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ABSTRACT
Sub-Resolution Assist Feature (SRAF) generation is a very
important resolution enhancement technique to improve yield
in modern semiconductor manufacturing process. Model-
based SRAF generation has been widely used to achieve
high accuracy but it is known to be time consuming and
it is hard to obtain consistent SRAFs on the same layout
pattern configurations. This paper proposes the first ma-
chine learning based framework for fast yet consistent SRAF
generation with high quality of results. Our technical con-
tributions include robust feature extraction, novel feature
compaction, model training for SRAF classification and pre-
diction, and the final SRAF generation with consideration of
practical mask manufacturing constraints. Experimental re-
sults demonstrate that, compared with commercial Calibre
tool, our machine learning based SRAF generation obtains
10X speed up and comparable performance in terms of edge
placement error (EPE) and process variation (PV) band.

CCS Concepts
•Hardware → VLSI design manufacturing consider-
ations;
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1. INTRODUCTION
As the technology node continues scaling down, the 193nm

wavelength photolithography with low k1 value is the main-
stream technique to achieve smaller feature size. However,
low image contrast and complex target pattern shapes make
it extremely difficult for low-k1 lithography to obtain accept-
able lithographic process windows [1]. Besides the design
for manufacturability techniques, like multiple patterning
and litho-friendly layout design, mask optimization through
resolution enhancement techniques (RETs) remains as the
key strategy to improve the lithographic process window
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Figure 1: (a) An isolated contact, (b) printing with
OPC, (c) printing with SRAF generation and OPC.

and the yield of the volume production in advanced tech-
nology nodes [2–6]. Major RETs include source mask co-
optimization, sub-resolution assist feature (SRAF) genera-
tion and optical proximity correction (OPC). Among them,
the SRAF generation is particularly important to improve
the lithographic process window of target patterns. The key
physical mechanism behind is that, without printing them-
selves, the small SRAF patterns would deliver light to the
positions of target patterns at proper phase so that the print-
ing of target patterns will be more robust to the lithographic
variations. The lithographic process window is quantified
with the process variation (PV) band area, which should be
minimized to obtain a robust mask optimization solution.
An example demonstrating the benefit of SRAF generation
is shown in Fig. 1. An isolated target contact with the
OPC pattern is shown in Fig. 1(a) and the target pattern
is optimized only with OPC in Fig. 1(b), while the opti-
mization in Fig. 1(c) is done with both SRAF generation
and OPC. It can be clearly observed that much smaller PV
band area is achieved in Fig. 1(c). Therefore, fast SRAF
generation with high quality is of great importance for the
mask optimization.

Multiple SRAF generation approaches, including model-
based and rule-based approaches, have been developed and
widely used in standard mask optimization flows. The rule-
based approach is widely adopted due to its fast execution
time and acceptable performance for simple designs and reg-
ular target patterns [1,7,8]. However, the rule-based SRAF
is hard to deal with complex two-dimension (2D) shapes as it
requires significant engineering efforts to setup and maintain
the rule table [7]. Model-based SRAF generation methods
can be divided into two categories based on the lithographic
computations involved. One is to use simulated aerial im-
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ages to seed the SRAF generation [9–12]. The other is to
apply inverse lithography technology (ILT) and compute the
image contour to guide the SRAF generation [13, 14]. De-
spite better lithographic performance and generalization ca-
pabilities compared to the rule-based approach, the model-
based SRAF is known to be very time-consuming and it is
difficult to achieve the same SRAFs around the same layout
configurations, i.e. consistent SRAFs [1,7].

Recently, the machine learning technique has been in-
troduced to the computational lithography domain, with
applications to lithographic hotspot detection [15–19] and
OPC [20–23]. The machine learning technique calibrates a
mathematical model with respect to an objective from the
training data set based on accurate lithographic computa-
tions. Then, the calibrated model can predict the objective
values, like a hotspot or non-hotspot for the hotspot detec-
tion and the shifting distance of an edge segment for the
OPC, on the testing data. The machine learning technique
usually demonstrates a trade-off between computational ef-
forts and lithographic performance, which makes it particu-
larly interesting for the SRAF generation problem. However,
to the best of our knowledge, there is no prior art in apply-
ing the machine learning technique to the SRAF generation
issue. In this work, we propose the first machine learning
based framework for the SRAF generation. Our methodol-
ogy can achieve fast yet consistent SRAFs with high quality
in a 2D grid plane. Our main contributions are summarized
as follows:

• A machine learning based framework is proposed for
the SRAF generation, where a classification model is
calibrated for SRAF predictions using model-based SRAFs
as the training data.

