
Practical Public PUF Enabled by Solving Max-Flow Problem

on Chip

Meng Li

1

, Jin Miao

2

, Kai Zhong

3

, David Z. Pan

1

1Electrical and Computer Engineering Department, University of Texas at Austin, Austin, Tx USA 78712
2Cadence Design Systems, Inc., San Jose, CA USA 95134

3Institue of Computational Engineering and Science, University of Texas at Austin, Austin, Tx USA 78712
meng li@utexas.edu, jmiao@cadence.com, zhongkai@ices.utexas.edu, dpan@ece.utexas.edu

ABSTRACT
The execution-simulation gap (ESG) is a fundamental property of
public physical unclonable function (PPUF), which exploits the
time gap between direct IC execution and computer simulation.
ESG needs to consider both advanced computing scheme, includ-
ing parallel and approximate computing scheme, and IC physical
realization. In this paper, we propose a novel PPUF design, whose
execution is equivalent to solving the hard-to-parallel and hard-to-
approximate max-flow problem in a complete graph on chip. Thus,
max-flow problem can be used as the simulation model to bound
the ESG rigorously. To enable an efficient physical realization,
we propose a crossbar structure and adopt source degeneration
technique to map the graph topology on chip. The di↵erence on
asymptotic scaling between execution delay and simulation time is
examined in the experimental results. The measurability of output
di↵erence is also verified to prove the physical practicality.

1. INTRODUCTION
Many electronic systems require solutions for security, unique

identification and authentication. Physical unclonable function
(PUF) has been proposed as a promising solution [1–3]. A PUF is
a pseudo-random function that exploits the randomness inherent
in the scaled CMOS technologies to generate unique output re-
sponse given certain input challenge. A Public PUF (PPUF) is a
PUF that is created so that its simulation model is publicly avail-
able but large discrepancies exist between the execution delay and
simulation time [4–6]. A PPUF relies on the time gap between
execution and simulation to derive its security, which is promising
because no secret information needs to be kept, and the enroll-
ment phase before using a PUF (during which large amount of re-
sponses need to be characterized and stored) is also eliminated [5].
Therefore, PPUFs are able to underlie multiple public-key proto-
cols and have potentially much more applications compared with
traditional PUFs [6].
For a PPUF to be an e↵ective security primitive, execution-

simulation gap (ESG) acts as a fundamental property and needs
to be justified in terms of theoretical soundness and physical prac-
ticality. Theoretical soundness requires the ESG to be bounded
rigorously, especially considering the advanced parallel and ap-
proximate computing scheme. Physical practicality further re-
quires that the ESG can be realized e↵ectively considering the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898067

existing fabrication technique and the generated output must be
measurable.
Although a number of PPUF designs have been proposed in

the literature over the years [5–9], most of them do not justify
the proposed ESG in the two aspects above. The first PPUF is
proposed in [6] and relies on exclusive-or networks to convert the
delay variation into small voltage glitches. Because the amount
of glitches ideally increases exponentially relative to circuit depth,
the authors claim that keeping record of all the glitches requires
exponential computation. Although the idea is innovative, the
PPUF is hard to realize because the generate glitches usually have
very small pulse width and are very likely to be attenuated during
propagation to output due to the electrical property of the logic
gates [10]. Therefore, actual time gap is much smaller compared
with the ideal expectation. Another security primitive, termed
as SIMulation Possible, but Laborious (SIMPL) system, leverages
the time gap between the real optical interference and solving the
di↵erential equations underlying the optical system [5]. However,
its security against attacks relies on the nonlinearity of optical
medium, which is still an open problem. In [8], a nano-PPUF
design based on memristors is proposed. The authors justify the
ESG by the complexity of matrix multiplication operation used in
SPICE simulation. However, the authors ignore that matrix mul-
tiplication can be e↵ectively paralleled to reduce the simulation
time significantly.
While previous designs are more conceptual, we introduce a

practical PPUF whose execution is equivalent to solving the max-
flow problem in a complete graph. The equivalence enables us to
use the max-flow problem [11] as the simulation model and bound
the ESG rigorously. To enable an efficient physical realization
of our design, we propose a crossbar structure to map the graph
topology to silicon. The PPUF basic building block is designed
with MOS transistors working in saturation region and enhanced
by source degeneration (SD) technique [12] to instantiate flow con-
straints on chip. ESG is examined in experimental results by veri-
fying the di↵erence between asymptotic scaling of execution delay
and simulation time. We summarize our contributions as follows:

• A new PPUF design is proposed with rigorous ESG achieved
by solving max-flow problem in a complete graph on chip.

