Kung[4], where the computation of odd bit outputs is fol-
lowed by that of even bit outputs.

4.1 Constructing Output for Odd Bit-indices
We first generate a seed-structure for an n bit prefix graph

(Gseed(n)) computing the odd bit outputs with a fan-out
restriction of 2. This is followed by a heuristic which re-
structures Gseed(n) to generate Godd by relaxing the fan-out
restriction to ⌊mfo

2
⌋ (where ⌊mfo

2
⌋ > 2), thereby reducing

several prefix nodes. Please note that, we do not add any
prefix node of even indices at this stage. By prefix node
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of an odd/even index, we mean a prefix node whose most
significant bit (MSB) is an odd/even index.

Generating Seed Structure: The generation of the seed
structure is divided into 2 steps as shown in Algorithm 1.
Fig. 2 shows the graph Gseed(16), in which the prefix nodes
generated in the first step are separated from that in the
second by a dotted line. Note that 16 bit prefix adder is from
bit-index 15 to 0. In the 1st step, 2 ‘for’ loops are run, one
within another. The outer loop runs for each level (lv), i.e.,
from level 1 to ⌈log2n⌉. For each lv, the inner ‘for’ loop adds
nodes at odd indices starting from n − 1/n − 2 (whichever
is odd) to loopIndex(lv) (Line 8). At the end of step I , for
any prefix node Nx,l of bit-index x at level l, MSB and least
significant bit (LSB) are respectively given by msb(Nx,l) =
x and lsb(Nx,l) = x−2l+1 and Nx,l is obtained by combining
Nx,l−1 (trivial fan-in node) and Nx−2l−1,l−1 (non-trivial fan-
in node). Here, by trivial fan-in node (trNode) of a prefix
node N , we mean the fan-in node sharing the same MSB
as that of N . For instance, N13,2 and N9,2 are respectively
the trivial and non-trivial fan-ins of N13,3 in Fig. 2.

Algorithm 1 Generating Seed Structure Gseed(n)

1: Step I:
2: for lv = 1 to ⌈log2n⌉ do

3: if lv = 1 then

4: loopIndex(lv)← 3;
5: else

6: loopIndex(lv)← 2lv + 2lv−1 + 1;
7: end if

8: for i = 2× ⌊n

2
⌋ − 1 to loopIndex(lv) do

9: msb(trNode)← i;

10: lsb(trNode)← i− 2lv−1 + 1;
11: msb(nonTrNode)← lsb(trNode)− 1;

12: lsb(nonTrNode)← i− 2lv + 1;
13: node← trNode + nonTrNode;
14: bitSpan(index) ← lsb(node);
15: i← i− 2;
16: end for

17: end for

18: Step II:
19: for i = 1 to 2× ⌊n

2
⌋ − 1 do

20: msb(trNode)← i;
21: lsb(trNode)← bitSpan(i);
22: msb(nonTrNode)← lsb(trNode)− 1;
23: lsb(nonTrNode)← 0;
24: node← trNode + nonTrNode;
25: i← i + 2;

26: end for

In the second step, we add ⌊n
2
⌋ prefix nodes in the increas-

ing order of odd-indices to generate the outputs for ⌊n
2
⌋ odd

bit-indices. To do this, we keep a map (bitSpan) from the
bit-index to the lsb of the highest-level prefix node of that
bit-index in the existing structure. For instance, in Fig. 2
after step I , the highest level node of bit-index 7 is N7,2,
and its lsb is 4. So bitSpan(7) = 4 at the end of step I of
Algorithm 1 and thus at step II , we add N7,2 and N3,2 to
get the output node for bit-index 7.

13579111315

N9,2
N13,3

N13,2

Figure 2: Seed Structure for 16 bit prefix graph

Fan-out Relaxation Heuristic: Algorithm 2 shows the

steps of this heuristic. We define the last fixed node for any
bit-index i (lfn(i)) as the node of bit-index i with minimum
level, such that any node of the same bit-index i with higher
level has no non-trivial fanout. This variable implies that
any node of bit-index i with higher level than that of lfn(i),
having no non-trivial fan-out, is more flexible to be removed
in the graph-structure. If none of the node of bit-index i has

non-trivial fan-out, then the node with level 1 is considered

as the lfn(i). For instance in Fig. 2, lfn(13) = N13,1 as
N13,2 and N13,3 have no non-trivial fan-out. Algorithm 2
reconstructs the outputs of odd bit-indices in a decreasing
order. For each odd bit-index i, it removes the nodes with
higher logic level than that of lfn(i) and introduces mini-
mum number of prefix nodes at that i keeping the fan-out
restriction of ⌊mfo

2
⌋ and level restriction (fixed or bit-wise).