• We propose a robust feature extraction scheme by adapt-
ing the concentric circle with area sampling consider-
ing SRAF-specific constraints. We further propose a
novel feature compaction technique taking advantage
of illumination source symmetry properties to reduce
the training data size and improve the SRAF consis-
tency.

• Logistic regression and decision tree models are cali-
brated for fast SRAF predictions due to the large data
set size and high feature vector dimension. Different
from conventional label predictions, we propose pre-
dictions with probability maxima in the 2D grid plane
to generate manufacturing-friendly SRAFs.

• Our machine learning based framework achieves 10X
speed-up in layout windows with comparable litho-
graphic performance, compared with an industry strength
model-based approach.

The rest of this paper is organized as follows. Section 2 in-
troduces the standard mask optimization flow and related
evaluation metrics. Section 3 gives the basic definitions and
problem formulations. Section 4 explains the details on the
feature extraction/compaction and model calibration. Sec-
tion 5 shows how to generate SRAFs from the classifica-
tion model while accommodating the mask manufacturing
rules. Section 6 demonstrates the effectiveness of the pro-
posed framework with comprehensive results. Section 7 con-
cludes the paper.

2. PRELIMINARIES

2.1 Mask Optimization Flow
A standard mask optimization flow consists of several

stages, including SRAF generation, OPC, mask manufac-
turing rule check (MRC) and lithography compliance check
(LCC) as shown in Fig. 2(a) [1]. Depending on the outcome
of MRC and LCC, iterative optimizations may be applied to
achieve legal mask patterns. The MRC will check whether
mask patterns satisfy a set of mask manufacturing rules.
The LCC means lithography simulations are performed to
check whether lithographic constraints are satisfied. In the
stage of SRAF generation, small SRAFs will be added and
isolated patterns on the mask will become dense patterns as
shown in Fig. 1(b). SRAFs will not be printed themselves
but will benefit the lithographic process windows of target
patterns. In the next stage, OPC will shift the edges of OPC
patterns to compensate for the optical proximity effects.
Then, for the MRC, we assume the target patterns are MRC-
clean and some typical mask manufacturing rules are applied
to the SRAFs since this work mainly focuses on the SRAF
generation. Typical mask manufacturing rules for SRAFs
include maximum width (max width) rule, minimum space
(min space) rule and maximum length (max length) rule.
The LCC will introduce a lithographic process window in-
volving a set of {focus, dose} conditions [24]. Lithography
simulations at various conditions are performed to check
whether the metrics, such as PV band and edge placement
error (EPE), meet the criteria.

Target Patterns

SRAF.Generation

Optical.Proximity.Correction

Mask.patterns

fail

pass

MRC.and.LCC

(a)

outer&contour

inner&contour

nominal&contour

EPE

(b)

Figure 2: Mask optimization: (a) mask optimization
flow, (b) lithography simulation contours.

2.2 Evaluation Metrics
We introduce several metrics to evaluate the performance

of mask optimization results. An example of lithography
simulation results is shown in Fig. 2(b). Inner and outer
contours are explicitly drawn to demonstrate the lithographic
printing variations due to the imposed {focus, dose} condi-
tions. Nominal contour represents the lithographic printing
at the best {focus, dose} condition. To quantify the litho-
graphic variations, we define PV band and EPE as follows.

Definition 1 (PV Band) Given the lithography simulation
contours at a set of {focus, dose} conditions, the process
variation (PV) band is defined as the area between the outer
contour and inner contour.

Definition 2 (EPE) Given the lithography simulation con-
tour at the best {focus, dose} condition, i.e. nominal contour
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and a measurement point, the edge placement error (EPE)
is defined as the distance between the target pattern contour
and nominal contour.

Thus, in Fig. 2(b), the area between the outer contour
and inner contour is the PV band. A measurement point
is drawn with a dashed line orthogonal to the vertical edge
of the target pattern in Fig. 2(b) and the EPE can be ex-
plicitly quantified. The SRAF consistency is an important
issue since it is closely related to the process variations on
wafer [1]. Consistent SRAFs are preferred around the same
target pattern configurations because different SRAFs lead
to different OPC results, which potentially introduce extra
process variations. We define the consistent SRAF genera-
tion as follows.

Definition 3 (Consistent SRAF generation) Consistent
SRAF generation means the same SRAF patterns should be
generated for the same target layout configurations.

