
CSL: Coordinated and Scalable Logic Synthesis
Techniques for Effective NBTI Reduction

Chen-Hsuan Lin∗, Subhendu Roy†, Chun-Yao Wang‡, David Z. Pan† and Deming Chen∗
∗Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, IL, USA

{clin54, dchen}@illinois.edu
†Department of Electrical and Computer Engineering

University of Texas at Austin, TX, USA

subhendu@utexas.edu, dpan@ece.utexas.edu
‡Department of Computer Science

National Tsing Hua University, Hsinchu, Taiwan, R.O.C

wcyao@cs.nthu.edu.tw

Abstract—Negative Bias Temperature Instability (NBTI) has
become a major reliability concern in nanoscale designs. Al-
though several previous studies have been proposed to address
the NBTI effect during logic synthesis, their performance is
limited because of focusing on a certain logic synthesis stage.
Additionally, their complicated algorithms are not scalable to
large designs. To tackle this, we propose a coordinated and
scalable logic synthesis approach, which integrates techniques
at different logic synthesis stages, ranging from subject graph to
technology mapping and mapped netlist, to achieve an effective
NBTI reduction. To our best knowledge, this is the first work
that considers and mitigates NBTI impact in subject graphs, the
earlier stage of logic synthesis. Experimental results on industry-
strength benchmarks show that our approach can achieve 6.5%
NBTI delay reduction with merely 2.5% area overhead on
average, while a previous work barely gets NBTI delay reduction
when the circuits are optimized beforehand, the circuit sizes are
large, and standard cell libraries are richer.

I. INTRODUCTION

With technology downscaling to nanometer range, circuit

reliability has become a critical challenge for robust system

designs [6]. Reliability degradation results from factors such as

soft errors, manufacturing variability, temperature effects, and

aging. As the trend moves to nanoscale devices, aging, which

causes significant loss on circuit performance and lifetime,

is becoming relatively dominant in reliability concerns. Hot
Carriers Injection (HCI) [18] and Negative Bias Temperature
Instability (NBTI) [17][19] are two major aging phenomena,

which can lead to permanent degradation of transistors, thus

hurting the reliability of nanoscale circuits. Among these aging

phenomena, NBTI has become particularly prominent and has

received considerable attention.

NBTI is an aging phenomenon that increases the threshold

voltage (Vth) of PMOS transistors over a long period of time,

thus slowing down the speed of logic gates and preventing

circuits from meeting the timing requirements. NBTI occurs

when PMOS transistors are under negative gate-to-source bias

(stress phase: Vgs = −Vdd). During the stress phase, interface

traps along the silicon-oxide interface take place due to the

dissociation of Si − H bonds. For instance, over a period

of ten years, these traps can increase the Vth of PMOS in

65nm technology by up to 50mV [21], resulting in the delay

degradation of circuits. Although some of interface traps can

be annealed by relaxing the stress condition (Vgs = 0),

this recovering process is incomplete. Therefore, the NBTI-

induced delay degradation crucially depends on the amount

of time during which PMOS transistors are under the stress

phase. The signal probability SP (the probability of signal to

be logic 1) is an effective metric to estimate the NBTI-induced

aging degradation of PMOS, which causes the delay of logic

gates increase over a period of time [9].

From the logic synthesis perspective, previous works miti-

gate NBTI effect by taking account of signal probability during

synthesis, and these works can be classified into two major

groups: considering NBTI either during or after technology

mapping (TechMap). During-TechMap: [9] matched the stan-

dard cells with the most suitable gate size based on signal

probability for reducing NBTI effects. [5] proposed a com-

mercial tool flow to balance the circuit timing with respect to

specific NBTI-aware guardbands for improving lifetime. After-

TechMap: [22][23] used logic restructuring and pin reordering

techniques with considering signal probabilities to mitigate

NBTI-induced delay degradation. [14][20][24] applied gate

sizing techniques with variable Vth to decrease NBTI im-

pact and achieve timing closure. However, some of them

might have scalability issues because of applying complicated

algorithms designed only for a certain synthesis stage. For

example, the complexity of restructuring algorithms propsoed

in [22] might be up to O(n3), where n is the number of gates

in a circuit. Furthermore, their performance is constrained by

the results of corresponding technology mapping.

Technology mapping [7][8] based on tree- or directed

acyclic graph-covering has a known issue of suffering from

structural bias. In other words, the structure of the resultant

mapped netlist depends heavily on the given subject graph,

which is a multi-level network of simple gates for representing

the Boolean function of the circuit. Although some researches

[3][11][16] targeted at mitigating structural bias heuristically,

236978-1-4673-7166-7/15/$31.00 c©2015 IEEE

they cannot avoid this issue completely. Therefore, based on

this fact, our proposed work is inspired by two ideas: “Can the
mapped netlist have better NBTI tolerance if the given subject
graph is NBTI-friendly?” and further “How to generate an
NBTI-friendly subject graph?”

Unlike previous works, which attacked the NBTI effect at

certain later stages of logic synthesis and were limited by com-

plicated algorithms, we propose a Coordinated and Scalable

Logic synthesis approach (CSL), which integrates techniques

at different stages to achieve an effective NBTI reduction.

Furthermore, the proposed techniques are designed to deal

with large-scale benchmarks. We observe that considering the

NBTI effect in the early stages of the design flow can have

a better chance to boost the results with less overhead. At

the first stage, subject graph, we propose an algorithm to re-

structure the subject graph into NBTI-friendly one iteratively.

