
OSFA: A New Paradigm of Gate-Sizing for
Power/Performance Optimizations under Multiple

Operating Conditions

Subhendu Roy‡, Derong Liu‡, Junhyung Um†, David Z. Pan‡
‡Department of Electrical and Computer Engineering, University of Texas at Austin, USA

†Samsung Semiconductor, Yongin City, Korea (Republic of)
{subhendu,derongliu}@utexas.edu, junhyung.um@samsung.com, dpan@ece.utexas.edu

ABSTRACT

Modern SoCs and microprocessors, e.g., those in smart phones
and laptops, typically have multiple operating conditions,
such as video streaming, web browsing, standby, and so on.
They will have different performance targets and run under
different supply voltages. Gate sizing (with threshold volt-
age assignment) is a fundamental step for power/performance
optimization. However, conventional gate sizing algorithms
only consider one scenario, e.g., the performance-critical op-
erating condition, which may be over-design for other oper-
ating conditions. In this paper, we present a new paradigm
of gate sizing, OSFA (One-Size-Fits-All), which performs
power/performance optimizations across multiple operating
conditions. Based on OSFA, we also adjust the supply volt-
age targeting overall power optimization. Experimental re-
sults on industry-strength benchmarks demonstrate that com-
pared with conventional approach OSFA could provide an
average 6.1% reduction in power without performance loss.

1. INTRODUCTION
With growing design complexity of System-On-Chip (SoC)

and increasing number of cores in microprocessors, same de-
sign IP may run under different operating conditions or sce-
narios [1]. For instance, video streaming and gaming in lap-
tops or smart phones are high-speed applications, whereas
the performance requirement for the applications such as
web-browsing or text messaging is not stringent. Conse-
quently, supply voltage (Vdd) for the performance-relaxed
scenarios are typically kept lower to save the dynamic and
leakage power.

However, the physical gate sizes of the design need to be
fixed and discrete across all operating conditions. A lot
of work have been done in the past on simultaneous gate
sizing and threshold voltage (Vth) assignment to perform
power/performance optimization [2][3][4][5][6][7][8]. But the
traditional gate-sizing algorithms consider only one scenario
and then designers need to ensure that it meets the timing
constraints in all scenarios. This approach has several lim-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC’15, June 07 - 11, 2015, San Francisco, CA, USA.
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2744769.2744885

itations. Firstly, the timing models in modern cell-libraries
are non-linear, and look-up table based [5], and in addi-
tion, the supply voltage induced delay scaling in the multi-
threshold cell-library depends on Vth as well [9]. For in-
stance, the scaled delay at a particular lower Vdd would be
higher for cells with higher Vth than the cells with lower Vth

as CMOS gate delays depend on (Vdd − Vth). So it may be
possible that the gate-sizes suitable for the constrained sce-
nario do not meet the timing constraints for other scenarios
under reduced voltage. As a result, designers either need to
fix the timing violations incrementally for all scenarios which
is tedious or boost up Vdd in the scenarios where timing is
not met. Secondly, in addition to Vdd, the total power of
the design depends on (i) the fraction of time spent and (ii)
the switching activities of the nets in each scenario. Conse-
quently, consideration of only one scenario during gate-sizing
can be sub-optimal in terms of power optimization.

In this paper, we propose a new paradigm of gate-sizing
One-Size-Fits-All (OSFA) which selects Vth and sizes of the
logic gates in the design to optimize power meeting timing
constraints across all scenarios. To solve this, we extend the
Lagrangian Relaxation based formulation of one scenario
to tackle multiple scenarios followed by sensitivity driven
power recovery. Multi-threaded implementation is done to
cope with the high computational need of our algorithm. A
design-space exploration for power vs. Vdd is performed to
tune Vdd in the performance-relaxed scenarios. We also pro-
pose a speed-up technique in the design-space exploration
for more than two operating conditions. The key contribu-
tions of our paper are summarized as follows:

• To the best of our knowledge, this is the first gate-
sizing problem formulation considering multiple oper-
ating conditions to optimize the total power of any IP
design. To tackle multiple operating conditions holis-
tically, scenario aware Lagrangian Relaxation (SALR)
problem is formulated for OSFA.