3. PROBLEM FORMULATION
The machine learning based SRAF generation framework

works on a 2D grid plane with a specific grid size. The
training data consist of a set of layout clips, where each
layout clip includes a set of target patterns and model-based
SRAFs. With the 2D grid plane and the training patterns,
training samples can be extracted at each grid point. To
clearly explain the training data, we define the SRAF label
as follows.

Definition 4 (SRAF label) Given model-based SRAFs on
the 2D grid plane, the SRAF label of a grid is 1 or 0, where
1 denotes an SRAF is inserted at that grid and 0 vice versa.

Specifically, a training data point includes a feature vector
and an SRAF label. The feature vector represents the op-
tical conditions of the grid point with respect to the target
patterns. With the training data, we define the classification-
based SRAF as follows.

Problem 1 (Classification-based SRAF) Given the 2D
grid plane and training patterns with model-based SRAFs,
feature vectors and SRAF labels of all grid points are ex-
tracted and a classification model is calibrated to predict the
SRAF insertion at each grid of testing patterns.

In the testing phase, the classification model can predict
the SRAF label at each grid for testing patterns. Those
grids with SRAF labeled as 1 can not directly be treated as
the final SRAFs and further simplifications are needed to
generate SRAFs accommodating mask manufacturing rules.
Thus, we define the SRAF generation as follows.

Problem 2 (SRAF Generation) Given the classification
model and test patterns, SRAFs are generated while accom-
modating the mask manufacturing rules.

4. CLASSIFICATION-BASED SRAF

4.1 Data Preparation

4.1.1 SRAF Label Extraction
Given training patterns with model-based SRAFs on a 2D

grid plane, we need to extract the training data, including

the SRAF label and feature vector for each grid. As shown
in Fig. 3(a), a 2D grid plane is imposed on the target pat-
terns and model-based SRAFs. The coordinates of each grid
are determined by the pre-set grid size. A SRAF box is in-
troduced at each grid to decide the SRAF label from model-
based SRAFs. Specifically, the SRAF box is a rectangle and
the size is a parameter, which could be different from the
grid size. The SRAF label of the grid is 0 if no model-based
SRAF covering the SRAF box on the grid. The SRAF label
is 1 when there is a model-based SRAF covering the entire
SRAF box area. Therefore, the grid size of the 2D grid plane
decides the granularity of the training data extraction while
the SRAF box provides an alternative control on the SRAF
label extraction accuracy. The SRAF label extraction will
give a set of labels for all the grids, denoted as {y0}.

In addition, an OPC region and an SRAF region are ex-
plicitly drawn in Fig. 3(a) to demonstrate SRAF-specific
constraints. SRAF generation is not allowed in the OPC
region since it is reserved for the OPC stage after the SRAF
generation. Since the optical interference happens within
some specific lithographic interaction window, the SRAF
generation outside of the pre-determined SRAF region can
be ignored. Both OPC region and SRAF region are created
by expanding the edges of the target patterns by some spe-
cific distance. We define the distance of expansion for the
OPC region and SRAF region as dopc and dsraf , respectively.

SRAF%label:%0

SRAF%label:%1

(a)

0 1 2N%1
sub%sampling0point

(b)

Target pattern SRAF SRAF box OPC region SRAF region

Figure 3: (a) SRAF label extraction and sampling
constraints, (b) CCCAS at one grid point.

4.1.2 Feature Extraction and Compaction
The layout feature extraction plays an important role in

the classification model calibration and prediction. The
SRAFs benefit the printing of target patterns by deliver-
ing light to the positions of target patterns at proper phase.
Thus, we need a layout feature that represents this physi-
cal phenomenon. The concentric circle with area sampling
is an ideal candidate since it represents the information re-
lated to the concentric propagation of diffracted light from
mask patterns [22]. We adapt it to the constrained concen-
tric circle with area sampling (CCCAS) by incorporating
the OPC region and SRAF region constraints discussed in
Section 4.1.1. The CCCAS at one grid is illustrated in Fig.
3(b), where each circle centers at the grid and the minimum
and maximum radius of the CCCAS are determined by dopc
and dsraf , respectively. After transforming target patterns
into the bitmap on the 2D plane, the CCCAS yields a M×N
matrix, denoted as X0, where M is the row number and N
is the column number. As shown in Fig. 3(b), the column
index of X0 starts at the positive Y-axis with 0 and increases
clockwise to N−1. The sub-sampling points, denoted as the
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black dots in Fig. 3(b), sharing the same angle to the origin
are on the same column of X0. The row index of X0 starts
with 0 at the circle with the smallest radius and increases to
M−1 as the circle radius becomes larger. The sub-sampling
points on the same circle is on the same row of X0.