At the second stage, technology mapping, we search for the

best matching gates that result in better NBTI tolerance with

minimum area overhead from standard cell libraries. This stage

also prevents the performance gain at the previous stage from

being eliminated. At the last stage, mapped netlist, we propose

a scalable pin reordering techniques, smart pin, to tweak

the structure of transistor connections for further reducing

NBTI effect with negligible runtime overhead. In sum, NBTI-

aware logic restructuring, NBTI-aware technology mapping,

and NBTI-aware pin reordering work together to construct

a comprehensive and robust NBTI-aware logic synthesis ap-

proach.

The contributions of this work are three-fold. To our best

knowledge, this is the first NBTI study that (1) considers the

NBTI effect at the subject graph stage, (2) deals with large-

scale benchmarks even with around a million of gates, and

(3) coordinates techniques across several stages to build a

comprehensive logic synthesis approach for NBTI reduction.

Experimental results show that on average CSL can achieve

6.5% NBTI delay reduction with 2.5% area overhead among

the industry-strength benchmarks from ISPD’12 contest [12]

without worrying about the size of circuits and the composition

of standard cell libraries.

II. PRELIMINARIES

This section introduces the background of this work, in-

cluding subject graph, NBTI modeling, and transistor stacking

effect in the PMOS network.

A. Subject graph

The subject graph, the input to the technology mapping

stage, used in this work is in And-Inverter Graph (AIG)

format, which has been shown an efficient data structure for

manipulating large Boolean networks in logic synthesis and

formal verification [1][3][10]. An AIG is a multi-level Boolean

network composed of two-input ANDs and INVs. The data

structure of AIG is a directed acyclic graph, in which nodes

with no incoming edge are primary inputs (PIs) while with two

incoming edges are two-input AND gates. The edges in AIGs

represent wires. Inverters are represented by bubbles on the

edges. All primitive gates have their corresponding forms in

AIGs as shown in Fig. 1; therefore, arbitrary Boolean networks

can be represented by AIGs.

��������� 	
��

Fig. 1. The corresponding AIGs of primitive gates: INV, AND2, and
OR2.

B. NBTI modeling

This section briefly introduces the NBTI modeling

[2][9][14] used in this work. The model is used to estimate the

delay degradation of each gate in the standard cell library, as a

function of the signal probabilities of gate inputs and intrinsic

gate delay. An NBTI-stress factor of a gate input i, denoted

by γnbti(i), represents the probability of the PMOS transistor

at input i being stressed. γnbti(i) impacts the rise delay of the

timing arcs from the gate input i to the gate output. The idea

of NBTI modeling is to estimate the corresponding increase

in Vth for different NBTI-stress factors at the end of a time

period. Then, the final Vth is plugged into HSpice simulation

to get the NBTI-affected rise delay. Finally, a piecewise linear

model, similar to that in [2][14], is developed (within 1%
difference to the HSpice simulation data) for adjusting the

output rise delay caused by an input i based on γnbti(i) during

timing analysis. The details of the modeling can be referred

to in [9][14]. Fig. 2 shows the rise delay characterization of

an inverter with input i based on γnbti(i). We can see that the

maximum increase of rise delay of the inverter is about 25%.

������������������� ��

�
��
��
��
��
���

��
�

���� ���� ����

�����

�����

Fig. 2. Rise delay vs. NBTI-stress factor in an INV [14].

Next, let us discuss the relationship between signal prob-

ability and γnbti(i) of a gate input i. The γnbti(i) can be

derived from the signal probability of input i and that of other

inputs. Take an example of And-Or-Inverter (AOI12) gate in

Fig. 3(a), whose output function is o = a+ bc. Let SPa, SPb,

and SPc denote the signal probabilities of inputs a, b, and c,
respectively. The γnbti of b and c, γnbti(b) and γnbti(c), are

simply their probabilities of being logic 0, while γnbti(a) is

2015 33rd IEEE International Conference on Computer Design (ICCD) 237

��

��

�� ��

��

��

��

	

�

�	����

��

	

�

��

��

��

�� �� ��

�	
 �

���� �!��

Fig. 3. The transistor schematics of gates AOI12 and NOR3.

the probability that a is equal to logic 0 as well as at least

one of b and c is equal to 0, where the PMOS transistor at

a is stressed. The γnbti for inputs, a, b, and c, of the AOI12

gate are shown in Eq. 1. Therefore, the NBTI-aware timing

model can be built by characterizing all gates in the standard

cell library accordingly.

γnbti(b) = (1− SPb)

γnbti(c) = (1− SPc)

γnbti(a) = (1− SPa)(1− SPb · SPc)

(1)

C. PMOS transistor stacking effect

Two transistors connected in series are called stacking.

For a CMOS logic gate, if its pull-up (PMOS) network has

stacking transistors, we said that these PMOS transistors have

the stacking effect [9][22]. The stacking effect causes the

NBTI effect of lower PMOS transistors, which are closer

to the output signal, is to be milder than that of upper

PMOS transistors, which are closer to the power supply (Vdd).

This is because the lower PMOS transistors are under stress

(connected to Vdd) only when its upper PMOS transistors are

“on” simultaneously. In other words, a lower PMOS transistor

can be protected from NBTI-induced aging by its upper ones.