• A crossbar structure is proposed and SD technique is adopted
to map the graph topology and flow constraints on chip and
enable an efficient physical realization.

The rest of the paper is as follows. Section 2 describes prelimi-
naries on max-flow problem and discusses the algorithms that aim
to solve it. Section 3 introduces our PPUF topology and basic
building blocks, which maps the max-flow problem on chip. ESG
is also analyzed in Section 3. Section 4 describes the physical
realization of the PPUF and also discusses the PPUF challenge-
response pairs (CRPs). We evaluate the performance of the PPUF
in Section 5 and conclude the paper in Section 6.

2. MAX-FLOW PROBLEM IN DIRECTED
GRAPH: PRELIMINARIES

Let G = (V,E) represent a directed graph with |V | = n vertices
and |E| = m directed edges. If 8v

i

, v
j

2 V, 9(v
i

, v
j

) 2 E, G is
called complete with m = n(n − 1). In the directed graph G,
we distinguish a set of source vertices S ⇢ V and sink vertices
T ⇢ V and assign a non-negative capacity c(v

i

, v
j

) to each edge
(v

i

, v
j

) 2 E. An instance of the max-flow problem consists of the
directed graph G and the set of capacities.
Given an instance of a max-flow problem, a function, f : E !

R+, is called a flow function if it satisfies the following conservation
and capacity constraints:

X

(vi,vj)2E

f(v
i

, v
j

) =
X

(vj ,vk)2E

f(v
j

, v
k

) 8v
j

2 V − S − T

0 f(v
i

, v
j

) c(v
i

, v
j

) 8(v
i

, v
j

) 2 E

The value of a flow f is defined as the net flow from a source node.
The max-flow problem is to find a maximum-value flow function
on a given instance of a flow problem.
Max-flow problem has been shown to be computationally de-

manding and difficult to parallel [11]. Traditional methods in-
clude augmenting path algorithm [13], push-relabel algorithm [14],
blocking flow method [13] and so on. All these methods have at
least O(n3) complexity for complete graph. Recent e↵orts on cal-
culating the exact solution for max-flow problem can be classified
into parallel and approximate methods. The best known paral-
lel method shown in [15] leverages blocking flow algorithm and
achieve a parallel runtime of O(n3log(n)/p), where p n is the
number of processors. Therefore, the best achieved complexity of
parallel algorithms is lower bounded by O(n2log(n)). The best
known approximate algorithm targeting at max-flow problem is
proposed in [16]. To get an ✏-approximate solution, the complex-

ity of the proposed algorithm is O(m1+o(1)✏−2). In our case, for

the complete graph, the complexity is O(n2+o(1)✏−2). Therefore,
considering the parallel and approximate algorithms, the complex-
ity of solving max-flow problem is still lower bounded by O(n2)
with respect to number of nodes in the graph.
While solving the max-flow problem is computational intensive,

it is much easier to check the optimality of a flow f . Define the
residual capacity r

f

(v
i

, v
j

) of an edge (v
i

, v
j

) to be c(v
i

, v
j

) −
f(v

i

, v
j

). The residual graph G
f

= (V,E
f

) for a flow f is the
directed graph whose vertex set is V and edge set E

f

is the set of
edges with positive residual capacity. f is optimal i↵ 8t 2 T, s 2 S,
t is not reachable from s in the residual graph. To check optimality,
we just need to create the residual graph and do a breadth first
search from source to sink, which is highly parallelizable and can
be finished with O(n2/p) complexity for a complete graph [17].

3. PPUF TOPOLOGY AND ESG ANALYSIS
In this section, we introduce our PPUF design and rigorously

prove the ESG. Our main intuition is to build a PPUF circuit
which is equivalent to solving the max-flow problem but requires
asymptotically less time compared with best known algorithms.
The main difficulty comes from mapping the constraints and ob-
jective functions on chip. As we will show, our PPUF topology
together with the basic building block guarantees the equivalence
and thus, enables a rigorous ESG.

3.1 PPUF Topology and Basic Building Block
The proposed PPUF topology is shown in Figure 1. The PPUF

consists of a pair of nominally identical networks that are di↵erent
only because of process variation. The circuit nodes correspond
to the vertices in the graph while each building block as shown in
Figure 2 (d) instantiates one directed edge. Inputs to the PPUF
are used to select the source nodes and sink nodes, and control

the current capacity of each edge. The selected source and sink
nodes are connected to V (s) and ground, respectively. Output is
generated by comparing the current flowing into the source node.