• A cross-layer methodology is developed where system
and logic level specifications such as Vdd, scenario per-
centage and the switching activities in different sce-
narios are considered to select the gate-sizing options
which can further guide design-space-exploration by
providing feedback to the system level to optimize over-
all power consumption.

• A speed-up technique is proposed to scale this method-
ology for higher number of operating conditions, and
the degradation in the solution quality for this speed-
up is experimentally demonstrated to be small. It is

also observed that the percentage savings in power
compared to the conventional methodology increases
with the number of operating conditions.

The rest of the paper is organized as follows. Section 2
motivates the problem of gate-sizing under multiple operat-
ing conditions. Section 3 presents the problem formulation
and OSFA algorithms to solve the scenario aware gate-sizing
problem are described in Section 4. Section 5 presents the
experimental results for industry-strength large-scale bench-
marks with conclusion in Section 6.

2. MOTIVATIONAL EXAMPLES
In this section, the problem of scenario aware gate sizing

has been motivated by examples from the perspectives of
both timing and power. In the example of timing perspec-
tive, we have shown that the sizing and threshold voltage
assignments which meet the timing in one scenario may not
meet the same for the other scenario, and vice versa. On
the latter, we have illustrated an example where two siz-
ing schemes may meet timing for both the scenarios, but
the scheme considering both scenarios and the scenario per-
centages (or fraction) results in lesser power than the other
scheme which considers only the constrained scenario.

2.1 Timing Perspective
Consider a chain of two inverters with fast and slow sce-

narios, namely sc1 and sc2 respectively with target delays of
70ps and 100ps. Due to lower Vdd in sc2, suppose the delay-
scaling factors for sc2 w.r.t. sc1 are 1.5 and 1.3 respectively
for the slow (high-threshold) and fast (low-threshold) library
cells. Fig. 1 illustrates the situation, where the symbols in-
side the inverters indicate the cell types. For instance, sl

represents a slow and lower size library cell and fh repre-
sents a fast and higher size library cell. The numbers in the
bracket indicate the delay of the inverters in sc1 and sc2, ex-
cept for the output it represents the arrival times. It should
be noted that the ratio of the delay values in case of second
inverter is slightly higher than the scaling factors (1.5 or 1.3)
in order to account for the impact of slew degradation at the
output of the first inverter.

sl fh

(50ps, 75ps) (20ps, 28ps)

(70ps, 103ps)

(a) Meeting timing constraints of sc1, but
violating that of sc2

f l
sh

(45ps, 58.5ps) (26ps, 40ps)

(71ps, 98.5ps)

(b) Meeting timing constraints of sc2, but
violating that of sc1

Figure 1: Motivation for scenario aware gate sizing:

timing perspective

We can see that the sizing and Vth selection scheme shown
in Fig. 1(a) can meet the target delay of sc1, but violates the
delay constraint for sc2 and vice-versa for the scheme in Fig.
1(b). So by considering only one scenario for gate-sizing, it
might not be possible to meet the timing constraints for all
the scenarios.

n1

n2

n3

n4

I1(size = 2)

I2(size = 2)

I3(fast)

LP (I1) = LP (I2) = 5

LP (I3) = 80

DP (n1) = DP (n2) = 8

DP (n3) = DP (n4) = 10
(a) Scheme 1

n1

n2

n3

n4

I1(size = 8)

I2(size = 8)

I3(slow)

LP (I3) = 10

LP (I1) = LP (I2) = 20

DP (n1) = DP (n2) = 30

DP (n3) = DP (n4) = 10
(b) Scheme 2

Figure 2: Motivation for scenario aware gate sizing:

power perspective

2.2 Power Perspective
Consider two scenarios sc1 and sc2 and two sizing schemes

Scheme1 and Scheme2 as shown in Fig. 2. Let the supply
voltage, usage percentage, and clock frequency for sc1 are
respectively 1V , 10% and 1GHz and those for the other
scenario are respectively 0.8V , 90% and 0.7GHz. Let saij

be the switching activity of the net ni in scenario j and
sa11 = sa21 = sa31 = sa41 = 0.5, sa12 = sa22 = sa32 =
sa42 = 0.32. Suppose both the schemes meet timing in both
scenarios. The leakage power (LP) and dynamic power (DP)
of the cells and nets, mentioned in Fig. 2(a) and 2(b), are
for the scenario sc1.

