
Machine Learning and Pattern Matching in Physical Design

Bei Yu1, David Z. Pan1, Tetsuaki Matsunawa2, and Xuan Zeng3

1ECE Department, University of Texas at Austin, Austin, TX, USA
2Center for Semiconductor Research and Development, Toshiba Corp., Kawasaki, Japan

3State Key Laboratory of ASIC & Systems, Microelectronics Department, Fudan University, China
{bei,dpan}@cerc.utexas.edu, tetsuaki.matsunawa@toshiba.co.jp, xzeng@fudan.edu.cn

ABSTRACT

Machine learning (ML) and pattern matching (PM) are pow-
erful computer science techniques which can derive knowledge
from big data, and provide prediction and matching. Since
nanometer VLSI design and manufacturing have extremely
high complexity and gigantic data, there has been a surge re-
cently in applying and adapting machine learning and pat-
tern matching techniques in VLSI physical design (including
physical verification), e.g., lithography hotspot detection and
data/pattern-driven physical design, as ML and PM can raise
the level of abstraction from detailed physics-based simulations
and provide reasonably good quality-of-result. In this paper,
we will discuss key techniques and recent results of machine
learning and pattern matching, with their applications in phys-
ical design.

I. INTRODUCTION

As the feature size of semiconductor process technology
nodes further scales down, the industry is greatly challenged
in terms of manufacturing and design [1]. On one hand, since
the mainstream lithography technology is still limited by the
193nm wavelength lithography, what-you-see at the design is
not necessarily what-you-get at the fab. Even with compli-
cated design rules, various resolution enhancement techniques
(RETs), and multiple patterning lithography (MPL) tech-
niques, there may still be complex layout-dependent lithogra-
phy hotspots which may cause opens, shorts, and yield loss.
Therefore, how to detect and remove lithography hotspots dur-
ing physical design is critical to ensure high yield. On the
other hand, since modern VLSI circuits have billions of tran-
sistors/interconnects, it is simply impossible to run detailed
lithography and other physics-based simulations at the full-
chip scale during the physical design stage to deal with po-
tential lithography hotspots and other design constraints.

Machine learning and pattern matching techniques provide
reasonably good abstraction and quality-of-result, which make
them suitable to perform lithography hotspot detection, as
shown by many recent studies. Meanwhile, the machine learn-
ing and pattern matching principles have also been used for
lithography aware routing and other areas of physical design,
such as datapath placement and clock optimization with suc-
cess. In this paper, we will present some commonly used ma-
chine learning and patterning matching techniques, and discuss

Training /
Calibration

Training Features

Learning
Models

Testing /
Evaluation

Testing Features

Fig. 1. Classical supervised learning flow consists of training and testing
stages.

their applications in physical design and verification.
The rest of the paper is organized as follows. In Section II

we introduce some basic algorithms of machine learning and
pattern matching. In Section III we discuss the physical de-
sign applications. In Section IV we will further discuss some
advanced issues. Section V concludes this paper.

II. BASIC ALGORITHMS

A. Machine Learning Techniques

Machine learning is a computer science discipline that deals
with the construction and study of algorithms that can learn
from data [2]. The widely applied machine learning techniques
in physical design is called supervised learning, where the
training data contains explicit examples of what the correct out-
put should be for given inputs. A classical supervised learning
flow is illustrated in Fig. 1 consisting of training/calibration
and testing/evaluation stages. In the training stage, given the
input training features a set of learning models are built. In the
testing stage, the constructed learning models are to make pre-
dictions or decisions, rather than following only explicitly pro-
grammed instructions. In this subsection we introduce some
typical and popular learning models in supervised learning.

A.1 Artificial Neural Network (ANN)

The artificial neural network (ANN) is inspired by human brain
to estimate or approximate functions that can depend on a large
number of inputs and the details of the functions are usually un-
known. ANN creates a leveled network of neurons, and each
neuron i can be trained to model a function fi : X → Y
through backpropagation algorithm [3]. An ANN with mul-
tiple levels can thus model highly non-linear functions. The
input features are presented to ANN via the input layer, which

978-1-4799-7792-5/15/$31.00 ©2015 IEEE

4S-1

286

Input layer Output layerHidden layers

Fig. 2. An example of four layer ANN.

communicates to one or more hidden layers where the actual
processing is done. Then the hidden layers are connected to an
output layer, which scales its input to the desired response. An
example of a four layer feedforward ANN is shown in Fig. 2.

Compared with other machine learning techniques, ANN
usually has good noise-robustness. However, it takes more
time in the training and calibration to reach optimal or close-
to-optimal solutions.