The consistent SRAF generation is an important issue,
which means the same SRAFs will be generated surrounding
the same target pattern configurations, i.e. the same optical
conditions [7]. For example, in Fig. 4, the four grids are on
axial symmetric positions of the grid plane with respect to
the target patterns. If we assume the annular shape for the
illumination source, the optical conditions of these four grids
are the same and consistent SRAF generation scheme will
give the same SRAF results. However, since the CCCAS
at these four grids are different, denoted by different colors
in Fig. 4, it is difficult for a classification model to achieve
the same SRAF predictions. To achieve better SRAF con-
sistency, we propose a novel feature compaction technique
taking advantage of the illumination source symmetry. As
shown in Fig. 4, this feature compaction technique trans-
forms the CCCAS of symmetric grids into the CCCAS of
the same grid, denoted as g, in the lower left of the grid
plane. The sampling region of the grid (g) can be divided
into four quadrants, i.e. I, II, III and IV . The target
patterns mainly locate at the quadrant I of the sampling
region of the grid (g), while target patterns mainly locate at
different quadrants for other symmetric grids. For clearer
explanations, we define the main quadrant as follows.

Definition 5 (Main Quadrant) The main quadrant for a
grid is defined as the quadrant of the CCCAS region where
target patterns mainly locate.

By flipping the CCCAS of other symmetric grids with X or
Y-axis as shown in Fig. 4, target patterns will always locate
at the quadrant I of the sampling regions for symmetric
grids, which leads to the same CCCAS results. Then, the
classification model will give consistent SRAF predictions
for axial symmetric grids.

g
I

Flip%with%
X*axis

Flip%with%Y*axis

Flip%with%X%and%Y*axis

IVIII

II

Figure 4: Feature compaction based on symmetry.

The details of the feature compaction technique are ex-
plained in Algorithm 1. The 2D feature matrix from CC-
CAS contains the bitmap value at each sub-sampling point.
The bitmap values of sub-sampling points within each quad-
rant of the sampling region correspond to a set of columns
in the 2D feature matrix. Thus, the main quadrant should
have the maximum summation of bitmap values at the 2D
feature matrix. From lines 3 to 9, we scan through the four
quadrants of the CCCAS region and decide the main quad-
rant. The flipping of 2D matrix is performed in line 10 to

Algorithm 1 Feature Compaction
Input: A M × N feature matrix X0;
Output: Optimized feature vector x0;
1: Define main quadrant = 1 as the main quadrant;
2: Define max sum = 0 as the maximum summation;
3: for index = 0, index < 4, index++ do;
4: Define sum = summation of X0 from column index×N/4 to

column (index + 1) × N/4;
5: if sum > max sum then;
6: max sum = sum;
7: main quadrant = index + 1;
8: end if
9: end for

10: Flip X0 based on main quadrant;
11: Flatten X0 into a vector x0 and return x0;

transform the main quadrant to quadrant I as demonstrated
in Fig. 4. For practical implementation, the flipping of 2D
matrix can be achieved with simple column index switch-
ing. In line 11, the 2D feature matrix is flattened into a one
dimension (1D) feature vector for the classification model
calibration. It shall be noted that, the illumination source
symmetry-based feature compaction scheme can be easily
extended to other symmetric scenarios, such as rotational
symmetry. Overall, the feature extraction and compaction
will yield a set of 1D feature vectors with M×N dimensions.

4.2 Model Training
With the SRAF labels and feature vectors, a classification

model is calibrated for SRAF predictions. In particular,
the size of training data set and feature vector dimension
can both be very large because high sampling accuracy is
needed for classification-based SRAF. Moreover, the large
training and testing data set sizes make the classification-
based SRAF problem difficult to adopt support vector ma-
chine (SVM) and other advanced classification models from
the perspective of calibration and prediction runtime. Thus,
we adopt decision tree (DTree) and logistic regression (LGR)
models for SRAF predictions with reasonable performance
and runtime.