If we add up the power numbers in sc1 the total power
in Scheme1 and Scheme2 are respectively 126 and 130. So
Scheme1 is the better scheme considering only sc1. But if we
consider both the scenarios, then LP in Scheme1 is 0.1×(5+
5+80)+0.9×(5+5+80)×(0.8

1
) = 73.8 and DP in Scheme1 is

0.1×(8+8+10+10)+0.9×((0.32
0.5

)×8+(0.32
0.5

)×8+(0.32
0.5

)×10+

(0.32
0.5

) × 10) × (0.8
1

)2 × (0.7
1

) = 12.9 totaling 86.7. Note that
the scaling factors for Vdd, frequency and switching activity
of the nets ni (∀i ∈ [1 4]) in sc2 w.r.t. sc1 are respectively
0.8, 0.7 and 0.32

0.5
. Similar calculation on Scheme2 gives the

total power number as 69.6. So Scheme2 is actually the
better option when considering both the scenarios.

3. OSFA PROBLEM FORMULATION
Suppose there are n scenarios and each scenario i ∈ [1, n]

is characterized by the voltage level V i
dd, the usage percent-

age and the switching activities (SAi) of the nets in the de-
sign. The timing targets in each scenario are different and
say it is Ti for the ith scenario. In each scenario i, leakage
power (LP) depends on V i

dd, and the dynamic power (DP)
depends on V i

dd (quadratically) and the switching activities.
The formulation for our problem is as follows:

minimize:
X

ai[LP (V i
dd) + DP (V i

dd, SAi)]

subject to: ∀i ∈ [1, n] Tdelay(V i
dd) ≤ Ti

(1)

where, Tdelay(V i
dd) is the maximum combinational delay be-

tween timing start-point to timing end-point in ith scenario
and ai is the fractional percentage for the scenario i so that
P

ai = 1.

4. OSFA ALGORITHMS
We employ a two-step approach to solve the scenario aware

gate sizing problem. In the first step, the Lagrangian Relax-
ation (LR) based formulation in [5] is enhanced to consider
more than one scenario. This step gives a solution which
meets timing in all scenarios. But since discrete gate siz-
ing problem is NP-hard [10], LR based solution can not be
optimal. So a scenario aware sensitivity driven power re-
covery technique is then applied to further optimize power.
Before going into the details of these steps, we first describe
the models used for delay and power to consider multiple
scenarios.

4.1 Delay and Power Models
Modern industrial cell libraries have look-up table based

delay models for various scenarios. In our case, we have
taken the industrial benchmarks and cell-library from the
recent ISPD’12 contest [11]. However, it contains the delay
and leakage power information for single Vdd. In Section
5.1, we have described in details how we have generated
the scenarios with different voltages. To calculate delay and
leakage power across various scenarios, scaling factors have
been introduced. Let V nom

dd and V i
dd be the supply voltages

at the nominal scenario and the ith scenario. Assuming a
first-order delay model for CMOS gate delay [9] and veloc-
ity saturation constant α ≃ 1 the ratio of delay of the ith

scenario to that of the nominal scenario is given by:

tdelay(V i
dd)

tdelay(V nom
dd)

=
1 −

Vth

V nom
dd

1 −
Vth

V i
dd

(2)

Although Vdd has a second-order effect on leakage current
[12], we have assumed leakage current to be independent of
Vdd for the sake of simplicity and thus the corresponding
ratio for leakage power is given by:

LP (V i
dd)

LP (V nom
dd)

=
V i

dd

V nom
dd

(3)

Dynamic power for a net with switching activity sa is com-
puted as DP = sa×fclk ×CL×Vdd

2, where fclk is the clock
frequency and CL is the total capacitance of the net. Since
the internal (short-circuit) power of the library cells are not
provided in the library, we have not considered it, but it can
be easily added into the power component if available.

4.2 Scenario Aware Lagrangian Relaxation
(SALR)

It has been shown that by using Karush-Kuhn-Tucker
(KKT) conditions, LR-based formulation for single scenario
discrete gate sizing problem can be transformed to the fol-
lowing functional form [5][13]:

α·power+
X

u→v

µu→vdu→v+
X

po

µpo(−rpo)+
X

pi

µpi(api) (4)

where, µu→v, µpo and µpi are the Lagrange Multipliers (LM)
for the timing arc u → v, primary output po and primary
input pi respectively, du→v is the delay of the arc u → v. rpo

denotes the required time of arrival at po, api denotes the
arrival time at pi, and α is the trade-off parameter between
power and timing slacks.