The condition checks for level/fan-out restriction are not
shown in Algorithm 2. As we are not changing the nodes
of bit-index i with lower levels than that of lfn(i), includ-
ing itself, we need to find a list of bit-slices spanning from
lsb(lfn(i)) − 1 to 0. This is found by calling a procedure
“searchRecursive”.

Algorithm 2 Generating Godd from Gseed(n) with ⌊mfo

2
⌋

1: for i = 2× ⌊n

2
⌋ − 1 to 1 do

2: for all node ∈ nodes(i) do

3: if level(node) > level(lfn(i)) then

4: delete node;
5: end if

6: end for

7: sliceList ← createEmptyList;
8: searchRecursive(lfn(i), sliceList);
9: add nodes from finalSliceList to the prefix graph;

10: i← i− 2;
11: end for

12: Procedure searchRecursive(node, sliceList)
13: if lsb(node) = 0 and sliceList.size() < minSize then

14: finalSliceList ← sliceList;
15: minSize ← sliceList.size();
16: end if

17: nextIndex← lsb(node) − 1;
18: for all nextNode ∈ nodes(nextIndex) in decreasing level do

19: if level(nextNode) ≤ level(node) then

20: break;
21: end if

22: sliceList.insert(nextNode);
23: searchRecursive(nextNode, sliceList);
24: sliceList.erase(nextNode);

25: end for

The procedure “searchRecursive” is a recursive subroutine
with 2 arguments, (a) ‘sliceList’, the existing list of bit-slices
and (b) ‘node’ the last node in the ‘sliceList’, except when
‘searchRecursive’ is called from the main algorithm (Line
8), ‘node’ is lfn(i). It also maintains a list of bit-slices
finalList, which is the best bit-slice found at any instant.
At any time, if the sliceList spans to bit 0, it compares
the size of current sliceList and current finalList and if
it finds that the former is less or equal to the latter, then
finalList is changed to sliceList (Lines 13− 16). However,
there could be a number of choices for forming this bit-slice.
We impose the restriction in the sliceList that if 2 nodes N1,
N2 ∈ sliceList and N1 appears before N2 in sliceList, then
level(N2) > level(N1). Line 19 in Algorithm 2 imposes this
restriction. This search-space restriction makes Algorithm
2 polynomially bounded in bit-width.

Let us illustrate this procedure with an example. Fig. 3
represents Gseed(20) and suppose we are interested in find-
ing a prefix graph structure of bit-width 20 with fan-out
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of 8. We can see that lfn(19) = N19,1 and ⌊mfo

2
⌋ = 4.

So the marked nodes in Fig. 3 are deleted and to find the
bit-slices spanning from bit-index 17 to 0, ‘searchRecursive’
explores the following set of bit-slices in order - [17:8 + 7:0],
[17:14 + 13:0], [17:14 + 13:6 + 5:0], [17:16 + 15:0], main-
taining the restriction in logic level, fan-out and our imposed
search-space restriction. The option [17:14 + 13:6 + 5:0] is
discarded as the size of it is higher than all other 3 choices.
Rest 3 options are of same size and Algorithm 2 prefers the
last one ([17:16 + 15:0]). The intuition behind choosing this
set of bit-slices is that this makes N17,1 to be lfn(17). The
other 2 choices ([17:8 + 7:0], [17:14 + 13:0]) make lfn(17)
to be N17,3 and N17,2 respectively. This preference offers
more flexibility in reducing the number of prefix nodes for
bit-index 17, as less is the level of lfn(17), more is the scope
to reduce the number of prefix nodes.