Decision Tree The DTree model is simple yet powerful,
which partitions the feature space into a set of rectangles and
calibrate a simple model (like a constant label for classifica-
tion model) in each one [25]. Specifically, the DTree model
calibration is to construct a decision tree from labeled train-
ing data in the top-down manner, using a metric to decide
the best splits of set of training data at each step [25]. For
this application, the Gini index metric is used to decide the
best splits at each step of calibration with the CART (Class
and Regression Trees) algorithm. With the Gini index, the
DTree classifier can estimate the probability of a label for
each data sample by calculating the fraction samples of that
label in a leaf [25].

Logistic Regression The LGR adopts the logistic func-
tion as the probabilistic estimation for each label of the
training or testing data. The model calibration is typically
achieved with the maximum likelihood method [25]. The
LGR model is especially powerful for binary classification,
which makes the calibration and prediction scalable to large
data set. Due to the large training data set in classification-
based SRAF issue, L2 regularization is added to the LGR
model to avoid overfitting. The LGR model provides the di-
rect probabilistic estimation of labels for each data sample.
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5. SRAF GENERATION

5.1 Predictions with Probability Maxima
The typical prediction with a binary classification model

will be a label, i.e. 0 or 1, for each testing data. With the
label prediction for each grid, clusters of grids will be labeled
as 1, denoted as yellow grids, as shown in Fig. 5(a). After
the label prediction, clusters of grids in Fig. 5(a) cannot
be directly treated as SRAFs because they may violate the
mask manufacturing rules or be printed due to large crit-
ical dimensions. Instead of using SRAF label for the grid
prediction, we propose predictions with probability maxima
to simplify the clusters of SRAF grids. When a classifica-
tion model is calibrated, the probability of the label to be
1, denoted as p1, can be calculated for LGR and DTree as
explained in Section 4.2. Then, a probability map on the
2D grid plane can be attained as shown in Fig. 5(b). To
simplify the clusters of grids for SRAF generation, we only
insert SRAFs at grids with probability maxima. A grid with
probability maximum means the probability (p1) at that
particular grid is larger than that at any other neighboring
grids. The idea of predictions with probability maxima orig-
inates from the model-based SRAF approach. Model-based
SRAFs are generated using the guidance map from litho-
graphic computations [9–12]. A guidance map is also grid
based and has intensity assigned to each grid, where SRAFs
will only be inserted at those intensity maxima. Thus, we
adopt the similar idea during predictions with probability
maxima since model-based SRAFs are used as the training
data for the classification model calibration.

horizontalver,cal

(a)

probability maximumnot probability maximum

(b)

Target pattern OPC pattern ML prediction SRAF

Figure 5: SRAF predictions: (a) label predictions,
(b) predictions with probability maxima.

5.2 SRAF Simplification
Using predictions with probability maxima, clusters of

grids will be predicted as SRAFs on the 2D grid plane but
the mask manufacturing and SRAF printing issues are not
fully resolved. The SRAF simplification phase aims at sim-
plifying these clusters of grids into SRAFs satisfying the
mask manufacturing rules. A greedy simplification scheme
is proposed by grid merging and shrinking the SRAFs into
rectangular shapes while accommodating mask manufactur-
ing rules.

The overall algorithm of SRAF generation is shown in
Algorithm 2. In lines 1-2, we predict SRAFs at grids with
probability maxima from the classification model. In line 3,
the grids with probability maxima are merged into polygons,
which is followed by the spacing rule check and shrinking
the polygons to remove violations in line 4. From line 5
to 14, each polygon is processed to generate a rectangular
SRAF. Particularly, in line 7, the main direction of SRAF is
detected based on the bounding box of target patterns. In

line 8, the bounding box of the polygon is shrunk to achieve
a rectangular SRAF parallel to that of target patterns. As
illustrated in Fig. 5(a), the main direction of the polygon
on the top is horizontal while the main direction on the left
is vertical, both of which are parallel to the bounding box
of target patterns. With the SRAF simplification, the mask
manufacturing-friendly SRAFs can be generated for testing
patterns.

Algorithm 2 SRAF generation
Input: A 2D grid plane, a classification models, a set of mask man-

ufacturing rules;
Output: The mask manufacturing friendly set SRAF ;
1: Compute the probability of label 1 for each grid;
2: SRAF predictions at grids with probability maxima;
3: Merge SRAF grids into a polygon set SRAFpg ;
4: Spacing rule check and shrink polygons in SRAFpg to remove

violations;
5: for each polygon in SRAFpg do;
6: Define BBox as the bounding box of polygon;
7: Detect the main direction of polygon as direction;
8: Shrink BBox size based on direction;
9: end for

10: Rule check and shrink rectangles in SRAF to remove violations;
11: Return SRAF ;