To tackle multiple scenarios at a time, we modify the Eqn.
(4) as follows:

n
X

i=1

(αiai[LP (V i
dd) + DP (V i

dd, SAi)] +
X

u→v

µu→v,idu→v,i

+
X

po

µpo,i(−rpo,i) +
X

pi

µpi,i(api,i)) (5)

where subscript i has been added in the terms to signify the
corresponding terms for ith scenario. It should be stressed
that the power components are weighed by the respective
ais, but no such weighing factor is added for the timing
terms as the timing needs to be met for all scenarios.

Algorithm 1 SALR Optimization

1: Procedure SALROpt(design, library)
2: Initialize Lagrange multipliers for all scenarios;
3: while Leakage power improvement is more than a threshold do

4: for all i ∈ Scenarios do

5: slackFactor(i) ←
Tclk,i

Tclk,i−worstSlack(i) ;

6: end for

7: sc← scenario with the minimum slackFactor;
8: if worstSlack(sc) > slackThreshold(sc) then

9: αglobal ← αglobal × (slackFactor(sc))2;
10: else

11: αglobal ← αglobal × (slackFactor(sc));
12: end if

13: LRSOpt(design, library, αglobal);
14: for all i ∈ Scenarios do

15: runSTA(design, library, i);
16: updateLagrangeMultipliers(design, i);
17: end for

18: end while

19: end Procedure

Algorithm 1 presents the key steps of the SALR optimiza-
tion. At first the maximum load violations are fixed by
traversing the cells in reverse topological order and choosing
best possible legal cell-types [4]. No max-load violation is
introduced throughout the optimization procedure by check-
ing the legality before any cell-type substitution. This is not
shown in Algorithm 1. Then the LMs are initialized for all
the scenarios (Line 2). This is done by setting the LMs
at the timing end-points (primary output/flop input) and
then traversing in reverse topological order to assign the
multipliers at other pins satisfying the KKT conditions [13].
Then slackFactor for all scenarios are calculated (Line 5)
representing the global timing picture of the design across
the scenarios. Since lesser the slackFactor, more timing
constrained the scenario is, the scenario sc with minimum
slackFactor is selected to scale αglobal (Lines 8-12). If the
worstSlack(sc) is less than 0, then αglobal is down-scaled to
impose more importance on the timing and vice-versa. If the
worstSlack(sc) is greater than slackThreshold(sc), then
αglobal is up-scaled aggressively to impose more weight on
leakage power reduction. In our algorithm, slackThreshold(i)

is set to be equal to
Tclk,i

50
.

At the next step, the Lagrangian sub-problems are solved
for individual cells in topological sorted order. For each
of the cell, αi in Eqn. (5) is calculated by scaling αglobal

for individual cell based on the slack of that cell in the ith

scenario. The cost for each cell-type (ct) from the cell library
is calculated according to Eqn. (6), and ct which minimizes

the cost for that cell is selected.

costc(ct) =

n
X

i=1

(αiai[LPct(V
i

dd) +
X

net∈N

(DP (V i
dd, SAi))]

+
X

u→v

µ
r
u→v,id

r
u→v,i + µ

f
u→v,id

f
u→v,i) (6)

To illustrate this consider the Fig. 3 for cost calculation
of the cell c3. For the timing part of the Eqn. (6), the
rising (r) and falling (f) timing arcs (u → v) for the cells,
which are immediate fan-ins (c1, c2), siblings (c6, c7) and
fan-outs (c4, c5), are taken into account. From the power
perspective, leakage power of the cell c3 with type ct (LPct)
and the dynamic power of the fan-in nets (n1 and n2) are
considered in the cost computation.

c1

c2

c3

c4

c5

c7

c6

n1

n2

n3

n4

n5

Figure 3: Cost calculation for a cell

Finally, the STA engine is run and Lagrange multipliers
are updated at the end of the iteration (Lines 14-17) for all
the scenarios. The update is done by first scaling the La-
grange multipliers of individual timing arc/primary output
according to the available slack. For instance, the Lagrange
multiplier (for rise delay) at primary output (po) is updated

as µr
po,i = µr

po,i ×
ar

po,i

Tclk,i
, where ar

po,i represents the rise ar-

rival time at po in the ith scenario. Then the multipliers are
updated to match the KKT conditions.

