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ABSTRACT

With aggressive technology scaling in nanometer regime, a
significant fraction of dynamic power is consumed in the
clock network due to its high switching activity. Clock net-
works are typically synthesized and routed to optimize for
zero clock skew. However, clock skew optimization is of-
ten accompanied with routing overhead which increases the
clock net capacitance thereby consuming more power. In
this paper, we propose a skew bounded buffer tree resyn-
thesis algorithm to optimize clock net capacitance after the
clock network has been synthesized and routed. Our algo-
rithm restricts the skew of the designs within a specified
margin from its original skew, and does not introduce any
additional Design Rule Check (DRC) violation. Experimen-
tal results on industrial designs, with clock networks synthe-
sized and routed by an industrial tool, have demonstrated
that our approach can achieve an average reduction of 5.6%
and 3.5% in clock net capacitance and clock dynamic power
respectively with a marginal overhead in the clock skew.
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1. INTRODUCTION
Clock network synthesis is a fundamental design step in

modern ICs. In any synchronous VLSI circuit, the clock
network provides the synchronizing signals to the sequen-
tial elements (flip-flops). Clock skew is the difference in the
clock arrival times between two flip-flops. Although skew
has been exploited to cope with the unbalanced data-path
delays between the launch and the capture flops [1][2][3][4],
skew minimization has long been a prime focus for the CAD
engineers [5][6][7][8][9].
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Commercial tools synthesize buffered clock trees with spe-
cific skew targets in presence of process variations and on-
chip-variations [10][11] which along with clock latency (de-
lay from clock root to sink i.e., flip-flops) have been key
objectives in ISPD’09 and ISPD’10 contests [12][8]. How-
ever, this stringent skew target may not be needed in the
late design stage, i.e., after clock tree synthesis (CTS), to
achieve the timing closure. Rather, a marginal relaxation in
the clock skew might not hurt the timing profile of the de-
sign, but could be exploited to optimize the clock net capac-
itance. Wire sizing and the use of non-default routing with
more spacing can potentially improve skew and reduce over-
all clock tree capacitance [7][13][14], but at the cost of con-
gestion and higher chip area. Several other techniques have
been explored in the past to reduce clock dynamic power,
such as synthesis-based clock gating [15], data-driven clock
gating [16], clock gate cloning [17] and usage of multi-bit-
flip-flop (MBFF) [18], but none of them focus primarily on
the optimization of the clock net or wire capacitance at the
post-CTS stage.

Due to the high switching activity and larger capacitive
loads, 30-70% of the dynamic power is dissipated in the clock
network [19][20]. The pin capacitance of the clock elements,
such as the clock buffers, inverters, clock gates etc., and
flip-flops, and the wire capacitance of the clock nets con-
tribute to the clock dynamic power consumption. Recently,
the net capacitance has become comparable, and sometimes
even higher than the pin capacitance due to several reasons.
Firstly, device size is shrinking with technology scaling, and
as a result pin capacitance has reduced at much faster rate
than the net capacitance. Secondly, with growing design
complexity and aggravating variation effect, massive clock
gating and skew balancing introduce more and more routing
overhead. Consequently, clock net capacitance contributes
a significant fraction of the clock dynamic power.

In this paper, we formulate a problem with the target ob-
jective of reducing the clock net capacitance of an already
synthesized and routed clock tree network, given a specified
relaxation margin in the clock skew. A buffer-tree resynthe-
sis algorithm has been proposed which traverses the clock
network in a bottom-up fashion, and relocates the clock
buffers/inverters guided by mean-centric grid based place-
ment (MCGBP). Since this resynthesis approach has been
exercised in the post-CTS stage, semi-global optimizations
by moving multiple clock buffers/inverters at a time may not
be suitable as it would be disruptive to the timing profile of
the design. Instead, we have explored the movement of the
clock buffers/inverters one-by-one and ensured that these
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local transformations do not (i) add any design-rule-check
(DRC) violation, such as the maximum load or maximum
slew violation etc., and (ii) increase the clock latency apart
from meeting a specific skew bound. The key contributions
of our paper are summarized as follows:

• To the best of our knowledge, this is the first problem
formulation to optimize the clock net capacitance at
the post-CTS stage given a specific skew bound.

• A buffer tree resynthesis algorithm has been proposed
by mean-centric grid based placement of the clock buffers
and inverters in bottom-up fashion without introduc-
ing any new DRC violation and increasing the clock
latency.