135791113151719

Figure 3: [19 : 18 + 17 : 16 + 15 : 0] is the choice of
bit-slices for bit-index 19 in Algorithm 2

4.2 Constructing Output for Even Bit-indices
The generation of output for even bit-indices consists of

2 stages as described in Algorithm 3 and 4. In Algorithm
3, the outputs of the even bit-indices are constructed by
taking nodes from odd-bit indices using the same procedure
‘searchRecursive’, mentioned in Algorithm 2. It is to be
noted that, for outputs of odd bit-indices we modify a seed
structure and then apply the procedure ‘searchRecursive’,
where the nodes of a particular bit-index are traversed in
decreasing level (Line 18) to provide more flexibility in re-
ducing the number of prefix-nodes for lower bit-indices. On
the other-hand, the output for even bit-indices are gener-
ated without modifying the existing nodes in Godd. So the
traversal of nodes in ‘searchRecursive’ is not mandatory to
be in the order of decreasing level. At the end of Algorithm
3, a prefix graph of bit-width n is generated with the desired
fan-out restriction. Note that in certain cases (for example,
mfo = 2, 3) it is not possible to construct the output bit of
an even index p with the fan-out restriction, and then Al-
gorithm 1 is run with the variable i iterating from p to 2 in
steps of 2. This does not increase the fan-out count of any
prefix node of odd bit-index and bounds the fan-out of any
prefix node of even bit-index to 2 as well.

Algorithm 3 Generating prefix graph G from Godd

1: for i = 2× ⌊n

2
⌋ to 0 do

2: node← inNode(i);
3: searchRecursive(node, sliceList);
4: add nodes from finalSliceList to the prefix graph;
5: i← i− 2;

6: end for

In Algorithm 4, it is further restructured by either of the
two transformations, specifically useful for fixed level restric-
tion. The first one checks the condition (Line 6) whether
it is possible to construct the output for even bit-index

by connecting the output node of its previous odd-bit in-
dex (outNode(i − 1)) and the input node for i (inNode(i))
without violating the level/fan-out constraints. If it returns
‘true’ value, this transformation is applied and continue with
the next even bit-index in decreasing order. If unsuccessful
at this transformation, the possibility of another local trans-
formation is explored. It consists of adding 2 nodes, (a)
node1 derived from inNode(i) and inNode(i − 1), and (b)
node2 derived from node1 and outNode(i−2). This transfor-
mation is also applied if it does not violate the level/fan-out
constraint. The advantage of the first transformation is that
it reduces the number of prefix-nodes, where as for the sec-
ond one the benefit is 2-fold. The first is that it can reduce
the number of prefix nodes, if there were more than 2 pre-
fix nodes at that bit-index before the transformation, and
the second is that this step reduces the fan-out count for
output node of an odd-index, thereby facilitating the first
transformation for lower bit-indices.

Algorithm 4 Reducing size of G by local transformations

1: for i = 2× ⌊n

2
⌋ to 0 do

2: if numOfNodes(i) < 2 then

3: continue;
4: end if

5: oddOutBitNode← outNode(i− 1);
6: if fo(oddOutBitNode) < mfo and level(oddOutBitNode) <

maxLevel(i) then

7: deleteNodes(i);
8: outNode(i)← oddOutBitNode + inNode(i);
9: continue;

10: end if

11: evenOutBitNode ← outNode(i− 2);
12: if level(evenOutBitNode) < maxLevel(i) then

13: deleteNodes(i)
14: Add node: node1← inNode(i) + inNode(i− 1);
15: Add node: node2← node1 + evenOutBitNode;
16: end if

17: end for

This situation is illustrated in Fig. 4, where the output of
an even bit-index x + 1 is constructed by adding node1 and
node2 and this transformation reduces the fan-out count for
the output node of odd bit-index y, i.e., N1. Consequently,
the output for bit-index y + 1 can be now constructed by
connecting N1 and the input node of y + 1 through first
transformation, which might not have been feasible if the
second transformation was not applied earlier reducing the
fan-out count of N1.

xx− 1 x + 1x + 1 yy y + 1 00

node1

node2

N1
N1

Figure 4: Second transformation facilitating first
transformation by reducing fan-out at N1

The algorithmic complexity of our method is O(n2log2n)
as shown in the following lemmas/theorems. The detailed
proofs have been omitted for page limit. However, we have
given the proof of Lemma 4.2 which provides the basis of
polynomial time-complexity of our algorithm.

Lemma 4.1. Complexity of Algorithm 1 is O(nlog2n).

Lemma 4.2. ‘searchRecursive’ procedure with a level re-

striction of p is an O(p.2p) operation.
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Proof. ‘searchRecursive’ procedure finds the bit-slices
spanning from any bit-index to bit-index 0. For instance,
we see in the Fig. 3 that 19:18 is the last fixed node for
bit-index 19, i.e., lfn(19) and ’searchRecursive’ finds the
bit-slices 17:16 and 15:0, spanning from bit-index 17 to bit-
index 0, thereby constructing the output node for bit 19.

