
Incremental Layer Assignment for Critical Path Timing

Derong Liu1, Bei Yu2, Salim Chowdhury3, and David Z. Pan1

1ECE Department, University of Texas at Austin, Austin, TX, USA
2CSE Department, Chinese University of Hong Kong, NT, Hong Kong

3Oracle Corp., Austin, TX, USA
{deronliu,dpan}@cerc.utexas.edu, byu@cse.cuhk.edu.hk, salim.chowdhury@oracle.com

ABSTRACT
With VLSI technology nodes scaling into nanometer regime, in-
terconnect delay plays an increasingly critical role in timing. For
layer assignment, most works deal with via counts or total net
delays, ignoring critical paths of each net and resulting in po-
tential timing issues. In this paper we propose an incremental
layer assignment framework targeting at delay optimization for
critical path of each net. A set of novel techniques are presented:
self-adaptive quadruple partition based on KxK division bene-
fits the run-time; semidefinite programming is utilized for each
partition; post mapping algorithm guarantees integer solutions
while satisfying edge capacities. The effectiveness of our work
is verified by ISPD’08 benchmarks.

1. INTRODUCTION
In emerging technology nodes, transistor and interconnect fea-

ture sizes are further scaling into nanometer regime, thus timing
issues on interconnect lines are prevalent in modern design clo-
sure [1]. As an integral part of the timing convergence flow,
global routing determines the topologies of all nets, and thus is
critical for performance optimization [2].

As a key step of global routing, layer assignment is important
for assigning net segments into appropriate metal layers. Many
metrics should be considered during layer assignment, such as
via counts, congestion, timing issues, etc. Since each net may
have one or several timing critical paths, layer assignment should
also pay attention to the critical paths to avoid potential timing
violations. Besides, in advanced technology nodes, resistance
and capacitance values vary significantly among different metal
layers [3]: higher metal layers are wider with lower resistance,
while lower metal layers are thinner with higher resistance val-
ues. Thus, high metal layers are more attractive for longer nets
that may introduce serious timing issues. Nevertheless, since
there exist edge capacity constraints for each metal layer, not all
segments are allowed to be assigned on higher metal layers. The
segments leading to critical sinks are preferred to be assigned on
high layers to reduce the potential violations. Therefore, an in-
telligent layer assignment framework is necessary to reduce the
critical path timing [4].

There are many layer assignment works, targeting at via num-
ber minimization, antenna effect avoidance, and timing opti-
mization, etc [4–9]. For via minimization, a polynomial-time al-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898033

 4
 8

 16
 32
 64

 128
 256
 512

 1024

 300 320 340 360 380 400 420 440

P
in

 #

Delay Distribution (10
4
)

TILA

(a)

 4
 8

 16
 32
 64

 128
 256
 512

 1024

 300 320 340 360 380 400 420 440

P
in

 #

Delay Distribution (10
4
)

ours

(b)
Figure 1: Pin delay distribution of critical nets for benchmark
adaptec1, where 0.5% of the nets are released as critical nets. (a)
Results from TILA [4]; (b) Results from our incremental layer assign-
ment framework.

gorithm determines the net order and then solves one net each
time through dynamic programming considering congestion is-
sues [5]. Dai et al. [6] also apply a dynamic programming for
net-by-net layer assignment. However, the fixed net order affects
the final performance because nets with higher priorities have
more layer selections while those nets with lower priorities only
have limited resources. To alleviate the net order limitation,
Liu et al. [7] adopt a negotiation-based methodology to min-
imize via count and capacity violations. Meanwhile, antenna
avoidance is included during layer assignment where via counts
are also reduced through min-cost max-flow model [8]. Ao et
al. [9] focus on optimizing via counts and net delay. Neverthe-
less, the via capacity model is not considered thus more wires
may be assigned on high metal layers, resulting in illegal solu-
tions. Very recently, Yu et al. [4] propose an incremental layer
assignment integrated with timing optimization engine. The
proposed framework, TILA, is able to provide a global view of
minimizing the total net delay for the selected nets.