A.2 Support Vector Machine (SVM)

The support vector machine (SVM) is one of the most popu-
lar classification and learning techniques. In SVM, data vec-
tors are mapped into a higher-dimensional space using a ker-
nel function, and an optimal linear discrimination function in
the space or an optimal hyperplane that fits the training data
is built [4]. The objective is to maximize the margin between
the separating hyper-plane and the nearest data vectors from
both classes. If the data is not separable, a C-type SVM can be
applied to the classification problem as follows [5].

min
α

: 1
2α

TQα− eTα
s.t. zTα = 0

Qij = zizjK(xi, xj) i, j = 1, . . . , n
0 ≤ αi ≤ C, i = 1, . . . , n

(1)

where xi ∈ Rd are training vectors, z ∈ {1,−1} is indica-
tor vector. e is the vector of all ones, Q is an n × n positive
semidefinite matrix, and the parameter C controls the trade-off
between allowing training errors and forcing rigid separating
margins. For each element Qij ∈ Q, Qij = zizjK(xi, xj).
The kernel function K maps the data into the different space
so a hyperplane can be used to do the separation. After solv-
ing the optimization problem in (1), all αi ∈ α can be calcu-
lated. Then given a new testing vector t, the decision function
is sgn(

∑
i ziαiK(xi, t)), where sgn function is defined as fol-

lows:

sgn(x) =
{
−1, if x ≤ 0
1, if x > 0

In theory, SVM guarantees the global optimum but is sensi-
tive to data noise.

A.3 Boosting

The Boosting is another method of ensemble learning for clas-
sification problem in supervised learning. The basic concept is
that a set of weak classifiers are used as a means for creating
a single strong classifier. A weak classifier is indicted to be
a classifier which has slightly better performance than random
guessing. A strong classifier is generated by conjunction with

Pattern /
Template
Library Matcher

Testing Patterns

Fig. 3. Classical pattern matching flow.

these weak classifiers. Although there are many Boosting algo-
rithms, a learning process is common to most of them. In the
learning process of weak classifiers, the weight of training data
is updated iteratively so as to increase their weight for misclas-
sified data and to decrease their weight for correctly classified
data. A final strong classifier consists of weak classifiers which
are learned with training data of different weights.

Although Boosting has a lot of flexibility in the design of
learning algorithm, the weak classifier must be a classifier
which can be trained with weighted data. The widely used al-
gorithms for Boosting and the weak classifier are AdaBoost [6]
and Decision Tree classifier [7]. In AdaBoost, the weak clas-
sifier ym is learned with the data weight Dm(xi), where x is
the training vectors xi ∈ Rd, i = 1, ..., n and m is the num-
ber of weak classifiers m = 1, ...,M . Then the weighting co-
efficient is evaluated as βm = εm/(1 − εm), where ε is the
misclassification ratio for weighted training vectors xi. The
data weight of the next weak classifier ym+1 is reweighted
as Dm+1(xi) = βmDm(xi) when the data xi is misclassi-
fied by the previous classifier ym and Dm+1(xi) = Dm(xi)
otherwise. Finally, Dm+1(xi) is normalized, and the final
strong classifier Y (x) is formed as the result of ym weighted
by αm = ln(1/βm).

Y (x) = sgn

[
M∑
m=1

αmym(x)

]
(2)

Generally, Boosting is sensitive to the data including lots of
noise and outliers. However, it can be superior with respect
to the over-fitting issue compared to other classification algo-
rithms.

B. Pattern Matching Techniques

The machine learning techniques are to assign an unknown
pattern to one of the possible classes, while the pattern match-
ing techniques in this subsection are of a slightly different na-
ture. A typical pattern matching flow is illustrated in Fig. 3,
where a set of patterns or templates are available in library. Dif-
ferent from that in machine learning, usually there is no train-
ing stage to build up the library. Given a new testing pattern,
we need to decide which pattern in library matches the new
one best. Depending on whether the testing pattern is exactly
matching to one pattern in the library, pattern matching can be
divided into exact pattern matching and fuzzy pattern match-
ing.

B.1 Exact Pattern Matching

In exact pattern matching, a testing pattern is matched if and
only if there is an exact same pattern in the library. If a set

4S-1

287

of features can be extracted from one pattern, the exact pat-
tern matching is the well known string matching problem [8].
Although the exact pattern matching is of high performance at
detecting pre-determined patterns in the library, it lacks the ca-
pability to identify never seen patterns.

B.2 Fuzzy Pattern Matching

In some applications, usually it is difficult to identify a pat-
tern exactly matching a given testing pattern. Instead of re-
porting “unmatched”, in fuzzy pattern matching problem, the
pattern in library matching the testing pattern best would be
identified. Fuzzy pattern matching has been widely applied in
speech recognition, face detection, and data processing [9, 10].
The critical step in this problem is to define a cost to measure
the “similarity” between two patterns.

III. APPLICATIONS IN PHYSICAL DESIGN

In this section we will show some key applications of ma-
chine learning and pattern matching in physical design (includ-
ing physical verification).

A. Lithography Hotspot Detection

A.1 Machine Learning Approach

In physical design and verification stages, the hotspot detection
problem is to locate hotspots on a given layout with fast turn-
around-time. Conventional lithography simulation [11, 12] ob-
tains pattern images using complicated lithography models.
Although it is accurate, full-chip lithography simulation is
computational expensive, and thus cannot provide quick feed-
back to guide the early physical design stages. Hotspot detec-
tion plays an essential role in bridging the wide gap between
modeling and process-aware physical design tool.