Let x be the level of any bit-slice and y = p−x. Since the
level of the bit-slices are in strictly increasing order, the level
of the next bit-slice can be in the range [x+1, p− 1]. So we
can write the recursion relation in terms of y as T (y + 1) ≤
T (y) + T (y − 1) + T (y − 2) + ... + T (1) + O(y), with T (1) =
O(1). Solving this recurrence relation we get, T (y) = y.2y .
Since the maximum value of y can be p, ‘searchRecursive’
procedure with level restriction p is O(p.2p).

Corollary 4.3. With log2n level restriction, ‘searchRe-

cursive’ procedure is an O(n.log2n) operation.

Proof. This follows from Lemma 4.2 by putting p =
log2n.

Lemma 4.4. The complexity of Algorithm 2 is O(n2log2n).

Lemma 4.5. The complexities of Algorithm 3 and Algo-

rithm 4 are O(n2log2n) and O(nlog2n) respectively.

Theorem 4.6. Our approach of generating an n bit paral-

lel prefix graph with bounded fan-out mfo and logic level re-

striction log2n is a polynomial algorithm in n, viz. O(n2log2n).

5. EXPERIMENTAL RESULTS
We have implemented our approach in C++ and executed

on a Linux machine with 72GB RAM and 2.8GHz CPU. We
compare our approach at the logic synthesis stage with the
most recent algorithmic adder synthesis approach [16], and
after placement/routing with regular adders, [16], Design
Compiler (DC) adder and custom adders.

5.1 Comparison at logic-synthesis level
We have obtained the binary for [16] from the authors

and then compared our approach with [16] in Table 1 for
32, 64 96 and 128 bit adders in terms of the size (which is
unit less) of the prefix graph under different mfo and bit-
wise/fixed level restriction. For n = 32, [16] can generate
solutions under different mfo (except for mfo = 2, 4 under
fixed level restriction), and our approach can also provide
the same solution quality. However, as n increases, [16] fails
to give solutions in most of the cases. Apart from providing
solutions in all cases, the most important advantage of our
algorithm is its fast run-time (0.02 sec for n = 64 and 0.08
sec for n = 128) due to its polynomial-time complexity in n.

[16] is a comprehensive pruning based exhaustive and ex-
ponential time algorithm, but scales well without any fan-
out restriction by setting the pruning parameter ∆ = 3 till
128 bit adders. But ∆ needs to be increased for getting so-
lutions with fan-out restriction as discussed in [16] and con-
sequently it becomes intractable. The reason is setting ∆
beyond 6 or 7 becomes infeasible even with 72GB RAM due
to the generation of millions of solutions at intermediate bit-
widths. For fixed level restriction, this intractability is more
severe, and it can not provide solutions as n goes beyond
32 (Note that mfo = 32/64 for n = 64/128 is equivalent
to no fan-out restriction). However, it is counter-intuitive
that it could get the solutions for more stringent fan-out

restriction, such as mfo = 2. This is because even with set-
ting ∆ = 30, the number of intermediate solutions do not
go beyond 100k. In [16], additional pruning, such as stor-
ing bounded number of solutions at each bit-width, helps
to achieve solutions for mfo = 4, 6 (n = 64). But it costs
in compromising the solution quality, in addition to its high
memory-overhead (around 1.8GB) and run-time (mentioned
in Table 2).

Table 1: Comparison with [16] in terms of the size
of the prefix graphs

n MFO Our Approach Approach in [16]
Bit-wise Fixed Bit-wise Fixed

32 2 114 114 114 -
4 92 90 92 -
6 86 81 86 81
8 83 78 83 78
12 81 76 81 76
16 79 74 79 74

64 2 290 290 290 -
4 227 219 252 -
6 214 197 238 -
8 207 192 - -
10 202 184 - -
12 198 180 - -
16 194 178 192 -
32 185 169 185 167

96 2 417 417 450 -
4 337 295 - -
6 317 261 - -
8 307 258 - -
16 289 242 - -
32 278 235 278 -

128 2 706 706 706 -
4 536 512 - -
6 507 462 - -
8 488 447 - -
16 455 413 - -
32 433 390 - -
64 416 373 416 364