Network A

Current
Comparator

Network B
Inputs

V (s)

V (s)

Outputs

Figure 1: Topology of the proposed PPUF design.

To explain our design methodology for the basic building block,
we list our requirements below and describe the proposed circuit
block step by step to ensure all the requirements are satisfied.

Requirement 1 The maximum current of the basic building blocks

must be controllable.

This is because the basic block is used to instantiate capacity
constraint on each edge. To satisfy the requirement, we use the
MOS transistors working in saturation region and set the gate to
source bias (V

gs

) to control the saturation current as shown in
Figure 2 (a). The diodes are used to ensure the direction of the
current. However, due to channel length modulation and other
short channel e↵ects (SCE), the saturation current still changes
as drain to source bias given fixed V

gs

, which is undesired.

M2 R1

Vgs0

M1
R1

Vgs0

Vgs1

Vgs0

(a) (b)

(c) (d)

M2

Vb

M1 R1
M2

Vb

Vb

M3 M4 R2

Figure 2: Evolution of basic building block design to satisfy all
the requirements.

To reduce the change of saturation current, we adopt the SD
technique from analog design. SD technique can help stabilize the
current and mitigate the impact of SCE by creating negative feed-
back with resistors or MOS transistors. In Figure 2 (b), R1 acts
as the degeneration circuit for M2. After M2 enters the saturation
region, the change of current caused by the increase of drain to
source bias can be compensated by the increased voltage drop on
R1. The degeneration circuit can be nested to further suppress
the change of saturation current. As in Figure 2 (c), two levels
of source degeneration are nested: R1 works as the degeneration
circuit for M2 while M2 and R1 together work as the degeneration
circuit for M1. The additional voltage source (Vb

) is used to ensure
both M1 and M2 are working in saturation region. Figure 3 (a)
shows the I-V relation of the three circuits in Figure 2 (a)-(c). As
we can see, with SD technique, the impact of SCEs is mitigated.
Better control over saturation current can be gained with more
levels of SD technique, which can also lead to large design over-
head. To decide the sufficiency of the SD technique, we propose
the following requirement.

Requirement 2 The impact of process variation on the satura-

tion current needs to be much larger compared to the inaccuracy

induced by SCEs.

Figure 3: I-V relation of proposed circuit unit: a) comparison on
saturation current change for di↵erent building block designs; b)
relation between saturation current and control voltage V

gs0.

This requirement ensures that the inaccuracy will not lead to
false response calculated from simulation compared to PPUF exe-
cution. Experimental results from SPICE based Monte Carlo sim-
ulation indicate that with two-level SD technique, the amplitude
of saturation current variation of the basic block is around 130X
larger than the current change induced by SCE, which indicates
the sufficiency of the two-level SD technique.

Requirement 3 The boundry between PPUF 0-response and 1-

response needs to be nonlinear.

The requirement aims to ensure good resilience to model-building
attack. Model-building attack aims to model the challenge-response
behavior of PPUF with machine learning techniques [18]. To en-
sure the resilience, a nonlinear boundary between PPUF 0-output
and 1-output is required. To accomplish this, we replicate the
basic building block and connect them in serial as in Figure 2
(d). We also limit the sum of the V

gs0 and V
gs1 to be a constant

(V
c

) and choose the control voltage for input 0 and 1 such that
their nominal saturation current are the same as shown in Figure
3 (b). Because the current of the basic building block is limited by
di↵erent MOS transistors for input 0 and 1, given the current in-
formation for input 0, the current information for input 1 remains
unknown and vise versa. Meanwhile, because the current of all
the edges connected to the node sum up to 0 for each internal
node, the current flowing through one edge is not only determined
by the voltage of the edge, but also impacted by all the other
edges connected to the node. Therefore, all the inputs are closely
correlated to achieve a nonlinear boundry between 0-output and
1-output. The requirement is also verified in the experimental
results with both parametric and non-parametric model-building
techniques.
Besides satisfying all the requirements above, another intrigu-

ing property of the building block is its incremental passivity [19].
A memoryless component is incrementally passive if its current
increases monotonically as the increase of voltage. The proposed
building block satisfies this condition. As we will show, the incre-
mental passivity of basic block helps ensure that the steady state
current of the PPUF circuit is optimal solution to the correspond-
ing max-flow problem.