Algorithm 1 is computationally intensive as it needs to run
the STA engine and calculate costs across the scenarios. So
we have implemented STA (Line 15), update of LMs (Line
16) and cost estimation in ‘LRSOpt’ using Intel threading
building blocks [14]. Typical STA implementation involves
the calculation of arrival times (AT) in topological order
and required time of arrival (RTA) in reverse topological
order. The cells in the design are divided in accordance to
the topological levels, and the computation of AT/RTA, LM
update and cost estimation in a certain topological level are
done in parallel.

4.3 Sensitivity Driven Power Recovery (SDPR)
Since the problem is non-convex, the optimal solution

cannot be achieved by only solving the Lagrangian sub-
problems. Instead the solution obtained in the first phase
is considered as a seed solution on which a sensitivity based
power recovery technique is applied to lead towards optimal-
ity by recovering more power at the non-critical paths.

In this phase, again another ‘while’ loop is executed. Al-
gorithm 2 shows the steps of this phase. Like Algorithm
1, the constrained scenario (sc) is determined by choosing
the scenario with minimum slackFactor. Then the cells are
sorted according to its criticality (Line 4), determined by the
maximum among the Lagrange multipliers (in sc) of its in-
put pins and then these sorted cells are processed in order,

i.e., the cells, which are less timing critical, are processed
first (Line 6). For each cell, we calculate a sensitivity factor
for each of the available cell-type. The sensitivity factor is
the ratio of the power gain to the loss in timing slack by sub-
stituting the cell. The cell-type which gives the maximum
sensitivity factor is selected.

Algorithm 2 SDPR Optimization

1: Procedure SDPROpt(design, library)
2: while Leakage power improvement is more than a threshold do

3: sc← scenario with the minimum slackFactor;
4: Sort cells in accordance to maximum LM in sc;
5: Set all cell status to true;
6: for all cell ∈ sortedCellList in increasing order do

7: if status(cell) = false then

8: Continue;
9: end if

10: Select a celltype maximizing Sfactor ←
∆P

∆slackloss
;

11: Run BFS in the fan-in/fan-out cone of cell;
12: Set flag to false for all discovered cells;
13: end for

14: for all i ∈ Scenarios do

15: runSTA(design, library, i);
16: updateLagrangeMultiplier(design, i);
17: end for

18: end while

19: end Procedure

Consider the cell c3 as shown in Fig. 3. Let its origi-
nal cell-type be ct1 and we want to calculate the sensitivity
factor for changing its cell-type to ct2. By changing the
cell-type, the input capacitances of c3 is modified leading
to change in input-to-output delays across c1 and c2. For
each scenario i, the arrival time/slew at n3 is calculated
considering this. Then we calculate the loss in timing slack
∆slackloss,i as the difference of the updated arrival time
and the actual arrival time at n3. We also consider the
impact of change in slew at n3 by taking the maximum in-
crease in the arrival at the output nets of its fanout cells,
i.e., c4 and c5, and add that to ∆slackloss,i. If this slack
loss is greater than the available slack at n3 for any sce-
nario, then we skip that cell-type. Otherwise, to consider
various scenarios and the rise/fall slack loss, we take the
worst case slack loss of the two across all scenarios in sen-
sitivity calculation. Suppose the gain or decrease in power
be ∆P =

Pn

i=1
ai(Pct1,i − Pct2,i) and so we calculate the

sensitivity factor (Sfactor = ∆P
∆slackloss

) for each of the cell-

types available in the library and select the cell-type with
maximum Sfactor.

Once we change the cell-type, we set a flag false corre-
sponding to all the cells which are in fan-in and fan-out cone
of c3 and we do not try to modify the cell types of those cells
in that iteration. This process is repeated by going over all
cells (note the cells for which the flag becomes false are not
processed in that iteration). It might be possible that the
timing slack becomes negative for the design in one scenario.
This is possible because when we change the cell type we do
not propagate the slew impact throughout the design. In
such case, we swap the cells, where we find negative timing
slack, back to its earlier cell-type (not shown in Algorithm
2). The iterations are continued until we do not get any
improvement in leakage power.