5.2 Comparison after placement/routing
The adder architectures provided by our approach are

synthesized in Synopsys DC (version G-2012.06-SP4), func-
tionally verified by VCS, and placed, routed and timed by
IC Compiler (ICC) to compare with other approaches ([16],
Kogge-Stone, Sklansky etc.) and behavioral adder imple-
mentation (Y = A + B) by DC. The behavioral adder im-
plementation of DC generates modified Sklansky structure
[18] providing delay almost close to Kogge-Stone at much
lower area/power. For all reported DC/ICC results, ‘com-
pile ultra’ command is used for adder synthesis. ‘tt1p05v125c’
corner in 32nm SAED cell-library [19] (available through
Synopsys University Program) has been used for technology-
mapping. FO4 delay in this corner is 36ps and area of a unit-
sized inverter is 1.27µm2. The target delay specified for 64
and 128 bit adders are respectively 100ps and 200ps, the op-
erating frequency is 1GHz and the activities at the primary
input are 0.1. Table 2 compares our approach with [16] for
64 bit adders in terms of delay, power (leakage + dynamic),
area and run-time. The solutions for other mfo values, such
as 2, 8 etc., are not compared as [16] either generates same
solution as ours or could not generate solutions.

Fig. 5 shows the delay vs. power pareto-front for 128
bit adders. P1 provides better solution than Kogge-Stone
and behavioral DC adder, and P2 provides better solution
than Sklansky and [16]. Table 3 compares our solution with
best delay with other approaches for 128 bit adders. [16]
improves slightly over our best delay solution in area/power,
but with a significant delay overhead of 28.4ps. Behavioral
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Table 2: Comparison with [16] for 64 bit adders
mfo Delay (ps) Area (µm2) Power (mW ) Run-time (sec)

[16] Our Imprv. [16] Our Imprv. [16] Our Imprv. [16] Our Imprv.
4 356.4 358.8 -0.7% 2209.5 2071.4 6.2% 7.61 7.29 4.2% 241 0.02 12050X
6 357.4 357.4 0% 2073.9 1979.0 4.5% 7.09 7.07 0.3% 212 0.02 10600X
16 393.4 366.3 6.9% 1838.2 1818.7 1.1% 6.39 6.31 1.3% 149 0.02 7450X

0.41 0.42 0.43 0.44 0.45 0.46
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Figure 5: Delay vs. Power plot for 128 bit adders

DC adder achieves delay very close to that of Kogge-Stone
at much lower area/power, and our approach improves over
this highly competitive behavioral DC adder in performance
(2%), area (25%) and power (13.3%).

Table 3: Comparison with other approaches for 128
bit adders

Method Delay (ps) Area (µm2) Power (mW )
Kogge-Stone 422.1 6279.3 21.5

Sklansky 440.6 4280.8 14.7
[16] 446.1 4091.1 14.2

Behav. DC 426.2 5475.4 16.5
Our 417.7 4108.7 14.3

Comparison with Custom Adders: The designers come
up with detailed gate-level verilog/VHDL netlist to build
custom adders. This takes a lot of engineering effort but
achieves good performance/area trade-off for target tech-
nology node. In order to compare with such 64 bit custom
adders implemented in an industrial high-performance de-
sign and targeting a cutting-edge technology node (CMOS
SOI 22nm), we have integrated our algorithm to an indus-
trial placement driven synthesis [20] tool. Fig. 6 compares
our approach with 64 bit custom adder blocks after place-
ment in terms of area, worst negative slack (WNS) and
wire-length. Our approach improves area by 9.4% and wire-
length by 17.5% over custom Kogge-Stone adder with same
performance, improves area by 3.8%, performance by 2.1%
and wire-length by 3.3% over custom Han-Carlson adder
and improves area by 1%, performance by 2.5% over cus-
tom Ladner-Fischer adder with 4% overhead in wire-length.
Note that the performance improvement has been calculated
based on the actual critical path delay of the adders.

Figure 6: Comparison with 64 bit custom adder
blocks

6. CONCLUSION
In this paper, a novel polynomial-time algorithm is pre-

sented to synthesize n bit parallel prefix structures with
log2n level and any fan-out restriction. The design space ex-
ploration by our algorithm has provided high-performance
adders which are more area/power efficient than regular
adders, industry-standard DC adder and adders generated
by a highly run-time/memory intensive algorithm. It even
beats 64 bit custom designed adders targeting 22nm technol-
ogy library. Furthermore, since our algorithm is highly scal-
able, it can be integrated into any commercial logic synthe-
sis tool to synthesize designs containing thousands of adders
and could provide the flexibility of performance-area/power
trade-off in industrial designs. Currently, our algorithm fo-
cuses on adders of log2n logic level to target high-performance
designs, but in future we plan to extend it for relaxed logic
levels to achieve more area/power efficient solutions.
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