3.2 Lower Bound of PPUF Simulation
In this section, we will prove the equivalence between execution

of PPUF and calculation of max-flow in a complete graph to derive
the lower bound of the simulation time.
First let us consider the capacity constraints for each edge in

the graph. As we have discussed in Section 3.1, the diodes on
the two sides of the basic block limit the direction of the current
such that it is always non-negative. Meanwhile, once the control
voltage is given for the building block, its current is limited by the

saturation current I
sat

. Therefore, for each basic block, we have

0 I I
sat

Flow conservation constraint is realized naturally. Based on
Kirchho↵’s current law, for each internal node v

i

, we have
X

(vi,vj)2E

I(v
i

, v
j

) =
X

(vj ,vk)2E

I(v
j

, v
k

)

The objective function of max-flow problem corresponds to the
current flowing into the source node in the circuit. Based on Kirch-
ho↵’s current laws for the source node, we have

I(s) =
X

(s,v)2E

I(s, v)

where I(s) is the current flowing into the source node.
Because the PPUF is only composed of basic building blocks

that are incrementally passive, the circuit is also incrementally
passive [19]. Such incremental passivity guarantees:

• As the increase of V (s), the current flowing into the PPUF
circuit increases monotonically.

• For any voltage input and initial condition, the circuit will
converge to a unique steady-state solution.

Therefore, increasing V (s) will always try to maximize the current
flowing into the circuit under the edge capacity constraints and
conservation constraints.
Now, we are able to show the mapping between constraints and

objective function of max-flow problem with the PPUF circuit.
Therefore, we can conclude that the PPUF execution is equivalent
to solving a max-flow problem in a directed graph. Specifically,
since each node in the PPUF is designed to be connected with all
the other nodes, the direct graph is complete. The equivalence
enables us to use the max-flow problem as the simulation model.
More importantly, because the max-flow problem is hard to par-
allel and approximate, we are able to rigorously derive the lower
bound for the simulation time: with the best known algorithm,
the simulation time scales at least O(n2) as the increase of PPUF
node number.
Though hard to simulate, it is much easier to verify the optimal-

ity of a solution as described in Section 2. The verifier can leverage
the asymmetry between verification and calculation of max-flow
problem by asking for the residual edges from PPUF holder or
attacker. Based on the information, the verifier can build the
residual graph and decide whether the sink is reachable from the
source to determine the optimality. As described in Section 2, the
verification process can be finished efficiently in O(n2/p) time.

3.3 Upper Bound of PPUF Execution
Rigorous analysis of ESG requires an accurate upper bound of

the PPUF execution time. For the proposed design, the execution
delay is the time required for the current from the source node to
become stable, which can be upper bounded by the time required
for the voltage of all circuit nodes to become stable. In this sec-
tion, we aim to derive the upper bound on the execution time by
considering the charging delay of each node. To be noticed here,
di↵erent from traditional RC tree structure, driving and loading
networks of a vertex in the complete graph are not explicit. We
modify the method proposed in [20] to create the delay relation
for all the circuit nodes, based on which rigorous upper bound on
charging delay can be derived.
Consider a vertex v

i

2 V , and let R(v
i

, v
j

) denote the resistance
of the edge (v

i

, v
j

) as shown in Figure 4 (a). [20] proves that we
can decompose the capacitance of v

i

, denoted as C(v
i

), into n− 1
parts and redistribute each part to all the edges pointing to v

i

,

…
…

…

…vi

v1

vn

vj

R(v1, vi)

C(vi)

C(v1, vi)

C(vj , vi)

C(vn, vi)

R(v1, vi)

(a) (b)

v1

vn

vj

Figure 4: Capacitance decomposition and redistribution for delay
estimation.

denoted as C(v
j

, v
i

), as shown in Figure 4 (b), such that

T (v
i

) = T (v
j

) +R(v
j

, v
i

)C(v
j

, v
i

) 8v
j

2 V − {v
i

}
X

(vj ,vi)2E

C(v
j

, v
i

) = C(v
i

)

Here, T (v
i

) denotes the delay from source node to v
i

. C(v
j

, v
i

) can
be either positive or negative depending on the relation between
T (v

i

) and T (v
j

), while R(v
j

, v
i

) is always positive.
Consider the node with largest delay in the PPUF circuit, de-

noted as u. Then, we have T (u) ≥ T (v), 8v 2 V − {u}. For the
redistributed capacitance

0 C(v, u) C(u) 8v 2 V − {u}

Since in the complete graph, u is connected with source s di-
rectly, we have

T (u) = R(s, u)C(s, u) + T (s) = R(s, u)C(s, u) R(s, u)C(u)