5. EXPERIMENTAL RESULTS
We have implemented the algorithms presented in this

work in C++ and run it on a Linux machine with 8-Core

2.90GHz CPU and 72GB RAM. In this section, first the test
case generation method is described. Then we will experi-
mentally validate that gate sizing considering one scenario
may not meet the timing constraints in another scenario
and vice versa. Finally, power savings in our algorithm are
demonstrated by performing design-space exploration in the
gate-sizing step by tuning the system level parameter Vdd.

5.1 Test Case Generation
The designs and cell-library for the experimental demon-

stration are taken from the recent ISPD’12 benchmark suite
[11] (fast version). However, the cell-library contains the de-
lay values under one operating condition (one Vdd). We have
considered Vdd for this scenario to be 1.2V and created an-
other slow scenario with the timing target equal to 1.5 times
that of the nominal scenario. For instance, the timing target
for the benchmark ‘pci bridge32 fast’ is 660ps, and so the
target delay for the slow scenario is 990ps. Eqn.(2) is used
to compute the delay values in the slow scenario, and we
need the Vth values of the cells for this. ISPD’12 cell-library
consists of cells with three Vth and considering the nominal
Vth to be around 0.46V in [15], we assume those to be 0.4V ,
0.45V and 0.5V . The supply voltage of the slow scenario
is varied to search for power optimal solutions across the
scenarios. Since the design IPs in laptops or smart phones
typically run most of the times under slow operating con-
ditions, we choose the scenario percentage for the fast and
slow scenario to be 0.2 and 0.8 respectively.

For industrial designs, the switching activities are cap-
tured by VCD/SAIF files which we do not have. So we as-
sume the signal probabilities SP = 0.5 for the fast scenario,
and random SP for the slow scenario. Then for each case,
we generate 500 input vectors maintaining their respective
SP s at the primary inputs. Next, we perform 500 Modelsim
simulations [16] to compute the signal values at the inter-
nal nets and take the average over 500 simulations to obtain
the signal probabilities. Finally, switching activity (SA) is
computed as SA = 2× SP × (1− SP) [17]. If switching ac-
tivities are given instead of assuming randomly, we believe
that our algorithm will work with same efficiency, and if not
good particularly for dissimilar switching activities across
different operating conditions due to the switching activity
driven objective function.

5.2 Results
The contest held by ISPD’12 [11] has focused only on leak-

age power optimization instead of considering both leakage
and dynamic power. So it may not be fair to directly com-
pare the power numbers in our approach to the contest win-
ners or other published works based on this. Nevertheless,
if we compare the leakage power component of the solutions
achieved in our algorithm (in case of single operating con-
dition like the contest), we get 20% (average) lesser leakage
power than the contest winner and competitive solution in
comparison to the other published works [4][7]. In terms of
run-time, [7] is the fastest among all published works and
gives solutions for all 14 benchmarks (7 designs with fast and
slow version) in 4.9 hours with 2.67GHz CPU, whereas our
algorithm can give the same (optimizing the total power)
in 3.8 hours and follow an almost linear relationship with
the size of the circuits. Since the objective function of our
formulation is not the same as that of the ISPD’12 contest,
we omit the detailed design-wise comparisons due to space

constraints.
To demonstrate the effectiveness of OSFA, we take the

benchmark ‘pci bridge32’ and run our sizer considering only
the fast scenario. Then STA is run for the slow scenario
with Vdd = 0.85V and we get 1818 timing violations (at
the timing-end points, such as primary output or ‘D’ pin
of flip-flops). Then we do the opposite, i.e., size the gates
considering the slow scenario and STA is run for the fast
scenario. In this case, we get 11 timing violations. So if we
just consider single scenario for gate-sizing like the conven-
tional approach, it might not be possible to meet the timing
constraints across all the scenarios. This is due to the non-
linearity in delay model and non-uniform delay scaling across
different Vth for a particular Vdd, as explained in Section 1.
The violations can be fixed by increasing Vdd. For instance,
if we size considering only fast scenario and then raise Vdd

of slow scenario to 0.90V , then it meets the target delays in
both scenarios. But this increases the power consumption
of the design.