There have been a lot of machine learning based hotspot
detection works. Machine learning techniques construct a re-
gression model based on a set of training data. This method
can naturally identify previous unknown hotspots. However, it
may generate false alarms, which are not real hotspots. How
to improve the detecting accuracy is the main challenge when
adopting machine learning techniques.

Many recent approaches utilize SVM and ANN techniques
to construct the hotspot detection kernel. In [13], a 2-D
distance transform and histogram extraction is performed on
pixel-based layout images, which are used to construct the
SVM-based hotspot detection. [14] presents a neural network
judgment based detection flow, where 2-D hotspot patterns are
directly used to train an ANN model. [15] proposes a multi-
level and hybrid method adopting both SVM and ANN to fur-
ther improve the performance. In [16, 17], SVM is employed
through extraction and classification of layout density-based
metrics. In [18] the machine learning based methodologies are
extended to the directed self-assembly (DSA) hotspot detec-
tion. New DSA model with point correspondence and segment
distance features are proposed for robust learning.

In [19–21], principle component analysis (PCA) is applied
for feature extraction and data reduction. Combining PCA

with SVM may help to improve the detection accuracy signif-
icantly. Very recently, [22] proposes a Boosting based classifi-
cation model. Through a simplified layout feature, the utiliza-
tion of the weakly nonlinear learning algorithm is able to detect
hotspots accurately with low false alarm.

A.2 Pattern Matching Approach

Pattern matching based methods are also widely applied in
hotspot detection. A layout graph is proposed in [23] to reflect
pattern-related CD variation. The resulted graph can be used to
find hotspots including closed features, L-shaped features and
complex patterns. The concept of range pattern [24] is pro-
posed to incorporate process-dependent specifications, and is
enhanced in [25] to represent new types of hotspots. A range
pattern is a two-dimensional layout of rectangles with addi-
tional specifications encoded by strings. Each range pattern
is associated with a scoring mechanism to reflect the problem-
atic regions according to yield impact. The hotspot patterns
are stored in a pre-defined library and the detection process
performs string matching to find hotspots. This approach is
accurate, but the construction of range patterns relies on a grid-
based layout matrix, and may be time-consuming when the
number of grids is large. Yu et al. [26] propose a DRC-based
hotspot detection by extracting critical topological features and
modeling them as design rules. Therefore, hotspot detection
can be viewed as a rule checking process through a DRC en-
gine.

In [27], a pattern matching based hotspot classification
scheme is proposed. The hotspots are classified into clusters
by data mining methods. The representative hotspot in each
cluster is then identified and stored in a hotspot library for
future hotspot detection. The hotspot classification approach
in [27] relies on a distance metric of different pattern samples,
which is defined as a weighted integral over the area where a
pair of hotspot patterns differs (XOR of patterns). It is sen-
sitive to the small variations or shifts of the shapes. In [28],
an Improved Tangent Space (ITS) based metric is proposed for
hotspot classification. It is an extension of the well-developed
tangent space methods [29,30] in computer vision community.
The ITS metric defines a distance metric of a pair of polygons,
which is the L2 norm of the difference of the corresponding
turning functions of the polygons [29] [30]. The turning func-
tion of polygon measures the angle of the counterclockwise
tangent as a function of the normalized arc length, measured
from some reference point of the polygon. The ITS based met-
ric is easy to compute and is tolerant with small variations or
shifts of the shapes. With the ITS based metric, the hotspot
classification can achieve higher accuracy.

A.3 Hybrid Machine Learning and Pattern Matching

Some works combined both the pattern matching and machine
learning methods. Recently, a fuzzy matching with some learn-
ing technique is proposed in [31] which can dynamically tune
appropriate fuzzy regions around known hotspots in multi-
dimensional space. Fig. 4 shows an example with known lay-
out patterns of hotspots and non-hotspots in a 2-dimensional
space. A machine learning method would divide the space into

4S-1

288

(a) (b) (c)

Fig. 4. A 2D-space example of hotspot region decision. (a) Machine learning;
(b) Pattern matching; (c) Fuzzy matching model. [31]

x

Weighing Functions

-1 +1

x

-1 +1

x

-1 +1

Input pattern i, where i = 1, 2, … M

Feature set 1 Feature set 2 Feature set N

Classifier 1 Classifier 2 Classifier N

………

………

………

Base Classifiers

Disparate feature sets

Decision Decision Decision

………

Output meta-decision for pattern i, where i = 1, 2, … M

(1)

i
x (2)

ix
()N

ix

()(1)
f x ()(2)

f x ()()N
f x

()(1) (1) (1)

i i
x f x

()(2) (2) (2)

i ix f x

()() () ()N N N

i i
x f x() ()(1) (1) (1) () () ()