Here R(s, u) is the resistance of the edge connecting s and u,
which remains unchanged as the increase of node number. C(u)
is the capacitance of node u, which increases linearly because the
number of edges incident on u increases linearly. Therefore, the
delay for the PPUF scales at most O(n) relative to circuit node
number.
The analysis above shows rigorous ESG considering the parallel

and approximate computing scheme. The proposed ESG can be
further amplified by deploying the feedback loop technique pro-
posed in [5]. Instead of calculating the response for one challenge,
the verifier can present the PPUF with a challenge C1 and force
the PPUF holder or attacker to determine a sequence of challenge-
response pairs (C1, R1), . . . , (Ck

, R
k

) with R
k

being the final re-
sponse. The later challenge C

i

is determined by earlier response
R

i−1, where 2 i k. In this way, the lower bound of the sim-
ulation time becomes O(kn2) and the upper bound of execution
delay becomes O(kn) and thus, ESG can be amplified by k times.

4. PPUF PHYSICAL REALIZATION
Although the ESG is proved rigorously in Section 3, realizing a

complete graph and the basic building block on chip is non-trivial.
In this section, we describe our strategies towards a practical and
efficient on-chip realization of the proposed PPUF design.

4.1 Complete Crossbar Structure
The completeness of the graph requires each circuit node to be

connected with all the other nodes. To realize the complete con-
nection, we propose a n⇥n crossbar structure as shown in Figure 5
(b). In the crossbar structure, the number of horizontal and verti-
cal bars are the same as the node number. The ith horizontal bar
and ith vertical bar are connected directly through a wire. These
two bars together represent one node in the graph. Then, at the
intersection of ith vertical bar and jth horizontal bar (i 6= j), there
is a basic building block. The direction of the building blocks are
always pointing from the vertical bars to the horizontal bars. In
this way, each bar is connected with all the other bars through
the basic building blocks, which realizes the complete connection

s v1

v2 t

(a)

M1

M2

R1

Vgs0

s

v1

v2

t

V (s)

Wire

(v2, s)

(s, v2)

(b)

Figure 5: Crossbar structure to map the complete graph on chip:
(a) example graph; (b) crossbar structure that instantiates graph
in (a).

of vertices in the graph. Figure 5 (b) shows an example of the
crossbar structure for the graph in Figure 5 (a).
To ensure enough ESG, the circuit size of the PPUF can be

large. Therefore, systematic variation across die must be taken
into consideration. To mitigate the impact of systematic variation,
we choose to place the transistors in the same positions from the
two di↵erent networks side by side. In this way, transistors in the
same positions can be assumed to have the same systematic vari-
ation. Combined with the di↵erential structure of the proposed
PPUF, the impact of systematic variation can be suppressed.

4.2 Grid Partition for Control Signal
As we have mentioned, the capacity of each edge is controlled

by input signal. Though using one input signal for each basic
block can provide very large challenge-response space, the number
of individual control signals increases quadratically relative to the
node number, which leads to high cost for large design. To reduce
the number of voltage sources, we partition the crossbar structure
into l ⇥ l grids, where l n, and use one input signal to control
all the building blocks within the grid. It shall be noted that
since we use relative voltage source in our basic block design, we
cannot connect di↵erent voltage sources with the control signal
directly. Instead, we can leverage the input signal to control the
charging and discharging of multiple capacitors, which work as
the voltage bias for the basic blocks within one grid. In this way,
the requirement on using individual independent voltage source is
eliminated.
Now, we analyze the CRPs of the PPUF. For a PPUF to be

a strong PUF, one important requirement is the large challenge-
response space. In the PPUF circuit, we identify two types of con-
trol inputs, denoted as type-A inputs and type-B inputs. Type-A
inputs are used to choose the source and sink nodes of the net-
work. The chosen source and sink nodes are connected to V (s)
and ground, respectively while all the other nodes are left floating.
Therefore, the size of type-A input space is n(n− 1). Type-B in-
puts are used to control the maximum current for the circuit units.
Since we partition each network into l ⇥ l grids, with one input
controlling all the edges within the grid, the size of the Type-B

challenge space should be 2l
2

. However, we argue that not all the
CRPs can be used. This is because to ensure good unpredictabil-
ity, when a single input bit is flipped, the ideal probability for a
output bit to flip is 0.5. We try to achieve the same e↵ect by
posing requirement on the minimum hamming distance (HD) be-
tween di↵erent challenges. To be more specific, we select a subset
from the whole challenge space such that the minimum HD for
any two challenges in the subset is at least d. We demonstrate
the impact of d in the experimental results. To decide the num-
ber of challenges that satisfy this requirement, it is equivalent to
constructing binary codes of length l2 and minimum HD d. As
proved by [21], the size of the Type-B challenge space is larger