However, by running the OSFA considering both fast and
slow scenarios, we can meet the timing constraints in both
the scenarios as OSFA has the intelligence to identify which
cells are critical in all scenarios and assigns sizes accordingly.
This gives us the flexibility in performing design-space ex-
ploration. For instance, we set Vdd = 1.2V for the fast
scenario and then vary Vdd of the slow scenario from 0.8V
to 1.0V , and run OSFA. Fig. 4 shows the curve for total
power of the design vs. Vdd of the slow scenario. We can see
as Vdd increases from 0.8V , the power consumption initially
decreases till Vdd = 0.87V and then increases with Vdd.

0.8 0.85 0.9 0.95 1
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Supply Voltage (Vdd)

P
o
w

er
 (

W
at

t)

Figure 4: OSFA Design-space exploration by tuning

Vdd of 2nd scenario for pci bridge32

The explanation for this behavior is as follows. When
Vdd is increased, it has two conflicting effects, (i) increase in
LP/DP due to its direct Vdd dependence, and (ii) decrease
in delay of the logic gates facilitating down-sizing or high
Vth selection resulting in lower LP/DP. If Vdd for the slow
scenario is too low (such as 0.8V), slow scenario becomes the
constrained scenario and logic gates require up-sizing or low
Vth selection, and power consumption is high. When it ini-
tially increases beyond 0.8V , slow scenario starts to be less
timing-constrained making second effect the prominent one,
and decreasing power consumption. But after certain point
(here Vdd = 0.87V), the fast scenario starts to become the
constrained scenario. Consequently, second effect becomes
submissive because we can not down-size the gates further
or select higher Vth as the timing constraint of the fast sce-
nario needs to be still met. So beyond this point, first effect
plays a dominant role in increasing the power consumption.

Next, we repeat this experiment for all the benchmarks

with fixed Vdd = 1.2V for the fast scenario and varying Vdd

of the slow scenario from 0.8V to 1.0V in steps of 0.05V
and select the best among all solutions. To compare with
the conventional methodology, the sizer is run by considering
only fast scenario, and Vdd of the slow scenario is bumped
up also in steps of 0.05V until the timing constraint for the
slow scenario is met. Then we compare the obtained power
numbers with that achieved by the design-space exploration.

Table 1 presents the comparison for all the benchmarks
in terms of power. Column 2 shows the number of cells in
the design. Columns 3 and 4 present the total power in
the conventional and OSFA methodology respectively. The
percentage improvement in power varies with benchmarks,
varying from 2.7% to 12.7% with most designs around 5-7%.
On average, OSFA methodology achieves 6.1% reduction in
total power compared to conventional methodology. The
run-time in OSFA is about twice that with one scenario for
all the designs, and this is intuitive as OSFA needs to com-
pute costs, run STA for 2 scenarios. The run-time for the
biggest design (‘netcard’) of OSFA is around 1.8hr. This
is comparable to the run-times in the state-of-the-art gate
sizers [4][7] even with one scenario considering only leakage
power. More importantly, the run-time in OSFA can be
further improved by running on machines with more cores.

Design Space Exploration for More than 2 Operating

Conditions: When the number of operating conditions (n)
is more than 2, an exhaustive way to perform the design-
space exploration is to fix the voltage of one scenario and
assign m voltage steps for the rest n − 1 scenarios, and run
OSFA for each case. The complexity of that approach would
be O(mn−1). To tackle this high computational cost, we
propose an alternate way of progressively selecting Vdd for
each scenario. At the first stage, we consider 2 scenarios,
fix Vdd in scenario 1 and run OSFA for m voltage steps in
2nd scenario. Vdd for the 2nd scenario is selected by taking
the minimum power point in the design-space exploration
curve. Next, we fix the Vdd of 1st and 2nd scenario and
run OSFA for m voltage steps in 3rd scenario and so on.
To generalize, at the ith stage, we fix Vdd of i scenarios,
and run OSFA considering i + 1 scenarios by varying Vdd of
(i + 1)th scenario followed by selecting Vdd for the (i + 1)th

scenario. The overall complexity of this alternative method
would be at most O(m × (n − 1)). However, this approach
might compromise in solution quality to some extent.