...
N N N

i i i ix f x x f x+ +

meta

iT

Fig. 5. Meta-classifier construction via a combination of disparate base
classifiers [32].

two regions of hotspots and non-hotspots as shown in Fig. 4(a),
while a conventional pattern matching approach would con-
struct an individual pattern to match each known hotspot as
shown in (b). The fuzzy matching model in Fig. 4(c) includes
groups of hotspots, where the fuzzy region of each group will
iteratively grows to provide better detection accuracy. In [32],
data samples are fed to a pattern matcher first, then machine
learning classifiers are used to examine the non-hotspots left
by the pattern matcher. Motivated by the fact that different
hotspot classifiers have different objectives and strengths, [32]
further proposes a unified meta-classifier that enables several
classifiers to work together. Fig. 5 illustrates the construction
flow of the meta-classification, which is composed of multi-
ple base classifiers and weighting functions. For each layout
pattern, certain hotspot features are extracted and then fed into
each base classifier, which calculates the prediction decision
and generates a weight based on the weighting functions. The
final meta-decision is based on the weighed sum of base clas-
sifiers.

B. Lithography Friendly Routing

Lithography hotspot mitigation can be performed at the post-
routing stage, e.g., [33]. In [34] [35], design rule checker is
integrated with the routing engine at the post-routing stage to
identify and correct hotspots. However, fixing hotspots at the
post-routing stage has limited flexibility as only limited rip-up

un-characterized

region
potential hotspots

missed

Pin1 Pin3

Pin4

Pin2

Pin1 Pin3

Pin2

Pin4

(a) (b)

Fig. 6. The hotspot detection challenge in the detailed routing stage [36].

and reroute may be performed. With efficient hotspot predic-
tions, it will be interesting to integrate lithography hotspot de-
tection together with routing.

One challenge of lithography-aware routing is that hotspots
are difficult to be detected before a real routing path is obtained.
Fig. 6(a) gives a layout region with metal blockages and un-
routed pins Pin1-Pin4. Since some nets are not yet routed,
there is an un-characterized region where no hotspots would
be identified by general hotspot detection methods. Conse-
quently, potential hotspots may be caused by route Pin1-Pin2 as
in Fig. 6(b). [36] proposes a lithography-friendly detailed rout-
ing based on a pre-built hotspot prediction model and a routing
path prediction model. The hotspot detection model is trained
to evaluate the pattern printability based on a set of post-RET
data. To overcome the issue of un-characterized regions, the
routing path prediction model is established using the follow-
ing steps: (1) explore the possible routing solutions given the
available routing resources; (2) perform accurate lithography
simulation for the possible layout results; (3) identify prefer-
able routes according to results of hotspots and routing conges-
tion. Because the data that need to be processed for building
the routing path prediction model is huge, an ANN classifier is
constructed to guide the routing engine.

C. Datapath Placement

The typical objective function of placement is to minimize
total half-perimeter wire length (HPWL), which is a good indi-
cator of placement quality for random logic designs. However,
in datapath logic designs, generally cells are characterized by a
high degree of bit-wise parallelism that conventional placement
has shown to be sub-optimal [37]. In designs where there are
many embedded datapaths, extracting the datapaths and plac-
ing them with random logics appropriately has the potential to
significant improve the overall StWL [38–40].

Fig. 7 shows a toy example where modern placers are not
able to handle datapaths effectively [38]. Fig. 7(a) displays
the datapath circuit, where the input/output pins are fixed and
there are three bit-stacks corresponding to cells: ({2, 3, 4, 5},
{6, 7, 8, 9}, and {10, 11, 12, 13}. Fig. 7(b) displays the PADE
placement solution, where each bit-stack is tightly packed and
aligned producing an StWL solution of 524. Fig. 7(c) displays
the placement solution from Fast-Place3 [41] where the bit-
stack is not carefully aligned producing StWL of 612.

A new placement flow with automatic datapath extraction is
proposed in [38], which evaluates and ranks all the first-order,
important data paths, and optimizes them along with general-

4S-1

289

Fig. 7. Datapath driven placement example showing a 14% steiner wire
length improvement compared to conventional placement [38].

Fig. 8. Multi-GHz design showing clustered latches, where red cells are
latches and purple cells are local clock buffers (LCB) [45].

purpose wirelength driven placement. In the training stage, to
classify and evaluate the datapath patterns in the initial netlist,
SVM and ANN techniques are combined to build compact and
run-time efficient models. In SVM model, an error tolerant
technique is combined with a special working set selection.
ANN works through configuring complex networks of neurons
to achieve a high dimensional decision diagram-like data struc-
ture given training samples and decision hints. The optimiza-
tion objective for both SVM and ANN is to maximize the eval-
uation accuracies of datapath and non-datapath patterns. In the
testing stage, the data learning models will be applied directly
to test whether a new unknown design patterns is datapath pat-
tern. A pattern is evaluated to be datapath if and only if both
SVM and ANN evaluation scores are above certain thresholds.