Although TILA [4] can achieve the most state-of-the-art layer
assignment results targeting at timing optimization, it may still
suffer from the following shortcomings: (1) The timing model
is based on weighted sum delay of all the segments. Therefore,
although TILA can effectively improve the total net delay, for
some critical nets, the worst path delay may still violate tim-
ing budget. (2) The optimization engine of TILA is based on
Lagrangian relaxation, whose performance may heavily rely on
the initial values of multipliers. (3) In addition, when via delay
and via capacity are considered, layer assignment is similar to
quadratic assignment problem [10], which is essentially a non-
linear optimization problem. However, to achieve extremely fast
speed, TILA artificially approximates some quadratic terms to

(a) (b)
Figure 2: Layer and grid model. (a) Layer model; (b) Net routing
on grid model.

linear model, which may impact the layer assignment accuracy
and performance.

In this paper, we propose a novel incremental layer assign-
ment framework targeting at critical path timing optimization.
Our layer assignment tool can overcome all three limitations of
TILA, thus is able to achieve better timing performance. Fig. 1
compares the layer assignment results between TILA and our
work. Fig. 1(a) gives the results from TILA, where more pins
have delay over 4.2×106. On the other hand, from Fig. 1(b) we
can see that our framework can reduce the maximum delay since
the worst pin has the delay around 4.2×106. The contributions
of our work are listed as follows.

• An integer linear programming (ILP) formulation is pre-
sented to optimize the critical delay of those selected crit-
ical nets.

• A self-adaptive partitioning methodology based on K×K
division benefits run time.

• A semidefinite programming (SDP) relaxation is adopted
for further speed-up with post mapping methodology to
guarantee integer solutions.

The remainder of this paper is organized as follows. In Section
2, we provide some preliminaries and the problem formulation.
In Section 3, we first present the mathematical formulation to
optimize critical path timing. Then we discuss a set of novel
techniques to further achieve better trade-off between solution
quality and runtime. In Section 4 we report the experimental
results, followed by conclusion in Section 5.

2. PRELIMINARIES

2.1 Graph Model
Fig. 2(a) shows a layer model, where each layer supports uni-

directional wires, either in horizontal or vertical direction, and
the dotted lines represent the preferred routing directions for
each layer. Based on this, the layer assignment problem can be
modeled on a 3-dimensional grid graph [2], as shown in Fig. 2(b).
We can see that a layer is divided into thousands of rectangular
tiles, represented by the vertices in the grid model. Furthermore,
these edges connecting vertices are divided into two sets: edges
in x/y-direction are for routing wires on layers and edges in z-
direction are for vias between layers. Fig. 2(b) also shows a net
routing on the 3-layer grid, which consists of segments and vias
along the edges.

For x/y-direction edges, each of them has a specified routing
capacity on different layers, i.e. cape(l) for each layer l. This is
to say that the number of wires placed on layer l of this edge
should not be higher than cape(l). Similarly, there is also a cer-
tain via capacity constraint for vias passing each tile. The via
capacity constraint is determined by the available routing capac-
ity of these two edges connecting this vertex, and is computed
as follows [11].

capg(l) = b (ww + ws) · T ilew · (cape0(l) + cape1(l))

(vw + vs)2
c, (1)

where ww, ws, vw, vs, T ilew represent wire width, wire spacing,
via width, via spacing and tile width, respectively. For vias
between two layers, each layer have two edges connecting with
grid g, i.e. e0 and e1, whose routing capacity are represented
by cape0(l), cape1(l). From Eqn. (1), we can see that if these
two connected edges are full of routing wires, then no vias are
allowed to pass through this grid.

2.2 Timing Model
To calculate timing cost of each net, we adopt Elmore delay

model, which is generally utilized to estimate the wire delay dur-
ing timing analysis. The timing costs consist of segment delays
and via delays, both of which depend on the layer resistance and
their corresponding downstream capacitance. Eqn. (2) gives the
timing cost calculation of segment si on layer j.

ts(i, l) = Re(l) · (Ce(l)/2 + Cd(i)), (2)

where R(l), Ce(l) refer to the wire resistance and capacitance of
the layer l on which segment i is assigned, and Cd(i) is the down-
stream capacitance of segment i. During calculating Cd(i), the
layer assignment of all the segments driven by segment i should
be considered. Thus, we compute Cd(i) from sinks to source in a
bottom-to-up manner. Similarly, via timing cost is calculated as
in Eqn. (3), which is determined by via resistance and the min-
imum downstream capacitance of its connected segments [4].

tv(i, j, p, q) =

q−1∑
l=j

Rv(l) ·min{Cd(i), Cd(p)}, (3)

where Rv(l) is the resistance of via between layers l and l + 1,
and we assume layer j is lower than layer q.