than 2l
2

/(
P

d−1
i=0

�
l

2

d

�
). Then the total number of CRPs (N

CRP

)

satisfies

N
CRP

≥ n(n− 1)⇥ 2l
2

P
d−1
i=0

�
l

2

d

�

Consider a PPUF with n = 200 circuit nodes. Assume l = 15
and d = 2l, then N

CRP

≥ 6.53⇥ 10+35. Large challenge-response
space makes it impossible for an adversary to enumerate all the
CRPs exhaustively.

5. EXPERIMENTAL RESULTS
In this section, we examine the security properties of the pro-

posed PPUF design. The experiments fall into the following cat-
egories: accuracy of the simulation model, asymptotic scaling of
ESG, PPUF output measurability and power consumption, sta-
tistical evaluation of PUF metrics and model-building attack re-
silience.
The current output and execution delay of the PPUF circuit

is acquired using SPICE simulation with 32 nm predictive tech-
nology model [22]. 32 nm technology node is chosen because we
want to have good control over SCEs while ensure enough impact
of process variation. We assume the threshold voltage variation
follows normal distribution with a standard deviation of 35 mV, a
value consistent with ITRS [23]. Concerning the voltage settings,
V (s) is set to be 2V because of the voltage drop on the diodes.
V
b

= 0.1V, V
c

= 1.2V . If input is 1, V
gs0, as shown in Figure 2 (d),

is set to be 0.5V while if input is 1, V
gs0 is set to be 0.67V . The

simulation model is implemented in C++. Because the best known
sequential and parallel algorithms are more conceptual with no
packages available, we instead choose the widely used push-relabel
and augmenting-path algorithms from boost library [24]. Mean-
while, because the statistical evaluation for PPUFs with large
number of nodes is too time-consuming, we demonstrate most of
the tests on relatively small PPUFs and use extrapolation to es-
timate the performance for large PPUF. The simulation is run on
an Intel Xeon 2.93 GHz workstation with 74G memory.
We first demonstrate the accuracy of using max-flow problem

as simulation model. We compare the max-flow results from exe-
cution and simulation for PPUFs with di↵erent number of nodes.
We define the inaccuracy as |I

max,exe

− I
max,sim

|/I
max,exe

. For
each PPUF, we run 100 simulations and show the inaccuracy in
Figure 6. As we can see, the average inaccuracy is less than 1%.
Compared with the inaccuracy, the average variation of the max-
imum current flow is around 9.27% for a 100-node PPUF. The
comparison ensures that we can get accurate response from the
simulation model.
Next, we demonstrate the ESG by comparing the PPUF execu-

tion and simulation time. To be noticed here, though it is possible
to reduce the simulation time by running on better machine or us-
ing more efficient algorithm, we argue that the lower bound of the
simulation time still exists and justified ESG can be guaranteed
as we have proved. The scaling of execution delay and simulation
time is shown in Figure 7 (a). Then, ESG can be calculated as the
di↵erence between the execution delay and simulation time. We
show the ESG with/without feedback loop technique in Figure 7
(b). For feedback loop technique, we set the loop number to be
the same as the node number in PPUF. As we can see, to achieve
1s ESG, which is shown to be a reasonable requirement in [4], 900
nodes are needed for our PPUF design while with feedback loop
technique, the required number of nodes reduces to 190.
Another aspect that we investigate is the measurability of PPUF

output. This serves as a measure of the PPUF practicality. We
measure the average current from the two crossbar structures and
their di↵erence because they impose requirements on the input
range and resolution of the comparator. We use extrapolation to
infer these two parameters for large design based on Figure 8. For
a 900-node PPUF, the average current is 33.6µA, while the cur-

Metrics Ideal
40-node PPUF 100-node PPUF
Mean Stdv Mean Stdv

Inter-class HD 0.5 0.5009 0.1371 0.4977 0.1075
Intra-class HD 0 0.0673 0.1104 0.0853 0.1321
Uniformity 0.5 0.4946 0.208 0.4672 0.158
Randomness 0.5 0.4946 0.0277 0.4672 0.0361

Table 1: Statistical evaluation on 40-node and 100-node PPUF.