• Our approach has been integrated into an industrial
tool, and the execution of this algorithm on 22-65nm
industrial designs resulted an average 5.6% reduction
in the clock net capacitance with small improvement
in the pin capacitance of the clock network.

The rest of the paper is organized as follows. Section 2
describes the problem formulation. Section 3 presents our
skew bounded buffer tree resynthesis algorithm. Section 4
presents the experimental results for industrial designs with
conclusion in Section 5.

2. PROBLEM FORMULATION
Suppose there are n clock domains in an already synthe-

sized and routed clock tree network. Let WCclk be the total
wire capacitance of the clock network. Then the formulation
of our problem is as follows:

minimize: WCclk

subject to: ∀i ∈ [1, n] Skew
′

i ≤ Skewi + ∆margin

(1)

where, Skewi and Skew
′

i are the skew of the ith clock do-
main before and after the DRC-aware clock network mod-
ification respectively and ∆margin is the margin allowed in
the skew. By DRC-aware, we mean that the clock network
modification is not allowed to introduce any new DRC vi-
olation, and in addition not to increase the clock latency.
Note that we have used the terms net capacitance and wire
capacitance interchangeably throughout the paper.

3. SKEWBOUNDEDBUFFERTREERESYN-

THESIS
In this section, we describe our approach. At first, we

present the key idea behind the incremental clock tree mod-
ification. Then we illustrate why and how the clock network
is traversed in the bottom-up fashion. Next, we describe
the algorithm for single buffer migration followed by mean-
centric grid based placement mechanism to scale this ap-
proach.

3.1 Incremental Clock Tree Modification
The key idea of our approach is to size and move the

clock buffers or inverters towards its loads. Consider Fig.
1 to illustrate the incremental clock tree modification. For
instance, B2 drives two other clock buffers B3 and B4, and
B2 is placed closer to B3 and B4 in Fig. 1(b), followed by
blockage aware re-routing of the nets n2, n3 and n4. The

new placement of B2 and the re-routing of the nets (n2, n3

and n4) will impact the clock arrivals in the flip-flops which
are at the transitive-fanout (TFO) cone of B0. Since B2

is placed closer to its loads, intuitively the wire-load for B2

would decrease whereas the same for B0 may increase. How-
ever, it ultimately depends on how the re-routing of those
nets occurs in the placed design with existing routing. It
should be stressed that global wire-load minimization might

not always happen due to the change in routing topology, but

also because of routing in different layers.

B1 B2

B3 B4

B0

n1
n2

n3 n4

(a) Original
clock tree

B1 B2

B3 B4

B0

n1 n2

n3
n4

(b) Moving and
sizing B2

Figure 1: Incremental clock tree modification

The benefit of this incremental clock tree modification can
be two-fold: (i) it can reduce the total wire-capacitance of
the clock nets, and (ii) if the size of B2 is reduced, it will
reduce the pin-capacitance as well. But this can increase
the skew of the clock network, and can introduce new DRC
violations. So we need to respect these two constraints while
physically realizing the transformation.

3.2 Bottom-up Traversal
We adopt a bottom-up traversal of the clock network for

performing the incremental modification in the clock tree.
This is due to most of the total capacitance of the clock
network is associated with the bottom-levels, i.e., closer to
the flip-flops. For instance, [9] has shown with one bench-
mark from ISPD’10 contest [8] that 71% and 12% of the
total capacitance are respectively linked with the bottom-
most level and second bottom-most level. For each clock
domain the incremental modification is performed within
the scope of a hyper-net. A hyper-net is a set of logically
equivalent or opposite polarity nets which are separated by
buffers or inverters in the same physical partition as the
root driver of the top net [21]. Note that we do not perform
the transformation on any clock-gate or clock-multiplexers,
as such an action could worsen the timing pertaining to
the enable signals. Fig. 2 shows three hyper-nets, and
the traversal order for these hyper-nets can be HyperNet1
→ HyperNet2 → HyperNet0. The relative order between
HyperNet1 and HyperNet2 is random. But a prioritized or-
dering can be imposed giving more precedence to the hyper-
net with higher switching activity to facilitate more savings
in dynamic power.