D. Clock Optimization

Clock network design for high performance microprocessors
is one of the most challenging problems in VLSI design. To
bound the skew and power consumption of the bottom level
stage, latches are often clustered and placed next to a common
local clock buffer (LCB) in a structured fashion [42–44]. As
shown in Fig. 8, small groups of latches are tightly clustered
around LCBs to significantly reduce the total local clock tree
length. [45] proposes a scalable machine learning solution to
the latch optimization problem. First, for each latch cluster,
a genetic algorithm is proposed to search for the latch place-
ment solution. Second, a large set of initial latch placement
templates are generated, and the template number can be sig-
nificantly reduced by using a set theoretic to remove the re-
dundancy. Last, a machine learning technique called decision
tree induction is developed using similarity metric for quickly
selecting the correct template during design automation.

r

…

……

(a)

…

0

0

0

0

F

0

F_In

F_Ex

F_ExIn

F_InEx

-1-2 +1
+2

…

…

…

…

…+2

-2

-1

-1 +2+1

-2+1

-1

+1

+2

-1
+1

+2

…

0

0

0

0

F

0

F_In

F_Ex

F_ExIn

F_InEx

-1-2 +1
+2

…

…

…

…

…+2

-2

-1

-1 +2+1

-2+1

-1

+1

+2

-1
+1

+2

…

(b)

Fig. 9. Fragmentation based layout feature, where the layout is cut into
fragments [15].

IV. ADVANCED ISSUES

A. Machine Learning or Pattern Matching?

The machine learning, especially supervised learning, con-
sists of training and testing stages. In the training stage, given
the input pattern, a set of learning models are built. Then
the constructed learning models are applied in testing stage to
make predictions or decisions. Machine learning based meth-
ods can be applied to complexed nonlinear classification, or the
applications where the classification functions are unknown.
However, to maintain stable performance, machine learning re-
quires additional parameter tuning for different applications.

The pattern matching based method defines and stores pre-
characterized patterns into library. Given a testing pattern, the
library pattern matched is identified. The fuzzy pattern match-
ing can be applied to find a very similar library pattern to the
input pattern. Pattern matching based method is very fast and
accurate to detect known templates. But even fuzzy pattern
matching is applied, it may lack the capability to identify never
seen patterns.

Generally speaking, machine learning can obtain higher per-
formance, especially when predicting unseen data. But ma-
chine learning may take longer time in training to achieve high
performance. If the library patterns are sufficient and the run-
time is a concern, pattern matching based method is a good
option. Pattern matching tools have already been integrated in
industry [46–49]. On the other hand, pattern matching is more
sensitive to process changes, as new set of patterns will have to
be built after process tuning. Machine learning can be more ro-
bust under process changes, and it can handle unseen patterns
more naturally. Hybrid approaches of machine learning and
pattern matching will be desirable.

B. Feature Extraction

In both machine learning and pattern matching techniques,
we need to analyze patterns. Each pattern is extracted into a
specific feature, which is an individual measurable heuristic
property describing the pattern. Feature extraction is a task
to represent the patterns using simple but comprehensive fea-
ture information, so that all the selected features can be distin-
guished. Therefore, feature extraction is one of the most criti-
cal steps in both machine learning and pattern matching. In this
subsection we introduce and analyze some classical feature ex-
traction techniques in physical design and physical verification.

4S-1

290

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a23 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

Feature Vector : X = {a11, a12, …, a54, a55}

��

��
��

��

Fig. 10. Density-based layout feature. Feature Vector is represented as:
X = {a11, a12, ..., a54, a55} [22].

21

3

Fig. 11. HLAC based layout feature.

A fragmentation based layout extraction scheme is presented
in [15], where the layout is cut into fragments. For each frag-
ment F , an effective radius r is defined to cover the neigh-
boring fragments which need to be considered in the context
characterization of F as shown in Fig. 9. A complete represen-
tation of F includes the geometric characteristic of fragments
inside r, including pattern shapes, the distance between pat-
terns, corner information (convex or concave), and so on.

Density based layout features are presented in [16, 22],
where a layout pattern is represented as a vector of layout den-
sity values of its surrounding area. Given a layout clip with
predefined grids, the method calculates the layout density cov-
ered in each grid. An ordered list of density values then forms
the final vector that represents the corresponding layout pattern.
Fig. 10 illustrates an example of density based layout feature.
The goal of this layout feature is not to identify the geometrical
features that may degrade the printability of a pattern. Instead,
it aims at providing a compact representation of layout patterns
to enable measurement of pattern similarities.

A higher-order local autocorrelation (HLAC) based lay-
out feature was proposed in [21]. As illustrated in Fig. 11,
in HLAC based layout feature a configuration of 3×3 pixels
forms 25 local mask patterns that take the shift-invariant prop-
erties into consideration. In each mask, black represents the
pixels engaged in multiplication and white represents “do not
care”. The masks are used to scan across the whole image, cal-
culating x value at each location and adding up all. The total
values for all masks are concatenated to from a vector as HLAC
features.