rent di↵erence is 2.89µA. These requirements are easy to accom-
plish by designs shown in existing papers [25,26], which proves the
practicality of the proposed design. We also estimate the power
consumption for the 900-node PPUF. The power of the two cross-
bar structure is around 134.4µW . As for the current comparator,
we use the data from [25], which is 153µW . Based on Figure 7
(a), the execution delay for a 900-node PPUF is estimated to be
1.0µs. Therefore, for one evaluation, the total power consumption
is around 287.4pJ .
We further examine the PPUF performance over several com-

monly used metrics that quantify the quality of the PPUF design:
inter-class HD, intra-class HD, randomness and uniformity [27].
In our experiments, intra-class HD accounts for supply voltage
variation of 10% and temperature variation ranging from −20 ◦C
to 80 ◦C. We evaluate these metrics for a 40-node and a 100-node
PPUF. As we can see in Table 1, the average performance of both
PPUFs are close to ideal value.
We also evaluate the relation between output flip probability

and minimum HD (d) of PPUF challenge: changing d inputs, we
check the probability for the output bit to flip. Here we run ex-
periments on 100 40-node PPUF circuits with gird size l = 8. For
each PPUF and each minimum HD d, we random sample 1000
input vectors. The change of output flip probability relative to d
is shown in Figure 9. As we can see, when d = 16, the average
output flip probability is approaches 0.5.
To evaluate the model-building attack resilience, we leverage

both parametric and non-parametric machine learning algorithms,
including Support Vector Machines (SVMs) [28] and K Nearest
Neighbor (KNN) [29]. We employ a nonlinear radial bias function
(RBF) kernel for SVM algorithm while for KNN algorithm, we
run a series of empirical KNN tests with K = 1, 3, . . . , 21. The fi-
nal prediction inaccuracy is the minimum of SVM and KNN tests.
The prediction error for 40-node and 100-node PPUFs is shown
in Figure 10. Compared to the arbiter PUF with the same in-
put length, our PPUF achieves more than an order of magnitude
higher prediction error than arbiter PUF, which indicates much
better model-building attack resilience.

6. CONCLUSION
In this paper, we propose a PPUF with practical ESG in terms

of theoretical soundness and physical practicality. The execution
of PPUF is proved to be equivalent to calculating max-flow in a
complete graph, which enables us to use the max-flow problem as
the simulation model to rigorously bound the simulation time. The
execution time is also bounded for the proposed design. There-
fore, rigorous ESG can be shown based on the di↵erence on the
asymptotic scaling. To enable an efficient realization of PPUF,
we propose a crossbar structure and adopt the SD technique to
build the PPUF basic building blocks to map the complete graph
on chip. Our PPUF exhibits good performance as shown in the
experimental results.

7. REFERENCES
[1] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical

random functions,” in CCS, 2002.

[2] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and
S. Devadas, “A technique to build a secret key in integrated circuits

10 20 30 40 50 60 70 80 90 100
0.000

0.002

0.004

0.006

0.008

0.010
A

ve
ra

ge
In

ac
cu

ra
cy

Number of Nodes

Figure 6: Inaccuracy of simulation model
compared with PPUF execution.

20 40 60 80 100

0

200

400

 Simulation Time Data
 Simulation Time Fitting
 Execution Time Data
 Execution Time Fitting

Number of Nodes

Si
m

ul
at

io
n

Ti
m

e
(1

0-
6 s)

0.1

0.2

0.3

0.4

0.5

Ex
ec

ut
io

n
Ti

m
e

(1
0-
6 s)

101 102 103 104

10-1

104

ES
G

 (s
)

Number of Nodes

 Without feedback loop
 With feedback loop

190 Nodes

900 Nodes

(a) (b)

Figure 7: Comparison between execution and simulation time: (a) scaling of execu-
tion and simulation time and polynomial fitting; (b) scaling of ESG with/without
feedback loop technique.

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
average current data
average current fitting
current diff data
current diff fitting

Number of Nodes

A
ve

ra
ge

C
ur

re
nt

(u
A

)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
C

ur
re

nt
D

iff
er

en
ce

(u
A

)

Figure 8: Scaling of output current average
and di↵erence.

0 2 4 6 8 10 12 14 16 18

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
ve

ra
ge

O
ut

pu
tF

lip
Pr

ob
ab

ili
ty

Minimum Distance

Figure 9: Output bit flip probability with
respect to minimum distance of input
challenges.

102 103 104
10-3

10-2

10-1

100

Pr
ed

ic
tio

n
Er

ro
r

Number of Observed CRPs

100-node PPUF
40-node PPUF
Arbiter PUF

Figure 10: Comparison on prediction er-
ror for a 40-node and 100-node PPUF
with arbiter PUF.

for identification and authentication applications,” in VLSI Circuits,
2004.