3.3 Single Buffer Migration (SBM)
Algorithm 1 presents the key steps of Single Buffer Mi-

gration (SBM). It works on a buffer or inverter (cell) in
the clock network. First, the output net of cell is obtained,
and the bounding box (bbox) of the net is calculated (Lines
2-3). At the next stage, we try to find the best position
within bbox for cell for migration, such that the resultant
wire-capacitance of the clock network is optimized. How-
ever, since this migration occurs after placement in post-
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Figure 2: Bottom-up traversal within and across
hyper-nets

CTS stage, cell can not be moved to any position in order
to avoid the placement overlap with the already placed cells.
So we find the set of congestion free positions (positionSet),
and attempt to explore those positions (Lines 4-21). The
detailed mechanism for finding these positions will be dis-
cussed in Section 3.4.

Algorithm 1 Single Buffer Migration

1: Procedure SBM(cell);
2: opnet ← output net of cell;
3: bbox ← bounding box of opnet;
4: positionSet ← congestion free positions within bbox;
5: for all pos ∈ positionSet do

6: cellTypeSet← available buffers or inverters in the library;
7: for all cellType ∈ cellTypeSet do

8: substitute the cell-type of cell with cellType;
9: place cell in pos;

10: re-route the nets connected to cell;
11: if isDRCViolation then

12: continue;
13: end if

14: if Skew
′

> Skew + ∆margin then

15: continue;
16: end if

17: if cost(currentSol) < cost(bestSol) then

18: bestSol ← currentSol;
19: end if

20: end for

21: end for

22: return

23: end Procedure

For each available position, we also explore different siz-
ing options for cell, followed by re-routing of the clock nets
connected to cell (Line 10). For instance, if we consider the
cell B2 in Fig. 1, then n2, n3 and n4 will be re-routed. If
this migration with sizing and re-routing introduces any new
DRC violation, then this move is not accepted (Lines 11-13).
We also do not up-size the cells as it could increase the total
pin-capacitance of the clock network. In addition, we check
if the skew exceeds the pre-specified margin by the move
(Lines 14-16). Among all these moves (with sizing), the so-
lution giving the best improvement in wire-capacitance of
the clock network is committed by backtracking mechanism
(Lines 17-19). It should be stressed that the algorithm has

been integrated to an industrial tool and all these moves are

followed by the re-routing of the clock nets along with rout-

ing layer assignment by the tool to get the accurate skew
measurement and the improvement in wire-capacitance of
the clock network in a fast and incremental way.

However, it is still computationally intensive to explore all
congestion free positions and all sizing options. So we pro-
pose mean-centric grid-based placement along with pruned
sizing options to scale the approach.

Figure 3: Mean-centric grid exploration with
gridParam = 1

3.4 Mean-Centric Grid-Based Placement
(MCGBM)

In modern designs, a clock net can drive tens of clock
buffers or inverters. Although the CAD tools try to place
those buffers in geometrical proximity, it may not be always
possible, and thus the buffers driven by a net can be placed
wide apart. As a result, the area of the bounding box of the
clock net can be large, and attempting all congestion free
positions in the bounding box can be run-time intensive.
On the other hand, the sum of the euclidean distances from
a point (x, y) to a set of n points, such as (x1, y1), (x2,

y2)...(xn, yn) is given by
Pn

i=1

p

(x − xi)2 + (y − yi)2 and

minimized for the mean position, i.e., x =
Pn

i=1
xi

n
, y =

Pn
i=1

yi

n
. So the neighborhood locations of mean position

are preferred for capacitance cost optimization.
To move the targeted clock cell accordingly, we divide the

bounding box (found in Algorithm 1) into grids of (2h × 2w),
where h and w are the height and width of the cell respec-
tively. Note this grid-granularity is experimentally found to
be suitable for solution quality and run-time. To spot the
neighborhood of the mean position, we define a parameter
called gridParam. Suppose the mean position of the net is
in a certain grid gr. In that case, we will explore all the grids
for which the grid distance in x and y co-ordinates from gr

are both less or equal to gridParam. This is explained in
Fig 3 representing the grid-based partitioning and the centre
of gravity (CG) or mean position of the bounding box. For
instance, if gridParam = 1, then all shaded grid positions
in Fig 3 will be explored for placement.

Additionally, instead of trying with all down-sizing op-
tions for the targeted clock buffer or inverter (Line 7 in Al-
gorithm 1), we explore the pre-sorted (according to size)
library cells in decreasing order. Once we get a higher cost
compared to earlier sizing options, we do not further try to
down-size. Experimentally we have observed that this prun-
ing technique does not practically incur any compromise in
the solution quality, but saves run-time.