6. EXPERIMENTAL RESULTS
We have implemented the machine learning framework in

Python and accelerated with Cython [26] and parallel com-
putations. The optical model, model-based SRAF, MRC/LCC
recipes and the SRAF simplification are implemented using
Calibre script language with the industry-strength setup.
All experiments are performed on an 8-core Linux machine
with 3.4GHz Intel(R) Core and 32GB memory. For the opti-
cal model, the wavelength (λ) and numerical aperture (NA)
are set as 193nm and 1.35, respectively. The annular illu-
mination source is used with outer sigma as 0.9 and inner
sigma as 0.6. Compact model 1 from Calibre is adopted as
the resist model. In the LCC, the outer/inner contours are
generated using lithographic process window conditions as a
focus variation of ±30nm and a dose variation of ±3.0%. For
model-based SRAF generation, process window conditions
above are considered and SRAF manufacturing rules are set
as max width = 40nm, min space = 60nm, max length =
90nm. We test the SRAF generation framework on two
types of contact patterns. One type is dense contact arrays
with contact width and space fixed as 70nm. We have dense
contact patterns because redundant vias are needed to im-
prove yield during layout design. The other type is sparse
contact patterns, where the contact width is 70nm but the
space between contact holes is random and the minimum
space is 70nm. For CCCAS, the grid size is set as 10nm,
the SRAF box size is set as 40nm and radius step size is
sr =15nm. For SRAF-specific constraints, dopc and dsraf
are set as 100nm and 600nm, respectively.

6.1 Model Training
A set of training patterns and model-based SRAFs are

needed to extract the training data and calibrate the clas-
sification model for SRAF predictions on both dense and
sparse testing patterns. From the extensive experiments, the
training patterns in Fig. 6 yield the best training and testing
accuracy. For the dense contact patterns in Fig. 6(a), the
width and space are fixed as 70nm. The width of sparse con-
tact patterns in Fig. 6(b) is 70nm, while the space is 350nm.
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In particular, since the training patterns are symmetric and
feature compaction scheme has been proposed, we only need
to sample the lower left part of the layout clip for training
data. This is beneficial for the classification model calibra-
tion since the training data size can be reduced by 3/4 with-
out losing the critical SRAF information. The training data
set statistics are summarized in Table 1. For CCCAS, the
number of circle is set as M = b(dsraf − dopc)/src = 33.
The number of sub-sampling points in each circle is set as
N = 32 to guarantee sampling accuracy for sparse contact
patterns. Then, the feature vector dimension is M × N =
1056. By combining the training data from dense and sparse
patterns, we have 14609 training samples. We have 95412
testing samples from dense patterns and 803756 testing sam-
ples from sparse patterns.

(a) (b)

Target pattern OPC pattern MB SRAF Sampling region

Figure 6: Training layout: (a) dense contact pat-
terns, (b) sparse contact patterns.

The data set statistics demonstrate the high feature vec-
tor dimension and large training data size. The feature vec-
tor dimension is difficult to be further reduced since each
sub-sampling point contains the information related to the
target patterns. Moreover, each training data sample within
the lithographic interaction window is considered valuable,
so there is little redundancy within the training data set.
As discussed in Section 4.2, advanced classification models,
such as support vector machine, are not applicable to the
classification-based SRAF domain due to large training and
testing data sets. In practice, we find that the reasons are
twofold. First, the training of advanced classification models
has high complexity, which is not as scalable as the simple
classification models to large training data set. Second, ad-
vanced classification models have more complex prediction
model calibrated, which means the testing time for each
testing sample would be longer than that of simple mod-
els. Since the grid based approach is used here, the runtime
overhead accumulates and even becomes unaffordable over
the huge amount of testing samples extracted from testing
patterns. 1

We further compare different classification models, includ-
ing DTree and LGR, for the SRAF generation framework
and data statistics are shown in Table 2. The F1 score is
computed as:

F1 score =
2 ∗ precision ∗ recall
(precision+ recall)

(1)

where precision is the number of true positive results di-
vided by the number of all positive results and recall is

1
Our implementation of the support vector machine with linear kernels shows

much longer runtime than LGR and DTree, which leads to the overall SRAF
generation runtime longer than that of the model-based SRAF from Calibre.