[3] M. Gao, K. Lai, and G. Qu, “A highly flexible ring oscillator puf,” in
DAC, pp. 1–6, 2014.

[4] M. Potkonjak and V. Goudar, “Public physical unclonable functions,”
Proceedings of the IEEE, vol. 102, no. 8, pp. 1142–1156, 2014.

[5] U. Rührmair, “Simpl systems: On a public key variant of physical
unclonable functions.,” IACR Cryptology ePrint Archive, vol. 2009,
p. 255, 2009.

[6] N. Beckmann and M. Potkonjak, “Hardware-based public-key
cryptography with public physically unclonable functions,” in
Information Hiding, pp. 206–220, 2009.

[7] M. Potkonjak, S. Meguerdichian, A. Nahapetian, and S. Wei,
“Di↵erential public physically unclonable functions: architecture and
applications,” in DAC, pp. 242–247, 2011.

[8] J. Rajendran, G. S. Rose, R. Karri, and M. Potkonjak, “Nano-ppuf: A
memristor-based security primitive,” in ISVLSI, pp. 84–87, 2012.

[9] M. Majzoobi and F. Koushanfar, “Time-bounded authentication of
fpgas,” Information Forensics and Security, IEEE Transactions on,
vol. 6, no. 3, pp. 1123–1135, 2011.

[10] T. Karnik and P. Hazucha, “Characterization of soft errors caused by
single event upsets in cmos processes,” Dependable and Secure
Computing, IEEE Transactions on, vol. 1, no. 2, pp. 128–143, 2004.

[11] L. M. Goldschlager, R. A. Shaw, and J. Staples, “The maximum flow
problem is log space complete for p,” Theoretical Computer Science,
vol. 21, no. 1, pp. 105–111, 1982.

[12] I. Mehr and D. R. Welland, “A cmos continuous-time g m-c filter for
prml read channel applications at 150 mb/s and beyond,” Solid-State
Circuits, IEEE Journal of, vol. 32, no. 4, pp. 499–513, 1997.

[13] E. Dinits, “Algorithm of solution to problem of maximum flow in
network with power estimates,” Doklady Akademii Nauk SSSR,
vol. 194, no. 4, p. 754, 1970.

[14] A. V. Goldberg and R. E. Tarjan, “A new approach to the
maximum-flow problem,” Journal of the ACM (JACM), vol. 35,
no. 4, pp. 921–940, 1988.

[15] Y. Shiloach and U. Vishkin, “An o (n 2 log n) parallel max-flow
algorithm,” Journal of Algorithms, vol. 3, no. 2, pp. 128–146, 1982.

[16] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An

almost-linear-time algorithm for approximate max flow in undirected
graphs, and its multicommodity generalizations,” in Proceedings of

the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 217–226, SIAM, 2014.

[17] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and
Ü. Çatalyürek, “A scalable distributed parallel breadth-first search
algorithm on bluegene/l,” in SC, pp. 25–25, 2005.

[18] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable functions,”
in CCS, 2010.

[19] C. Mead and M. Ismail, Analog VLSI implementation of neural
systems, vol. 80. Springer Science & Business Media, 2012.

[20] T.-M. Lin, C. Mead, et al., “Signal delay in general rc networks,”
TCAD, vol. 3, no. 4, pp. 331–349, 1984.

[21] M. Plotkin, “Binary codes with specified minimum distance,”
Information Theory, IRE Transactions on, vol. 6, no. 4, pp. 445–450,
1960.

[22] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” TED, vol. 53, no. 11,
pp. 2816–2823, 2006.

[23] “International technology roadmap for semiconductors.”
http://public.itrs.net.

[24] B. Schäling, The boost C++ libraries. Boris Schäling, 2011.

[25] Y. Sun, Y. Swang, and F. Lai, “Low power high speed switched
current comparator,” in MIXDES, pp. 305–308, 2007.

[26] N. K. Chasta, “A very high speed, high resolution current comparator
design,” International Journal of electric, electronics science and
engineering, vol. 7, no. 11, 2013.

[27] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method to
evaluate and compare the performance of physical unclonable
functions,” in Embedded systems design with FPGAs, pp. 245–267,
2013.

[28] J. A. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural processing letters, vol. 9, no. 3,
pp. 293–300, 1999.

[29] P. Cunningham and S. J. Delany, “k-nearest neighbour classifiers,”
Multiple Classifier Systems, pp. 1–17, 2007.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