4. EXPERIMENTAL RESULTS
We have implemented the algorithms presented in this

work in C++ and run it on a Linux machine with 16-Core
3GHz CPU and 256GB RAM. Table 1 presents the charac-
teristics of 6 industrial designs using cutting-edge technol-
ogy nodes (22-65nm) along with experimental results run
on those designs. The designs are sorted according to the
number of cells in the design (Column 3). Columns 2 and
4 represent the technology node and the total number of
flip-flops in the designs respectively. Column 5 shows the
maximum clock latency (maximum of rise latency and fall
latency) in the clock networks of the respective designs. De-
sign ‘F’ is the biggest design in terms of the total num-
ber of cells, whereas design ‘D’ has biggest clock network
with around 136k flip-flops. Column 6 presents the ratio
of the clock net capacitance (capnet) to the clock pin ca-
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Table 1: Design characteristics and clock capacitance/dynamic power reduction
Design Technology # of # of Clock capnet

cappin
capnet cappin Pdyn reduction Run-time

(nm) cells flops latency (ps) imprv. (%) imprv. (%) (%) (min)
A 65 68,945 11,937 791 0.60:1 4.0 1.0 2.13 25.0
B 65 79,055 11,741 1573 0.66:1 4.7 1.6 2.83 22.4
C 28 128,444 18,967 1034 0.79:1 6.0 0.03 2.66 37.9
D 22 590,392 135,937 1227 2.26:1 3.3 0.4 2.41 245.0
E 28 687,221 34,399 738 2.60:1 9.6 0.84 7.17 56.7
F 28 859,833 37,239 1554 2.25:1 5.7 0.2 4.01 46.3

Average 5.55 0.52 3.54

pacitance (cappin). Columns 7 and 8 respectively represent
the percentage reduction in capnet and cappin in the clock
network of the designs. Considering the switching activities
to be same across all hyper-nets in the clock network, the
clock dynamic power (Pdyn) improvement is calculated as
the weighted sum of the improvements in the net capaci-
tance and the pin capacitance in Column 9. For instance,
the improvement in capnet and cappin for the design ‘C’ are
6.0% and 0.03% respectively, and the ratio of net to pin
capacitance is 0.79:1. So the clock dynamic power improve-
ment would be 6.0× 0.79

1.79
+ 0.03× 1

1.79
= 2.66%. Column 10

shows the run-time of our approach in each design.
On average, our algorithm achieves respectively 5.55%,

0.52% and 3.54% improvement in capnet, cappin and Pdyn.
The pin-capacitance improvement is much smaller as down-
sizing the buffers to improve cappin typically (i) introduces
maximum slew and maximum load violations and (ii) changes
the clock arrivals to a greater extent than just by local move
of the buffers, violating the constraints related to the skew
and the clock latency. Due to the higher net-to-pin capac-
itance ratio, the power improvement is higher in the lower
technology node, most being for the designs ‘E’ and ‘F’ with
around 7.2% and 4.0% respectively. It should be stressed
that these improvements are over the baseline clock network

synthesized and routed by an industrial tool. The skew mar-
gin is kept at 20ps. gridParam is set to 10 for all these
runs. To justify the selection of gridParam, we take the
smaller design A and run our algorithm with gridParam =
1, 2, 5, 10, 20 and covering the entire bounding box for each of
the nets. Fig. 4 shows the curve for run-time vs. percentage
wire-cap reduction. The curve is initially monotonic with
gridParam, but starts to flatten beyond gridParam = 10.
The maximum run-time is around 4 hours for the design ‘D’.
This is because although it is not the biggest design, it has
the biggest clock network in our benchmark suite.

5. CONCLUSION
To our best knowledge, this is the first work to optimize

the clock net capacitance of already synthesized and routed
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Figure 4: Percentage wire-cap improvement vs. run
time trade-off for design A

clock networks by a buffer tree resynthesis algorithm. Our
approach has been integrated into an industrial tool, and
provided an average 5.6% and up to 9.6% improvement in
clock net capacitance over the baseline clock networks of
industrial designs synthesized and routed by the industrial
tool. In terms of clock dynamic power reduction, our algo-
rithm can reduce the clock dynamic power up to 7.2% and
3.5% on average. Since with technology scaling, the percent-
age contribution of net capacitance is becoming higher and
higher in comparison to the pin capacitance, we believe that
our approach can potentially reduce more dynamic power in
modern designs.
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