Fig. 12 compares the performance of different feature ex-
tractions. We can see from Fig. 12 (a) that fragmentation
based layout feature are separated into several clusters, and the
hotspot features are mixed with non-hotspot features. There-
fore, if not carefully designed, this feature may be too compli-
cated for single classification model to separate hotspots and
non-hotspots with high accuracy. From Fig. 12 (b) and (c)
we can see that for this case, density based feature and HLAC
based feature can define decision boundary easily.

In hotspot detection application, [22] proposes a method to
quantitatively evaluate the extracted features. The average dis-
tance of hotspot features to non-hotspot features, Z, is defined
as follows.

Z =
1

N

N∑
i=1

di (3)

where N is the total number of real hotspots in the training set.
d is the Mahalanobis distance [50] normalized by non-hotspot
features, as in (4).

di =

√
(xi − µ)TV−1(xi − µ)− dNHSmin

dNHSmax − dNHSmin

(4)

where µ is the center of mass of non-hotspot features, V is the
variance covariance matrix of non-hotspot features, dNHSmax

is the maximum Mahalanobis distance of non-hotspot features
and dNHSmin

is the minimum Mahalanobis distance of non-
hotspot features.

Generally speaking, Z < 1 indicates that it is difficult to
separate hotspots and non-hotspots linearly as the most hotspot
features are within the non-hotspot feature space. In contrast,
Z > 1 shows linear separation friendly features due to its dis-
tance of hotspot features from non-hotspot features. In other
words, to define an appropriate layout feature, Z is preferably
larger than 1 but not too large [22].

C. Overcome Overfitting in Machine Learning

Overfitting is the phenomenon where fitting the training pat-
terns well no longer indicates that the learning models can work
well for the testing patterns [51]. Generally speaking, overfit-
ting happens when the learning models or the extracted features
are more complex than necessary to represent the problem. In
other words, if the learning model uses additional degrees of
freedom to fit noise in the training patterns, we may observe a
bad fitting in testing patterns. There are several reasons why
overfitting happens, i.e., noise in the data, lack of representa-
tive samples, too complex feature, and too complex learning
models [52].

Fig. 13 shows an example of overfitting in a hotspot detec-
tion test case. The density based layout feature and AdaBoost
learning models are utilized in a hotspot detection framework.
To investigate the effect of overfitting, different levels of fea-
ture complexity can be applied. The largerWn value, the more
complex feature is extracted. We can see that when the feature
complexity is very low, both the training accuracy and testing
accuracy are bad, which is known as model underfitting. How-
ever, once the feature complexity becomes too large, although
the training accuracy is still high, the testing accuracy begins
to decrease.

4S-1

291

(a)

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(b)

3 2 1 0 1 2 3 4
3

2

1

0

1

2

3

(c)

Fig. 12. Comparison of different feature extraction methods, where red points are hotspot features and the white points are non-hotspot features: (a)
Fragmentation based feature; (b) Density based feature; (c) HLAC based feature.

Fig. 13. An example of overfitting that once the feature complexity (Wn)
becomes too large, the testing accuracy begins to decrease.

Several techniques can be applied to overcome the overfit-
ting issue. The first one is called regularization, which in-
troduces additional conditions in constraints or objective func-
tions in the learning models [53]. For example, the objective
function in (1) can be rephrased as follows.

min
α

:
1

2
αTQα− eTα+ λαTα (5)

where λ is a parameter to control the amount of regularization.
The penalty term αTα enforces a trade-off between making
higher training accuracy and simpler learning model. Another
technique handling overfitting is called cross validation [54],
where the training data is partitioned into training set and val-
idation set. The validation set can be used to estimate the per-
formance for testing data. In addition, the validation set can be
also applied to select appropriate learning models.

V. CONCLUSION

In this paper we have surveyed some commonly used ma-
chine learning and pattern matching techniques. We have also
introduced their applications in physical design and verifica-
tion, e.g., lithography hotspot detection, datapath placement,
and clock optimization. In addition, we have discussed some
advanced issues, including feature extraction, and overfitting
problem. Since modern VLSI circuits have billions of tran-
sistors/interconnects, machine learning and pattern matching

techniques have gained more and more attention to provide
reasonably good abstraction and quality-of-result. We hope
this paper will stimulate more studies on application specific
machine learning and pattern matching techniques in physical
design and VLSI CAD.

ACKNOWLEDGMENT

This work is supported in part by National Science Founda-
tion (NSF), Semiconductor Research Corporation (SRC), Na-
tional Natural Science Foundation of China (NSFC) research
project 61125401, 61376040 and 61228401, Shanghai Sci-
ence and Technology Committee project 13XD1401100, and
Toshiba.

REFERENCES

[1] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with emerg-
ing nanolithography,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 32, no. 10, pp. 1453–1472,
2013.

[2] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. MIT press, 2012.

[3] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design.
Pws Boston, 1996, vol. 1.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Conference on Learning Theory. ACM,
1992, pp. 144–152.