2.3 Problem Formulation
Based on the grid model and timing model discussed in the

preceding section, we define the critical path layer assignment
(CPLA) problem as follows:

Problem 1 (CPLA). Given a 3-D grid graph, edge and layer
information, initial routing and layer assignment, and set of crit-
ical nets, layer assignment re-assigns layers among critical and
non-critical nets onto layers in order to minimize their maximum
path timing and satisfy the edge capacity constraints.

3. CPLA ALGORITHMS
In this section, we discuss the details of our framework to

solve the CPLA problem. First we propose an integer linear pro-
gramming (ILP) formulation. Then we relax this formulation
into a semidefinite programming (SDP). To make this problem
solvable for SDP, a self-adaptive quadruple partitioning method-
ology is also presented to select appropriate problem sizes for
SDP. Finally, we give the mapping algorithm to locate integer
solutions.

3.1 ILP Formulation
In this work, our objective is to optimize the critical path tim-

ing of selected critical nets, including both segment delays and
via delays. As introduced in Section 2, segment delay can be
calculated based on Eqn. (2), and via delay based on Eqn. (3).
Then, we propose the integer linear programming (ILP) formu-
lation as shown in formula (4). This formulation concerns all the
segments and vias along the critical paths, and also those on the
branches connected with critical paths since their assignments
would affect the downstream capacitance driven by the critical
paths. For convenience, notations used are listed in Table 1.

min
∑

i∈S(Nc)

L∑
j

ts(i, j) · xij+

∑
i,p∈Sx(Nc)

L∑
j

L∑
q

tv(i, j, p, q) · yijpq, (4a)

s.t.
∑
j

xij = 1, ∀i ∈ S(Nc) j ∈ L, (4b)

∑
i∈S(e)

xij ≤ cape(j), ∀e ∈ E, (4c)

∑
(i,p)∈Sx(Nc)

yijpq + nv(xij + xpq) ≤ capg(l), ∀l, j < l < q,

(4d)

xij ≥ yijpq, (i, p) ∈ Sx(Nc) j, q ∈ L, (4e)

xpq ≥ yijpq, (i, p) ∈ Sx(Nc) j, q ∈ L, (4f)

xij + xpq ≤ yijpq + 1, (i, p) ∈ Sx(Nc) j, q ∈ L, (4g)

yijpq is binary, (i, p) ∈ Sx(Nc) j, q ∈ L, (4h)

xij is binary, i ∈ S(Nc) j ∈ L. (4i)

In our mathematical formulation, constraint (4b) guarantees
that one segment can be assigned on one and only one layer.
Constraint (4c) sets the routing wire limit for edge e on layer j,
i.e. cape(j). Notably, while calculating cape(l), we also consider
the number of those non-released segments on this edge besides
its initial routing capacity. Thus, for incremental assignment
problem, the edge capacity constraint is more stringent than
the initial problem. Similarly, constraint (4d) places the limita-
tion of the via number to pass through each grid g for different
layers, and those vias caused by those non-released segments
should also be taken into accounts. Meanwhile, we should no-
tice that via capacity is also affected by the segments assigned
on neighboring edges, where nv is to represent the via number
on one routing track within one tile. Besides, constraints (4e)–
(4g) represent that yijpq is the product of xij and xpq, because
all xij and yijpq are binaries according to constraint (4h) and
(4i).

Nevertheless, there is a potential problem for constraint (4d).
If via capacity violations already exist in initial layer assignment
inputs and cannot be eliminated completely, this constraint may
be so stringent that no legal solutions can be obtained. There-
fore, we relax this constraint by adding one variable Vo, rep-
resenting the allowed maximum violation number. Then con-
straint (4d) should be re-written as follows,∑
(i,p)∈Sx(Nc)

yijpq + nv · (xij + xpq) ≤ capg(l) + Vo,∀l, j < l < p.

Vo is considered in the objective formulation with a weighting
parameter α, which is set to 2000 in our implementation. Thus,
the ILP formulation can guarantee reasonable solutions. Sim-
ilar to [4], our framework solves layer assignment through an
iterative scheme, and stops when no further optimizations can
be achieved. However, for large benchmarks, ILP could lead to
huge calculation overhead with considerable run-time. In order
to alleviate this overhead, some speed-up techniques are intro-
duced in following sections.