Take a three-input NOR gate in Fig. 3(b) as an example. The

PMOS transistor of input a can be protected by the PMOS

transistors of inputs b and c. By leveraging the stacking effect

of pull-up transistors, the previous work [22] proposed a pin

reordering method to reduce the NBTI effect. However, it

only dealt with NOR gates. In this work, we also propose a

new pin reordering method, which considers all kinds of gates

that leverage the stacking effect in the library. The details are

presented in Sec. III-C.

III. NBTI-AWARE LOGIC SYNTHESIS

This section introduces CSL, a coordinated and scalable

NBTI-aware logic synthesis approach, which consists of three

techniques: NBTI-aware subject graph restructuring, NBTI-
aware technology mapping, and NBTI-aware smart pin re-
ordering for the three stages mentioned, respectively. To

make the approach scalable, we restrict both time and space

complexity of the proposed techniques.

To begin with, we perform parallel simulations to accelerate

the calculation of the signal probabilities of gates in the subject

graph and mapped netlist. Please note that CSL is a general

approach that can accept both purely random simulation and

directed simulation; therefore, if a workload is given, designers

can apply the same directed simulation patterns through the

whole process to optimize the NBTI behavior of designs

specifically.

Additionally, the major overhead of this NBTI effect reduc-

tion approach is area, which is a common trade-off in logic

synthesis: the shorter delay of a circuit, the bigger area of

the circuit. Therefore, our objective is not only to reduce the

longest NBTI-affected delay of circuits, but also to control

the area overhead in an acceptable range. The techniques in

the approach for mitigating NBTI effect at different stages are

discussed separately in the following subsections.

A. Subject graph restructuring

Our purpose at this stage is to provide an NBTI-friendly

subject graph to CSL’s technology mapping stage as well as

to control the area overhead of mapped netlist in advance. CSL

is the first work that considers and reduces NBTI effect in the

subject graph.

1) NBTI-aware static timing analysis for AIG: An AIG,

the format of subject graph used in this work, is a multi-level

Boolean network of simple nodes to represent the functionality

of a circuit. The delay of an AIG is usually measured by

performing static timing analysis (STA) with a unit-delay
model, in which both the rise and fall delays of gates are

set to one. However, to generate NBTI-friendly AIGs, NBTI-
aware STA for AIG is needed. Therefore, we propose an NBTI-
aware delay model based on the NBTI modeling in Sec. II-B

to estimate the NBTI-degraded delay of AIG nodes. Although

the NBTI modeling in Sec. II-B is designed for standard cells,

we found that its concepts can be still applied to AIG nodes,

so that the NBTI delay paths in AIGs can be identified.

The usage of the NBTI modeling for AIG nodes is similar to

that for standard cells. That is, the rise delays of simple nodes

(AND gates) of AIGs should reflect NBTI degradation by

considering inputs’ NBTI-stress factors. As aforementioned,

the structure of the mapped netlist depends strongly on the

subject graph. Therefore, the intuition behind the prediction

is that long NBTI delay paths in an AIG might have higher

probabilities to be mapped as the long NBTI ones in the final

mapped netlist. Although this predictive model might not be

completely accurate, it still provides useful guidance to gen-

erate NBTI-friendly subject graphs for technology mappers,

which can be observed in our experimental results.

2) NBTI balance: With the NBTI-aware STA for AIGs, we

propose an AIG restructuring procedure, named NBTI balance,

to reduce the NBTI effect. The proposed idea is illustrated

in Fig. 4, and NBTI balance consists of three main steps as

follows:

238 2015 33rd IEEE International Conference on Computer Design (ICCD)

Step. 1: Identify the NBTI-critical POs based on the parame-

ter threshold.

Step. 2: Extract and remove the fanin cones of these NBTI-

critical POs.

Step. 3: Add the optimized fanin cones (with better NBTI de-

lays) back for these NBTI-critical POs and minimize

the area overhead.

In Step. 1, we identify NBTI-critical primary outputs (POs)
in an AIG as follows. After finding the maximal NBTI delay of

the circuit, dmax, the POs whose NBTI delays are larger than

or equal to dmax × threshold are considered NBTI-critical

POs as shown in triangles with red bold line in Fig. 4(a).

The parameter threshold is a user-defined parameter within

an interval [0, 1], which is used to determine how many POs

to be re-synthesized in the next step. Optimizing a group of

POs together not only saves runtime but also helps reduce area

overhead down the road. The parameter setting is shown in the

experimental section.
In Step. 2, as shown in Fig. 4(b), NBTI-critical cones, the

fanin cones that belong to the NBTI-critical POs, are extracted

and removed from the AIG to form a subcircuit. While

extracting NBTI-critical cones, the functionalities of non-

NBTI-critical POs are preserved by duplicating the sharing

logic between critical and non-critical cones if needed. Please

note that the most part of duplicate logic can be shared again

when the optimized NBTI-critial cones are added back in the

next step.
In Step. 3, the subcircuit of NBTI-critical cones is re-

synthesized using a resyn2 script in ABC [1]. This script can

optimize both timing and area of the subcircuit. The physical

meaning behind this operation is to destroy long NBTI delay

paths of critical POs in the AIG. In the end, the optimized

cones with respect to the NBTI-critical POs are added back

to the AIG to maintain the original functionality as shown

in Fig. 4(c). Additionally, the structural hashing mechanism

in ABC, which can increase the number of sharing nodes

by merging functionally equivalent ones, is also adopted to

control the area overhead during the adding back operation as

shown in Fig. 4(d).
Next, let us discuss the efficiency of this procedure. The

time complexities of Step. 1 and Step. 2 are linear to the

number of nodes in the AIG. For Step. 1, the delay is

calculated from the PIs to the POs in the breadth-first search

(BFS) manner. For Step. 2, the logic cones of NBTI-critical

POs are also extracted in BFS manner from the POs to the PIs.