Next, we take the design ‘pci bridge32’ and create two
more operating conditions with clock period twice and 2.5
times that of the fast scenario (with random switching ac-
tivities). With exhaustive design-space exploration, we get
7.3% and 7.6% improvement in power with 53−1 = 25 and
54−1 = 125 OSFA runs for 3 and 4 scenarios respectively.
On the contrary, by using the second approach, the power
savings reduce slightly to 6.7% and 7.2% with 5×(3−1) = 10

Table 1: Comparison with conventional method
Design Cells Power(W) in Power(W) %

Conventional in OSFA Imprv.
Methodology Methodology

DMA 25,301 0.399 0.375 5.9
pci bridge32 33,203 0.242 0.226 6.4

des perf 111,229 2.448 2.381 2.7
vga lcd 164,891 0.651 0.633 2.7

b19 212,674 0.865 0.755 12.7
leon3mp 649,191 1.528 1.413 7.5
netcard 958,780 2.043 1.951 4.5
Average 6.1

and 5× (4−1) = 15 OSFA runs respectively for 3 and 4 sce-
narios. These experimental runs demonstrate the following:
(i) as the number of operating conditions increases, there is
generally more power savings, and (ii) the proposed speed-
up technique can reduce the computational cost significantly
with little compromise in solution quality.

6. CONCLUSION
This work introduces a novel problem formulation of gate-

sizing under multiple operating conditions. We present our
OSFA algorithms and a design-space exploration methodol-
ogy to optimize power of any IP-design without affecting the
performance at different operating conditions. Compared
with conventional methodology, our approach has achieved
an average power improvement of 6.1% in industry-strength
large-scale benchmarks. We have also proposed a faster yet
efficient design-space exploration technique for more than 2
scenarios and demonstrated its effectiveness. We also ex-
perimentally observe that the power savings increase with
the number of operating conditions. In future, we plan to
study the impact of the scenario percentage on our OSFA
algorithms. With aggressive technology scaling, the number
of operating conditions will further increase, and we believe
the OSFA methodology will become more and more relevant
in the VLSI industry.

7. ACKNOWLEDGEMENT
This work is supported in part by NSF, SRC and Samsung

Semiconductor.

8. REFERENCES
[1] Y. Liu et al., “Multi-scenario buffer insertion in multi-core

processor designs,” ISPD, pp. 15–22, 2008.

[2] Y. Liu and J. Hu, “A new algorithm for simultaneous gate
sizing and threshold voltage assignment,” TCAD, pp. 223–234,
2010.

[3] H. Chou et al., “Fast and effective gate-sizing with multiple-vt
assignment using generalized lagrangian relaxation,” ASPDAC,
pp. 381–386, 2005.

[4] J. Hu et al., “Sensitivity-based metaheuristics for accurate
discrete gate sizing,” ICCAD, pp. 233–239, 2012.

[5] M. M. Ozdal et al., “Gate sizing and device technology
selection algorithms for high-performance industrial designs,”
ICCAD, 2011.

[6] H. Ren and S. Dutt, “A network-flow based cell sizing
algorithm,” IWLS, 2008.

[7] L. Li et al., “An efficient algorithm for library-based cell-type
selection in high-performance low-power designs,” ICCAD,
pp. 226–232, 2012.

[8] V. S. Livramento et al., “A hybrid technique for discrete gate
sizing based on lagrangian relaxation,” TODAES, 2014.

[9] A. Ramalingam et al., “Robust analytical gate delay modeling
for low voltage circuits,” ASPDAC, 2006.

[10] W. N. Li, “Strongly NP-hard discrete gate sizing problem,”
TCAD, pp. 1045–51, 1994.

[11] M. M. Ozdal et al., “The ISPD-2012 discrete cell sizing contest
and benchmark suite,” ISPD, pp. 161–164, 2012.

[12] B. J. Sheu et al., “Berkeley short-channel igfet model for mos
transistors,” IEEE Journal of Solid-State Circuits,
pp. 558–566, 1987.

[13] C. P. Chen et al., “Fast and exact simultaneous gate and wire
sizing by lagrangian relaxation,” ICCAD, pp. 617–624, 1998.

[14] https://www.threadingbuildingblocks.org/.

[15] http://ptm.asu.edu/modelcard/HP/45nm_HP.pm.

[16] http://www.mentor.com/products/fv/modelsim/.

[17] Q. Wu et al., “A note on the relationship between signal
probability and switching activity,” ASPDAC, pp. 117–120,
1997.