3.2 Self-Adaptive Partition Algorithm
For layer assignment work, the routing wires are adjusted

in z-dimension among different layers. Thus, the whole grid
model can be divided into K ×K partitions in x/y-dimensions,
and each division is solved separately from its neighbors. Also,
as mentioned in [12], the newly updated assignment results of
neighboring partitions benefit each current partition. Fig. 3(a)

(a) (b)
Figure 3: Example of grid partition. (a) Nets partition; (b) Routing
density for benchmark adaptec1 by NCTU-GR.

(a)

……

……

(b)
Figure 4: Sub-grid partition illustration. (a) Sub-grid partition; (b)
Sub-grid corresponding partition tree.

gives examples of several nets to be divided by 3 × 3 divisions,
which are identified with different colors. Through partition-
ing, the problem size can be reduced by 1

K×K
times on average.

However, Fig. 3(b) shows that the routing congestion density
varies significantly for each division. Here various colors imply
the routing distribution of nets passing through these regions.
We can see that uniform division by K ×K may lead to unbal-
anced calculation resource allocation among these congested re-
gions and those marginal regions containing fewer routing nets.
Therefore, we propose a self-adaptive quadruple partition algo-
rithm to further divide all K × K regions so that each region
contains similar number of critical segments.

Fig. 4(a) gives the example of partition results for the lower
left one in 5 × 5 divisions, where each division contains similar
number of critical segments. To achieve this, we limit the al-
lowable maximum number of critical segments in each partition
by setting a constraint. If the original division does not satisfy
this constraint, then further partition operations are executed.
Besides, Fig. 4(b) shows the quadruple tree corresponding to
Fig. 4(a). If a partition has a small enough problem size, it will
exist as a leaf node in the tree; otherwise, further quadruple
partition continues until it meets the requirement. Note that
for some dense regions, the constraint may be so tight that the
number of segments on one edge may exceed the requirement but
further partition should not be allowed in fact. To avoid this
condition, we also check if the current partition size is smaller
than the tile width/height. If so, the partition should stop to
avoid deadlocks.

After partitioning is completed, we obtain the leaf nodes as
colored in Fig. 4(a). There are two leaf nodes in the first level
representing these two left partitions. In Fig. 4(b), the bottom
colored nodes represent four partitions with the same colors.
With this partition methodology, we can adjust constraints to
suit different algorithms efficiently. Furthermore, each partition
can be solved in parallel with multiple threads. Since each of
them has similar problem size, each thread deals with a workload
in a well-balanced manner.

3.3 Semidefinite Programming Relaxation
In the previous section, we propose self-adaptive algorithm to

partition the original problem to the appropriate size consider-
ing the density distribution. This provides us an opportunity

Table 1: Notations used in this paper.

Nc set of all critical nets

L set of all layers

S set of all segments

E set of all edges in the whole grid model

S(Nc) set of all segments for all critical nets Nc

Sx(Nc) set of all pairs of segments of critical nets Nc while two

segments in a pair are being connected by one or more vias

Se set of segments on edge e ∈ E
V (si, sp) via connecting segment si and segment sp

xij binary variable, set to 1 if si is assigned to layer j

ts(i, j) timing cost when si is assigned to layer j

tv(i, j, p, q) timing cost of via v from layer j to q − 1

where v = V (si, sp)

cape(l) available routing capacity of edge e on layer l

capg(l) available via capacity for node g on layer l

for further speed-up. In our work, we relax this problem from
ILP into semidefinite programming (SDP). SDP also contains a
linear objective function constrained by linear equations, simi-
lar as Linear Programming (LP), but it is more general than LP
due to its symmetric matrix forms. SDP is solvable in polyno-
mial time, while it provides a theoretically better solution than
LP [13]. To the best of our knowledge, this is the first work to
adopt SDP to solve layer assignment problem. We re-write the
formulation into the following standard SDP form:

min (T ·X). (5)

In Eqn. (5), matrix T and X are both |S ·L|-dimension sym-
metric matrices, where |S| is the number of critical segments in
each partition and |L| is the number of layers. Eqn. (6) shows
all coefficients in matrix T , where the items on the diagonal line
represent the timing costs, i.e. ts(i, j), for assigning segment i on
layer j. Besides, tv(i, j, p, q) is the via cost on assigning segments
i and p into layer j and layer q, respectively. Each tv(i, j, p, q)
is in the same row as ts(i, j) and the same column as ts(p, q).
Matrix X in Eqn. (7) gives the SDP solution to the layer assign-
ment, where each xij is on the diagonal line. Similarly, yijpq is
in the same row as xij and the same column as xpq.