In Step. 3, the resyn2 script can optimize a circuit of a million

of gates in few seconds, and structural hashing mechanism

is also efficient by using hash tables. Therefore, the proposed

NBTI balance procedure is efficient and thus scalable to large-

scale benchmarks. This can be seen in the experimental results.
3) Complete NBTI-aware subject graph restructuring:

Although NBTI balance generates an NBTI-friendly AIG for

the next stage, this procedure cannot be complete without

appropriate termination conditions. In other words, we have

to determine the number of iterations of NBTI balance for

maximizing the reduction of NBTI effect with acceptable

����

�

�

����

����

����

����

������
�������������������������

�"�����������������������
��
������� ��!���� �� ���������!��

�!���"#�������
�������������
���������������

����

����

����

����

����

�����$

����%��&������
������
��������������

Fig. 4. The illustration of NBTI Balance procedure.

area overhead. Therefore, we add two termination conditions

that complete our restructuring technique. The pseudo code

of the proposed NBTI-aware subject graph restructuring
is shown in Algorithm 1, where the two termination con-

ditions, “imprvIter < minImprv” and “imprvTotal >
targetImprv”, are involved. The physical meanings of these

two conditions are explained as follows.

• (imprvIter < minImprv) : Terminate the iteration

when the improvement of NBTI delay of one iteration
is less than minImprv, which is set to 0.1% in this

work. This condition indicates that the NBTI balance has

reached its limit and no more significant improvement of

NBTI delay would be expected.

• (imprvTotal > targetImprv) : Terminate the iteration

when the accumulated improvement of NBTI delay

(compared to the original NBTI delay) is larger than
targetImprv. According to our experiments, the aver-

age delay degradation under NBTI effect among the

benchmark set we used is around 9%; therefore, the

targetImprv is set to 10% in this work to avoid over-

optimization of NBTI delay. The value of targetImprv
should be set according to the observation of NBTI

degradation of benchmark set.

In sum, the NBTI balance procedure will be iterated until

the improvement is tiny or the target improvement has been

achieved.

Area is traded for NBTI delay improvement in this work.

However, large area overhead is not acceptable. Therefore,

for maintaining the area overhead within a range, the total

improvement of NBTI delay is “restricted” to targetImprv
as mentioned. As a result, if the total improvement of NBTI

delay is larger than targetImprv, we undo the last iteration

and explore the solution space of last iteration by increasing
threshold parameter, such that fewer NBTI-critical POs are

2015 33rd IEEE International Conference on Computer Design (ICCD) 239

selected for optimization in this iteration. The objective is to

achieve an NBTI delay improvement less than but close to

targetImprv. This idea about solution space exploration with

various threshold parameters is detailed in the pseudo code of

Algorithm 2.

Algorithm 1 NBTI-aware subject graph restructuring.

1: function NBTIBALANCEAIG(oriAig, thld)

2: // initialization

3: oriDelay ← NBTISTA(oriAig)

4: currAig ← nbtiBalAig ← oriAig

5: repeat
6: // save the results of previous iteration

7: currAig ← nbtiBalAig

8: currDelay ← NBTISTA(currAig)

9: // detect NBTI critical POs and optimize their delays

10: nbtiBalAig ← NBTIBALANCE(currAig, thld)

11: newDelay ← NBTISTA(nbtiBalAig)

12: // examine termination conditions

13: imprvIter ← COMPIMPRV(currDelay, newDelay)

14: imprvTotal ← COMPIMPRV(oriDelay, newDelay)

15: until imprvIter < 0.1% or imprvTotal > 10%

16: // control imprvTotal not exceed 10% by exploring the

solution space of this iteration with different thld’s

17: if imprvTotal > 10% then
18: nbtiBalAig ← EXPLDIFFTHLD(oriDelay, currAig, thld)

19: return nbtiBalAig

Algorithm 2 Explore the solution space of a specific iteration with

various threshold parameters.

1: function EXPLDIFFTHLD(oriDelay, currAig, startThld)

2: thld ← startThld

3: nbtiBalAig ← currAig

4: repeat
5: // use a bigger thld to balance the tradeoff

6: thld ← thld+ 0.01

7: // have explored all possible thld’s, discard

the results of this iteration

8: if thld > 1 then
9: return currAig

10: nbtiBalAig ← NBTIBALANCE(currAig, thld)

11: newDelay ← NBTISTA(nbtiBalAig)

12: imprvTotal ← COMPIMPRV(oriDelay, newDelay)

13: until imprvTotal ≤ 10%

14: return nbtiBalAig

B. Technology mapping

Given an NBTI-friendly subject graph (AIG), we propose

an NBTI-aware technology mapping technique, which not only

preserves the NBTI reduction gains from the previous stage,

but also alleviates NBTI impact from the aspect of technology

mapping. Additionally, the mapping selection step in it also

considers the succeeding stage, smart pin reordering, ahead

for maximally reducing the NBTI effect.