the number of true positive results divided by the number
of positive results that should have been returned [27]. In
particular, F1 score is best at 1.0 and worst at 0.0 for com-
parison. Since either label 1 or label 0 can be treated as
positive result, we compute the F1 score for both labels, de-
noted as F1 score(1) and F1 score(0), respectively. From
Table 2, although DTree achieves better F1 score(1) and
F1 score(0) on training data, the testing F1 score(0) and
F1 score(1) are worse than LGR on dense patterns by 0.081
and 0.006, respectively. We only see a difference within
0.01 in F1 score for sparse testing patterns. This means
LGR is better than DTree due to its better testing accu-
racy and LGR is less prone to the overfitting with large
training data set and high dimension feature vectors. In
addition, the model calibration time and testing time on
sparse testing patterns for LGR are less than DTree but
the difference is non-significant. Moreover, we observe the
F1 score(1) is much better than F1 score(0) on all testing
data for both classification models. This means that most
grids with SRAFs of testing patterns are labeled as 1 cor-
rectly but some other grids without SRAFs that should be
labeled as 0 are incorrectly labeled as 1. This also proves
the necessity of predictions with probability maxima and the
SRAF simplification stage later on, which essentially reduces
the number of grids labeled as 1 and potentially improves
the F1 score(0) for testing data.

6.2 SRAF Generation

6.2.1 SRAF Simplification
We add testing layout clips to demonstrate the strength

of predictions with probability maxima and SRAF simpli-
fication schemes. Since the LGR based approach performs
better than the DTree based approach, we only show the
SRAFs from LGR predictions for clear explanations. As il-
lustrated in Fig. 7, we compare the SRAFs generated using
different machine learning (ML) predictions, i.e. label pre-
dictions and predictions with probability maxima, followed
by the SRAF simplification phase. Predictions with proba-
bility maxima can simplify the clusters of grids labeled as 1,
i.e. breaking large clusters into small clusters, which benefits
the SRAF simplification stage. Thus, the SRAFs generated
using predictions with probability maxima in Fig. 7(b) are
much better than those in Fig. 7(a) in terms of PV band
from the LCC.

(a) (b)

Target pattern OPC pattern ML prediction SRAF

Figure 7: SRAF generations: (a) label predictions,
(b) predictions with probability maxima.

6.2.2 SRAF Consistency
We further demonstrate the benefit of SRAF consistency

improvement from the feature compaction technique in Sec-
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Table 1: Data set statistics
feature vector dimension # of training samples # of testing samples from dense patterns # of testing samples from sparse patterns

1056 14609 95412 803756

Table 2: Comparisons on different classification models
Training Dense Testing Patterns Sparse Testing Patterns

Model F1 score(1) F1 score(0) Calibration time(s) F1 score(1) F1 score(0) Runtime(s) F1 score(1) F1 score(0) Runtime(s)
DTree 0.9983 0.9855 5.66 0.9499 0.3319 3.83 0.8787 0.2646 50.44
LGR 0.9938 0.9462 1.06 0.9557 0.4132 3.83 0.8724 0.2629 41.47

tion 4.1.2. The SRAF generation from model-based method
using Calibre [Calibre, v2015.2 36.27], LGR without feature
compaction and LGR with feature compaction are shown
in Fig. 8(a), (b) and (c), respectively. Since annular il-
lumination source is used, axial symmetric grids share the
same optical environment and the consistent SRAF genera-
tion should yield the same SRAFs at axial symmetric grids.
The feature compaction scheme would transform the fea-
ture matrices extracted from axial symmetric grids to the
same feature vector. Therefore, the SRAFs in Fig. 8(c)
are more consistent than those in Fig. 8(b). Moreover, we
have even achieved SRAFs with better consistency than the
model-based method shown in Fig. 8(a).

(a) (b) (c)

Target pattern OPC pattern ML prediction SRAF

Figure 8: SRAFs for the isolated contact pattern:
(a) model-based, (b) LGR without feature com-
paction, (c) LGR with feature compaction.

We further demonstrate the SRAFs from LGR predictions
on both dense and sparse testing patterns as shown in Fig.
9. The layout clip of dense contact patterns is defined as
m × n dense contact patterns, if the layout clip contains a
contact array with m rows and n columns. Fig. 9(a) and (b)
show two cases of redundant vias in real designs. The LGR
based SRAF generation can obtain acceptable SRAFs on
these dense contact patterns but the degradation of SRAF
consistency is observed. The reasons are twofold. First,
the training data with model-based SRAFs are not perfectly
consistent as shown in Fig. 6. Then, it is difficult to guar-
antee the consistent SRAF generation with the classification
model calibrated with these training data. Second, the CC-
CAS results may be slightly different for axial symmetric
grids due to the grid error within the 2D grid plane. Fig.
9(c) illustrates a small layout clip of random contact pat-
terns, which proves the capability of the machine learning
based SRAF generation on random sparse contact patterns.