[5] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[6] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in Conference on Learning
Theory, 1995, pp. 23–37.

[7] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and Regression Trees. CRC press, 1984.

[8] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 1977.

[9] H. Wu, Q. Chen, and M. Yachida, “Face detection from color images
using a fuzzy pattern matching method,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 6, pp. 557–563, 1999.

[10] D. Singh, J. Pandey, and D. Chauhan, “Topology identification, bad data
processing, and state estimation using fuzzy pattern matching,” IEEE
Transactions on Power Systems, vol. 20, no. 3, pp. 1570–1579, 2005.

[11] J. Kim and M. Fan, “Hotspot detection on Post-OPC layout using full
chip simulation based verification tool: A case study with aerial image
simulation,” in Proceedings of SPIE, vol. 5256, 2003.

4S-1

292

[12] E. Roseboom, M. Rossman, F.-C. Chang, and P. Hurat, “Automated full-
chip hotspot detection and removal flow for interconnect layers of cell-
based designs,” in Proceedings of SPIE, vol. 6521, 2007.

[13] D. G. Drmanac, F. Liu, and L.-C. Wang, “Predicting variability in
nanoscale lithography processes,” in IEEE/ACM Design Automation
Conference (DAC), 2009, pp. 545–550.

[14] D. Ding, X. Wu, J. Ghosh, and D. Z. Pan, “Machine learning based litho-
graphic hotspot detection with critical-feature extraction and classifica-
tion,” in IEEE International Conference on IC Design and Technology
(ICICDT), 2009, pp. 219–222.

[15] D. Ding, J. A. Torres, and D. Z. Pan, “High performance lithography
hotspot detection with successively refined pattern identifications and
machine learning,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems (TCAD), pp. 1621–1634, 2011.

[16] J.-Y. Wuu, F. G. Pikus, A. Torres, and M. Marek-Sadowska, “Rapid lay-
out pattern classification,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), 2011, pp. 781–786.

[17] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, and C. Chiang, “Machine-learning-
based hotspot detection using topological classification and critical fea-
ture extraction,” in IEEE/ACM Design Automation Conference (DAC),
2013, pp. 671–676.

[18] Z. Xiao, Y. Du, H. Tian, M. D. Wong, H. Yi, H.-S. P. Wong, and
H. Zhang, “Directed self-assembly (DSA) template pattern verification,”
in IEEE/ACM Design Automation Conference (DAC), 2014, pp. 1–6.

[19] J.-R. Gao, B. Yu, and D. Z. Pan, “Accurate lithography hotspot detec-
tion based on PCA-SVM classifier with hierarchical data clustering,” in
Proceedings of SPIE, vol. 9053, 2014.

[20] B. Yu, J.-R. Gao, D. Ding, X. Zeng, and D. Z. Pan, “Accurate lithog-
raphy hotspot detection based on principal component analysis-support
vector machine classifier with hierarchical data clustering,” Journal of
Micro/Nanolithography, MEMS, and MOEMS (JM3), vol. 14, no. 1, p.
011003, 2015.

[21] H. Nosato, H. Sakanashi, E. Takahashi, M. Murakawa, T. Matsunawa,
S. Maeda, S. Tanaka, and S. Mimotogi, “Hotspot prevention and detec-
tion method using an image-recognition technique based on higher-order
local autocorrelation,” Journal of Micro/Nanolithography, MEMS, and
MOEMS (JM3), vol. 13, no. 1, p. 011007, 2014.

[22] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new lithography
hotspot detection framework based on AdaBoost classifier and simplified
feature extraction,” in Proceedings of SPIE, 2015.

[23] A. B. Kahng, C.-H. Park, and X. Xu, “Fast dual graph based hotspot
detection,” in Proceedings of SPIE, vol. 6349, 2006.

[24] H.Yao, S. Sinha, C. Chiang, X. Hong, and Y. Cai, “Efficient process-
hotspot detection using range pattern matching,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2006, pp. 625–
632.

[25] J. Xu, S. Sinha, and C. C. Chiang, “Accurate detection for process-
hotspots with vias and incomplete specification,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2007, pp. 839–
846.

[26] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang, and C. Chiang, “Ac-
curate process-hotspot detection using critical design rule extraction,”
in IEEE/ACM Design Automation Conference (DAC), 2012, pp. 1167–
1172.

[27] N. Ma, “Automatic IC hotspot classification and detection using pattern-
based clustering,” Ph.D. dissertation, Engineering and Mechanical Engi-
neering, University of California, Berkeley, 2008.

[28] J. Guo, F. Yang, S. Sinha, C. Chiang, and X. Zeng, “Improved tangent
space based distance metric for accurate lithographic hotspot classifica-
tion,” in IEEE/ACM Design Automation Conference (DAC), 2012, pp.
1173–1178.

[29] E. M.Arkin, L. Chew, D. P.Huttenlocher, K. Kedem, and J. S.B.Mitchell,
“An efficiently computable metric for comparing polygonal shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 3,
pp. 209–216, 1991.