The technology mapper adopted in the work is based on

a cut-based boolean matching method [1][3]. The mapper

consists of five major steps: (1) Compute k-feasible cuts. A

feasible cut of a node n in the AIG is a set of nodes Cn in

the fanin cone of n such that any path from a PI to n passes

through Cn. A k-feasible cut means the size of the cut must

be less than or equal to k. A k-feasible cut is redundant if

there exits a node in the cut whose value can be completely

determined by the other nodes in it. For example, in Fig. 5,

the set {a, b, c} is a 3-feasible cut of node n, while the set

{a, b, c, e} is a redundant 4-feasible cut of node n because the

value of node e can be determined by nodes b and c in the

same cut. The redundant k-feasible cuts will not be considered

during cut enumeration. The parameter k is heuristically set to

5 for the tradeoff of efficiency and effectiveness in the work.

(2) Compute the truth tables of cuts. The local function of

a node in terms of its cut is computed symbolically. With

considering 5-feasible cut, the truth table (function) of each

cut can be stored in a 32-bit integer, thus accelerating the

symbolic function computation as well as the matching process

in the next step. (3) Perform Boolean matching. Each node in

the AIG might have more than one 5-feasible cut. For each

cut, a matching gate, if existing, is selected from the library.

(4) Compute the best arrival time of each node. The best

arrival time of each node is computed and selected from all

its matchings of cuts in a topological order. (5) Select the best
cover. In a reverse topological order, which is from the POs

to the PIs, the best matching gates are chosen using a delay-

oriented method with the area constraint until all nodes in the

AIG are covered.

��

�� �� ��

� ��

��������#�$�!$��%�������
 &����!����'������
����

��������#�$�!$��$��%��������"'�"����
(&����!����'������
����

Fig. 5. The redundant and irredundant feasible cuts of node n.

To reduce NBTI effect at this stage, the arrival time com-

putation of matches should reflect NBTI-induced degradation

accordingly. Given a matched gate and a cut, γnbti for the

inputs are computed from their signal probabilities based on

the NBTI modeling mentioned in Sec. II-B. Since only the

rise delay would be affected by NBTI, two out of four timing

arcs, input rise to output rise and input fall to output rise,

are adjusted with considering γnbti.

Furthermore, to break a tie during the best cover selection,

NOR or Or-And-Inverter (OAI) gates will be chosen with high
priorities to benefit our next stage. The beneficial effects will

be discussed in the next subsection. Our technology mapping

stage produces an NBTI-tolerant mapped netlist to the next

stage.

240 2015 33rd IEEE International Conference on Computer Design (ICCD)

C. Smart pin reordering

Given an NBTI-tolerant mapped netlist, we propose a scal-

able pin reordering technique, named smart pin, to tweak the

structure of the netlists for more NBTI effect reduction. Based

on the discussion of stacking effect in Sec. II-C, it is intuitive

to assign inputs to the PMOS transistor stack of a gate in

descending order of input signal probabilities from the top to

the bottom of pull-up network. Although this assigning order

can result in the smallest NBTI degradation for the gate, it

might not lead to the smallest signal arrival time at the gate’s

output. This is because the inputs with higher signal probabil-

ities (smaller probabilities of being logic 0) might have larger

signal arrival time. Therefore, to minimize the NBTI-degraded

delay of the overall circuit, both signal probabilities and signal

arrival time of inputs should be considered simultaneously for

pin reordering technique. The previous work [22] considered

the stacking effect in NOR gates only and only considered

input arrival time to search a pin ordering that leads to the

best timing exhaustively. Therefore, it might not be applicable

for richer standard cell libraries, which have other gates with

PMOS transistor stacking or gates with many pins.

The two major characteristics of the proposed smart pin

reordering technique are applicability and scalability. For

applicability, in addition to leveraging stacking effect of NOR

gates, we also explored and leveraged the stacking effect

in OAI gates, as marked in rectangles in Fig. 6, for NBTI

reduction. For scalability, the smart pin reordering technique

heuristically determines pin assignment by slack, which is

defined as the difference between the required time and arrival

time of gate’s output signal for the timing path, rather than

exhaustively searches like the previous work.

The scalable heuristic is described as follows. First, given

the required time of the POs, the slack of each gate in the

mapped netlist is computed using an NBTI-aware STA with

considering signal probabilities of the gate inputs. Next, pins

of PMOS stack(s) in NOR and OAI gates are reassigned

based on the slack information in a topological order from

the PIs to the POs. Specifically, the input with the smallest

slack is assigned to the lowest PMOS transistor, and the other

inputs are dealt with in the same way. The physical meaning

behind this strategy is that a timing path through an input

with a small slack is tight and more fragile to NBTI-induced

delay degradation; therefore, assigning this input to the lower

position of PMOS stack can protect the tight timing path

against NBTI effect in the future.

In addition to the applicability and scalability of smart pin

technique, in this coordinated approach, CSL’s technology

mapping stage chooses NOR and OAI gates with higher

priorities when a selection ends in a tie, thus inducing more

flexibility and increasing the effectiveness of this smart pin

reordering technique.