6.3 Lithography Compliance Check
To evaluate the practical lithographic performance, we

combine the SRAF generation with a complete mask op-
timization flow as shown in Fig. 2, where model-based OPC
and LCC are performed using Mentor Calibre tool. We
compare the model-based, LGR and DTree approaches in

(a) (b) (c)

Target pattern OPC pattern ML prediction SRAF

Figure 9: Testing contact patterns: (a) 3 × 1 dense
contact patterns, (b) 3 × 2 dense contact patterns,
(c) sparse contact patterns

terms of PV band and EPE on both dense and sparse test-
ing patterns. Specifically, we collect the PV band value for
each contact and the EPE value at the center of the four
edges of each contact at nominal conditions. The mean val-
ues are summarized and compared in Table 3. We add the
PV band without SRAFs to better demonstrate the benefit
from SRAF generation. The model-based approach reduces
the PV band from 3.3064 to 2.7705, which is 16.21% re-
duction compared to no SRAF insertion. Meanwhile, we
obtain 13.37% and 14.09% PV band reduction from DTree
and LGR, respectively. The LGR based SRAF generation
achieves better performance as expected because LGR model
is less prone to overfitting compared to DTree model. In
particular, there is only 2.12% PV band degradation from
model-based approach to LGR based approach. We take the
absolute values when calculating the EPE mean to avoid the
cancellations between positive and negative values of EPE.
The LGR based SRAF generation yields the smallest EPE
mean value, which even outperforms the model-based ap-
proach. This means there is some trade-off between PV
band and EPE because different SRAF results lead to dif-
ferent OPC results. It is very difficult to improve the PV
band and EPE simultaneously with a robust mask optimiza-
tion flow.

Table 3: PV band and absolute of EPE
Mean value No SRAF Model-based DTree LGR

PV band (.001um2) 3.306 2.771 2.864 2.841
Absolute of EPE (nm) 3.636 0.539 0.523 0.501

We collect the PV band and EPE values for each contact
and further plot the data in histograms as shown in Fig.
10. Fig. 10(a) shows that SRAF insertion significantly im-
proves the PV band and model-based SRAF gives the best
performance. The LGR based approach is slightly worse
than model-based method but performs better than DTree
based method. Fig. 10(b) shows that LGR based SRAF
generation achieves the best EPE performance.
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Figure 10: Comparison among different schemes:
(a) PV band distribution, (b) EPE distribution.

6.4 Run Time
We compare our machine learning based SRAF generation

with the commercial Calibre tool, i.e. model-based SRAFs.
The mask optimization techniques, including SRAF gener-
ation and OPC, usually apply to small layout windows due
to the high computational cost [2]. Therefore, we choose
small layout windows with dense contact patterns for run-
time comparisons between different SRAF generation ap-
proaches. In Fig. 11, different dense contact patterns, de-
noted as m× n contact patterns explained in Section 6.2.2,
are used for runtime comparisons. The areas of these lay-
out windows considering SRAF regions are in the range
from 1um2 to 2um2. The runtime for the machine learn-
ing based approach includes runtime for feature extraction
and compaction, predictions with probability maxima and
SRAF simplification.

The average runtime for model-based SRAF, LGR based
SRAF and DTree based SRAF are 5.14s, 0.41s and 0.41s, re-
spectively. Although we are using a different programming
language and database from commercial tool, we still ob-
tain over 10X speed-up from machine learning based SRAF
generation compared to the model-based approach in Cali-
bre [Calibre, v2014.4 18.13]. We also check the runtime of
the model-based OPC from different SRAF generation ap-
proaches and ensure that they are approximately the same.
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Figure 11: Run time comparison among different
schemes on different layout windows.

7. CONCLUSION
A machine learning based framework for SRAF generation

is demonstrated for the first time. A robust feature extrac-
tion scheme is proposed by adapting the CCAS considering
SRAF-specific constraints. We further propose a novel fea-
ture compaction technique to reduce the training data size
and improve the SRAF consistency. Predictions with proba-
bility maxima are proposed to achieve mask manufacturing-

friendly SRAFs. Experimental results show that LGR based
SRAF generation obtains 10X speed-up in layout windows
and better EPE with affordable degradation in PV band,
compared to the commercial Calibre tool.
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