[30] L. J. Latecki and R. Lakamper, “Shape similarity measure based on cor-
respondence of visual parts,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, no. 10, pp. 1–6, 2000.

[31] S.-Y. Lin, J.-Y. Chen, J.-C. Li, W.-Y. Wen, and S.-C. Chang, “A novel
fuzzy matching model for lithography hotspot detection,” in IEEE/ACM
Design Automation Conference (DAC), 2013, pp. 681–686.

[32] D. Ding, B. Yu, J. Ghosh, and D. Z. Pan, “EPIC: Efficient prediction
of IC manufacturing hotspots with a unified meta-classification formula-
tion,” in IEEE/ACM Asia and South Pacific Design Automation Confer-
ence (ASPDAC), 2012, pp. 263–270.

[33] J. Mitra, P. Yu, and D. Z. Pan, “RADAR: RET-aware detailed routing
using fast lithography simulations,” in IEEE/ACM Design Automation
Conference (DAC), 2005, pp. 369–372.

[34] J. Yang, N. Rodriguez, O. Omedes, F. Gennari, Y.-C. Lai, and V. Mankad,
“DRCPlus in a router: automatic elimination of lithography hotspots us-
ing 2D pattern detection and correction,” in Proceedings of SPIE, vol.
7641, 2010, p. 76410Q.

[35] J.-R. Gao, H. Jawandha, P. Atkar, A. Walimbe, B. Baidya, O. Rizzo,
and D. Z. Pan, “Self-aligned double patterning compliant routing with
in-design physical verification flow,” in Proceedings of SPIE, vol. 8684,
2013, p. 868408.

[36] D. Ding, J.-R. Gao, K. Yuan, and D. Z. Pan, “AENEID: a generic
lithography-friendly detailed router based on post-RET data learning and
hotspot detection.” in IEEE/ACM Design Automation Conference (DAC),
2011, pp. 795–800.

[37] S. I. Ward, D. A. Papa, Z. Li, C. N. Sze, C. J. Alpert, and E. Swartzlander,
“Quantifying academic placer performance on custom designs,” in ACM
International Symposium on Physical Design (ISPD), 2011, pp. 91–98.

[38] S. Ward, D. Ding, and D. Z. Pan, “PADE: a high-performance placer with
automatic datapath extraction and evaluation through high dimensional
data learning,” in IEEE/ACM Design Automation Conference (DAC),
2012, pp. 756–761.

[39] S. Chou, M.-K. Hsu, and Y.-W. Chang, “Structure-aware placement for
datapath-intensive circuit designs,” in IEEE/ACM Design Automation
Conference (DAC), 2012, pp. 762–767.

[40] H. Xiang, M. Cho, H. Ren, M. Ziegler, and R. Puri, “Network flow based
datapath bit slicing,” in ACM International Symposium on Physical De-
sign (ISPD), 2013, pp. 139–146.

[41] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
IEEE/ACM Asia and South Pacific Design Automation Conference (AS-
PDAC), 2007, pp. 135–140.

[42] D. Papa, C. Alpert, C. Sze, Z. Li, N. Viswanathan, G.-J. Nam, and I. L.
Markov, “Physical synthesis with clock-network optimization for large
systems on chips,” IEEE Micro, vol. 31, no. 4, pp. 51–62, 2011.

[43] M. Cho, H. Xiang, H. Ren, M. M. Ziegler, and R. Puri, “Latchplan-
ner: latch placement algorithm for datapath-oriented high-performance
VLSI designs,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2013, pp. 342–348.

[44] S. Held and U. Schorr, “Post-routing latch optimization for timing clo-
sure,” in IEEE/ACM Design Automation Conference (DAC), 2014, pp.
1–6.

[45] S. I. Ward, N. Viswanathan, N. Y. Zhou, C. C. Sze, Z. Li, C. J. Alpert, and
D. Z. Pan, “Clock power minimization using structured latch templates
and decision tree induction,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013, pp. 599–606.

[46] “Calibre pattern matching,” http://www.mentor.com/products.
[47] “Synopsys IC Validator,” http://www.synopsys.com.
[48] “Cadence Virtuoso DFM,” http://www.cadence.com.
[49] “Anchor Semiconductor NanoScope,” http://www.anchorsemi.com.
[50] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceed-

ings of the National Institute of Sciences (Calcutta), vol. 2, pp. 49–55,
1936.

[51] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from
Data. AMLBook, 2012.

[52] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison-Wesley, 2006.

[53] P. J. Bickel, B. Li, A. B. Tsybakov, S. A. van de Geer, B. Yu, T. Valdés,
C. Rivero, J. Fan, and A. van der Vaart, “Regularization in statistics,”
Test, vol. 15, no. 2, pp. 271–344, 2006.

[54] S. Arlot and A. Celisse, “A survey of cross-validation procedures for
model selection,” Statistics Surveys, vol. 4, pp. 40–79, 2010.

4S-1

293