IV. EXPERIMENTAL RESULTS

The CSL for NBTI reduction was implemented in C/C++

in ABC [1], which is a state-of-the-art logic synthesis and

verification platform. The benchmarks are industry-strength

��

��

�� ��

��

��

��

	

�

��

�� ��

��

�

��

	

�

��

��
�

	����� 	�����

���� �!��

Fig. 6. The PMOS transistor stacking effect exists in the schematics
of gates OAI12 and OAI22.

TABLE I
THE STATISTICS OF BENCHMARKS FROM ISPD’12 CONTEST [12]

Circuit PI # PO # Comb. cell # Seq. cell # Total cell #

pci_bridge32 160 201 29844 3359 33203

DMA 683 276 23109 2192 25301

des_perf 234 140 102427 8802 111229

vga_lcd 85 99 147812 17079 164891

b19 22 25 212674 6594 219268

leon3mp 254 79 540352 108839 649191

netcard 1836 10 860949 97831 958780

designs from ISPD’12 contest [12] and benchmark statistics

is listed in Table I. The standard cell library used in the

experiments is a subset of library mcnc.genlib [15], which

contains INV, NAND2, NAND3, NAND4, NOR2, NOR3,

NOR4, AOI12, AOI22, OAI12, and OAI22. The technology

process used is 32nm Predictive Technology Model (PTM)

[13], and NBTI effect is considered at the end of a 5-year

period. All experiments were run on a Linux machine with

AMD Opteron 6276 16-Core 2.3GHz CPU and 128GB RAM.

The previous work [22], which is the most related to CSL,

combines logic restructuring and pin reordering based on

functional symmetry detection and transistor stacking effect

to mitigate NBTI-induced delay degradation. Given a mapped

netlist, it identifies functional symmetries using the concept of

supergates (SG) [4], where a supergate is a group of connected

gates that logically equals a big AND/OR gate. Having these

SGs detected, [22] can swap wires inside supergates to im-

prove NBTI delay without altering the functionality of netlist.

The NBTI delay of the netlist will be improved iteratively

until no further improvement is obtained. To extract SGs in

a netlist, [22] first treats all POs as SG roots and assigns

non-controlling values to them. Then backward implication

is applied to each gate in a reverse topological order to

determine the values of all inputs until (1) no more implication

can be made or (2) the current gate is not fanout-free. The

gates where backward implication stops are treated as new

SG roots. The same backward implication is applied to those

new SG roots with non-controlling values recursively until no

more SGs can be detected. To compare [22] and CSL, we

reimplemented [22] on the same platform ABC, and the results

2015 33rd IEEE International Conference on Computer Design (ICCD) 241

TABLE II
THE COMPARISON OF [22] AND CSL ON NBTI REDUCTION OVER INDUSTRY-STRENGTH BENCHMARKS.

Circuit

Non-NBTI Optimization [22] CSL [22] Performance CSL Performance

Area
Nominal NBTI Aging NBTI

Time (s) Area
NBTI

Time (s)
NBTI Delay Area NBTI Delay

Delay Delay (%) Delay Delay Imprv. (%) Overhead (%) Imprv. (%)

pci_bridge32 44000 20.5 22.26 8.59% 22.23 16.46 44195 19.61 3.35 0.13% 0.44% 11.90%

DMA 45490 18.2 19.87 9.18% 19.87 20.54 48528 18.73 4.13 0.00% 6.68% 5.74%

des_perf 169322 15.9 17.45 9.75% 17.39 219.51 176750 17.01 21.61 0.40% 4.39% 2.52%

vga_lcd 266398 15.8 17.23 9.05% − OOT 284537 15.64 29.51 − 6.81% 9.23%

b19 441778 61.3 66.60 8.65% 66.57 352.14 442631 63.38 103.14 0.05% 0.19% 4.83%

leon3mp 1250676 39.7 43.57 9.75% − OOT 1249915 40.17 2796.92 − −0.06% 7.80%

netcard 1532384 29.6 32.44 9.59% − OOT 1517186 31.24 1503.62 − −0.99% 3.70%

Ave. 9.22% 0.15% 2.49% 6.53%

1 Area size is normalized by INV’s size and reported by ABC [1].
2 OOT denotes ”Out Of Time” and the time limit is 5 hours.

TABLE III
THE STATISTICS OF SUPERGATES DETECTED BY [22] IN

BENCHMARKS

Circuit Supergate # Max Size of SG Wire # in Max-size SG

pci_bridge32 2021 11 37

DMA 1269 12 41

des_perf 6915 7 13

vga_lcd 1167 219 730

b19 15313 21 50

leon3mp 12545 225 735

netcard 59196 877 2669
1 Supergate size is measured by the number of primitive gates in it.
2 The number of wires in a SG includes inputs to SG and its internal wires.

were verified by the equivalent checking commands of ABC

to guarantee the functional correctness of logic restructuring

and pin reordering.

Table II shows the comparison of [22] and CSL on NBTI

reduction over industry-strength benchmarks. Since CSL in-

cludes stages that optimize and remap the original benchmarks,

to fairly compare the performance of [22] and CSL, the origi-

nal benchmarks were first optimized and remapped by ABC to

eliminate redundant logic. These new optimized benchmarks

are our baseline results. The threshold parameter of CSL is

set to 0.97 empirically. Because of lack of real workloads,

the signal probabilities are calculated using purely random

simulation for both [22] and CSL. The NBTI delay is obtained

by an NBTI-aware STA using the NBTI modeling in Sec. II-B.

The aging degradation is the percentage of difference between

the nominal delay and NBTI delay. Columns 1-5 list the basic

information and NBTI-induced degradation of the baseline

benchmarks. Columns 6-7 and Columns 8-10 list the results

of [22] and CSL, respectively. The runtime is in seconds.

Compared to the baseline, the NBTI delay improvement of

both methods are listed in Columns 11 and 13, and the area

overhead of CSL is listed in Column 12. There is no area

overhead in [22], since it only swaps wires and does not

introduce additional gates.

A. The Performance of [22]

As shown in Table II, we observed the performance of [22]

on large-scale benchmarks is limited based on our reimple-

mentation. After investigating the algorithm and benchmarks,

the possible explanations for this phenomenon are in the

following paragraphs.

First, as we aforementioned, the performance of after-

TechMap works might be constrained by the results of tech-

nology mapping. Therefore, after benchmarks are optimized

and remapped (e.g., by ABC in this work) for delay, there

might be no much space left for further delay or NBTI delay

improvement, thus affecting the performance of these works.

However, this effect is more dramatic in [22] because it only

performs wire swapping without inducing any additional gates.

Second, the size of supergates does matter to the perfor-

mance due to the complexity of algorithm. The statistical

information of supergates detected by [22] for each benchmark

is listed in Table III. As shown in Table II, [22] cannot finish

vga_lcd, leon3mp, and netcard within the specified

time limit because these benchmarks have big SGs whose

sizes are 219, 225, and 877, respectively. In Table III, we can

know the number of wires in a SG is essentially proportional

to its size. However, the number of valid combinations of

wire swappings is indeed exponential to the number of wires.

Therefore, when the size of a SG is enormous, [22] spends

much time in exploring many possible combinations of wire

swappings to find the one that reduces the NBTI delay of the

SG most. Although [22] has proposed some heuristics to prune

the exploring space, the number of wire swappings to try is still

intractable in big SGs. Furthermore, large-scale benchmarks

usually have more big SGs than small-scale ones; therefore,

we could infer that large-scale benchmarks are not friendly to

[22].

Third, the NBTI delay reduction is limited because not many

SGs are located on the NBTI longest path of circuits. Please

note that the standard cell library used in the paper is richer

than the one used in [22]. Our library has two additional

primitive gate types, OAI and AOI, which do not have non-

controlling values and cannot perform backward implication.

Additionally, large-scale benchmarks usually have many non-

fanout-free gates because of logic sharing. Therefore, for

pci_bridge32, DMA, des_perf and b19, [22] cannot

find enough SGs on the longest path to improve NBTI delay

due to keeping restarting SG expansion on new SG roots,

while encountering OAI, AOI, and non-fanout-free gates. This

scattered SG structure compromises the performance of [22]

242 2015 33rd IEEE International Conference on Computer Design (ICCD)

TABLE IV
THE EFFECTIVENESS OF NBTI-AWARE SUBJECT GRAPH

RESTRUCTURING OF CSL.

Circuit

CSL (AIG restr.) CSL (AIG restr.) Performance

Area
NBTI Area NBTI Delay

Delay Overhead (%) Imprv. (%)

pci_bridge32 44166 19.86 0.38% 10.78%

DMA 48494 19.16 6.60% 3.57%

des_perf 180731 17.04 6.74% 2.35%

vga_lcd 284397 15.64 6.76% 9.23%

b19 442878 63.81 0.25% 4.19%

leon3mp 1254236 40.89 0.28% 6.15%

netcard 1617043 31.85 5.52% 1.82%

Ave. 3.79% 5.44%

* Area size is normalized by INV’s size and reported by ABC [1].

drastically. Take DMA as an example, we found that there is

only one SG of size 2 on the NBTI longest path. What’s worse,

this SG, consisting of only a NAND2 and an INV, has no valid

wire swappings that can improve the NBTI delay. Therefore,

no NBTI improvement can be made in DMA.

B. The Performance of CSL

According to Table II, CSL can achieve 6.53% NBTI delay

improvement with merely 2.49% area overhead on average.

Thanks to NBTI-aware subject graph restructuring technique,

NBTI-friendly graphs can be generated by considering NBTI

effect and controlling area overhead as early as possible. Given

the NBTI-friendly graphs, our technology mapping technique

can have more flexibility in choosing the matching gates that

can reduce NBTI delay most as well as not sacrificing area

too much. For example, CSL can mitigate the NBTI effect of

b19 and pci_bridge32 with insignificant area overhead

(< 1 %). This contribution is even more significant for large

benchmarks like netcard and leon3mp, for which CSL

can improve NBTI delay without any area overhead or even

a little area reduction. Interestingly, for pci_bridge32 and

vga_lcd, the improved NBTI delay is slightly better than the

original nominal delay, possibly due to the restructuring at the

subject graph stage. Additionally, the runtimes of benchmarks

also demonstrate the scalability of CSL. All the benchmarks

can finish in several seconds to an hour. Please note that the

major part of runtime is spent on technology mapping, which

is also a necessary effort for non-NBTI-aware approaches. We

could find that CSL has a great ability to handle large-scale

benchmarks as well as has no constraints on the libraries used.

To demonstrate the benefit of considering NBTI effect

at an earlier stage, we conducted another experiment that

only applies NBTI-aware subject graph restructuring technique

in CSL without using NBTI-aware technology mapping and

smart pin reordering techniques. Results in Table IV demon-

strate that NBTI-aware subject graph restructuring alone can

achieve 5.44% NBTI delay improvement on average, which

are the major contributions of the complete CSL. These results

support the idea of early consideration of NBTI effect. Al-

though the techniques of the rest stages, NBTI-aware technol-

ogy mapping and NBTI-aware smart pin reordering, seemingly

provide 1.09% (6.53% − 5.44% = 1.09%) improvement in

NBTI delay, they help reduce area overhead from 3.79% to

2.49%. Therefore, the coordination among the techniques at

different stages can result in the best performance of CSL.

V. CONCLUSION

This paper proposes a coordinated and scalable logic syn-

thesis approach, CSL, to address NBTI effect, which is a

major cause of aging and reliability issues in nanometer IC

designs. It consists of NBTI-aware subject graph restructuring,

technology mapping, and smart pin reordering techniques

at different stages to form a coordinated NBTI-aware logic

synthesis approach. Experimental results demonstrated the

capability and scalability of CSL to mitigate the NBTI effect

with acceptable area overhead and runtime.

ACKNOWLEDGMENT

This work was supported by NSF CCF 12-55846 and SRC

2013-TJ-2420.

REFERENCES

[1] Berkeley Logic Synthesis and Verification Group, ABC:
A system for sequential synthesis and verification.
http://www.eecs.berkeley.edu/∼alanmi/abc/

[2] A. Chakraborty and D. Z. Pan, “Skew management of NBTI impacted gated clock
trees,” in Proc. of ISPD, pp. 127-133, 2010.

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, “Reducing
structural bias in technology mapping,” in Proc. of ICCAD, pp. 519-526, 2005.

[4] C.-W. Chang, C.-K. Cheng, P. Suaris, M. Marek-Sadowska, “Fast Post-Placement
Rewiring Using Easily Detectable Functional Symmetries,” in Proc. of DAC,
pp. 286-289, 2000.

[5] M. Ebrahimi, F. Oboril, S. Kiamehr, and M. B. Tahoori, “Aging-aware logic
synthesis,” in Proc. of ICCAD, pp. 61-68, 2013.

[6] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori, and
N. Wehn, “Reliable on-chip systems in the nano-era: lessons learnt and future
trends,” in Proc. of DAC, pp. 1-10, 2013.

[7] K. Keutzer, “DAGON: Technology binding and local optimizations by DAG
matching,” in Proc. of DAC, pp. 617-623, 1987.

[8] Y. Kukimoto, R. K. Brayton, and P. Sawkar, “Delay-optimal technology mapping
by DAG covering,” in Proc. of DAC, pp. 348-351, 1998.

[9] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware synthesis of digital
circuits,” in Proc. of DAC, pp. 370-375, 2007.

[10] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean reasoning
for equivalence checking and functional property verification,” IEEE Trans. CAD,
Vol. 21(12), pp. 1377-1394, 2002.

[11] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decomposition
during technology mapping,” IEEE Trans. CAD, vol. 16, no. 8, pp. 813-833, 1997.

[12] M. M. Ozdal et al., “The ISPD-2012 discrete cell sizing contest and benchmark
suite,” in Proc. of ISPD, pp. 161-164, 2012.

[13] “Predictive technology model,” Device Group at Arizona State University, Available
at http://www.eas.asu.edu/∼ptm

[14] S. Roy and D. Z. Pan, “Reliability aware gate sizing combating NBTI and oxide
breakdown,” in Proc. of VLSID, pp. 38-43, 2014.

[15] E. M. Sentovich et al., “SIS: A system for sequential circuit synthesis,” Technical
Report, UCB/ERI, M92/41, ERL, Dept. of EECS, UC Berkeley, 1992.

[16] L. Stok, M. A. Iyer, and A. J. Sullivan, “Wavefront technology mapping,” in Proc. of
DATE, pp. 531-53, 1999.

[17] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: road to
cross in deep submicron silicon semiconductor manufacturing,” Journal of Applied
Physics, Vol. 94, No. 1, Jul. 2003.

[18] E. Takeda and N. Suzuki, “An empirical model for device degradation due to hot-
carrier injection,” IEEE Electron Device Lett., vol. EDL-4, pp. 111-113, 1983.

[19] V. Reddya, A. T. Krishnana, A. Marshalla, J. Rodrigueza, S. Natarajanb, T. Rosta,
and S. Krishnan, “Impact of negative bias temperature instability on digital circuit
reliability,” in Proc. Int. Reliability Phys. Symp., pp. 248V54, 2002.

[20] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization of PMOS NBTI
effect for robust nanometer design,” in Proc. of DAC, pp. 1047-1052, 2006.

[21] W. Wang et al., “The impact of NBTI on the performance of combinational and
sequential circuits,” in Proc. of DAC, pp. 364V369, 2007.

[22] K.-C. Wu and D. Marculescu, “Joint logic restructuring and pin reordering against
NBTI-induced performance degradation,” in Proc. of DATE, pp. 75-80, 2009.

[23] K.-C. Wu and D. Marculescu, “Aging-aware timing analysis and optimization
considering path sensitization,” in Proc. of DATE, pp. 1-6, 2011.

[24] X. Yang and K. Saluja, “Combating NBTI degradation via gate sizing,” in Proc. of
ISQED, pp. 47-52, 2007.

2015 33rd IEEE International Conference on Computer Design (ICCD) 243

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