T =

 ts(i, j) . . . tv(i, j, p, q)
.

tv(i, j, p, q) . . . ts(p, q)

 , (6)

X =

 xij . . . yijpq
.
yijpq . . . xpq

 . (7)

For each xij , it is expected to be binary and placed in the
diagonal line of objective matrix X. If xij is equal to 1, then
x2ij is also 1; if xij is equal to 0, then its square form is also
0. The item yijpq needs to satisfy constraints (4e)–(4g), which
also apply for continuous solutions. Because constraints (4e)–
(4g) are mainly inequalities, then extra slack variables are added
into the objective matrix, for SDP cannot support inequality
constraints. With these constraints, SDP considers via costs as
quadratic terms (same as in Eqn. (4a)).

To guarantee an effective solution, the constraints in ILP for-
mulation (4) should also be included in SDP. Constrains (4b)
and (4c) can be directly formulated into SDP since they are lin-
ear constraints. Different from (4b), (4c) requires slack variables
in the objective matrix for the sum of variables should be smaller
than the given edge capacity. The number of additional slack
variables is equal to the number of edge capacity constraints.
For constraint (4d), we prefer to move it into the objective ma-
trix by adding the penalty to save the run-time. Then penalty
is represented as λi,j,p,q, which is added to tv(i, j, p, q) in matrix

�

�
�

�

S1

S2

Figure 5: An example of layer assignment through SDP.

T =

 35.2 0 5.8 6.7
0 15.6 2.3 3.5

5.8 2.3 47.8 0
6.7 3.5 0 23.9

 X =

 0.01 0 0 0
0 0.99 0.09 0.89
0 0.09 0.10 0
0 0.89 0 0.90


Figure 6: T matrix and solution X matrix of the example.

T . The penalty is calculated by dividing the existing via number
by its capacity.

To make it more clear, here we give an example of how SDP
can be applied to layer assignment problem. Fig. 5 shows a
part of one net. Due to space limitation, we just focus on
two segments, s1 and s2. We also assume there are only two
available layers in each x/y-dimension: layer 1 and layer 3 for
x-dimension, while layer 2 and 4 for y-dimension. Thus, the ma-
trix T and X should be both 4 × 4 matrices, for each segment
has two layers to assign. For convenience, we skip the slack ma-
trices here because they are helping to satisfy the constraints.
In our formulation, the entries on the diagonal line of matrix T
are basically xijs, representing whether they are assigned on the
corresponding layers. The entries on the same column and row
with xij and xpq represent the potential via costs from layer j
to layer q. Based on Fig. 5, s1 only connects with s2, so we just
need to consider the via costs between s1 and s2.

In Fig. 6 we list an example of matrix T , as well as the ma-
trix X after solving the SDP. From matrix X, we can see that
segment s1 should be assigned on layer 3 as x12 is very close to
1. Meanwhile, for s2, its xij is not so close to 1 because there
is one segment released on the same edge. The edge capacity
constraints may limit its value as floating points. In this case,
we adopt a post mapping algorithm to determine on which layer
it should be assigned.

3.4 Post Mapping Algorithm
SDP provides us a continuous solution, which, however, can-

not be applied to our problem directly. Therefore, an efficient
mapping algorithm is necessary to provide discrete integer so-
lutions, while satisfying the stringent edge capacity constraints.
In this section we propose a mapping algorithm to transfer a
continuous SDP solution into a discrete layer assignment solu-
tion.

Algorithm 1 Post Mapping Algorithm

Input: Solution matrix X;
1: Save entries (xij) for each segment i;
2: for each edge e containing critical segments do
3: for j = Lm; j ≥ 1; j = j − 2 do
4: nej = cape(j);
5: Select nej highest xijs on edge e;
6: Assign selected segment i on layer j;
7: Update cape(j);
8: end for
9: end for

The details of our mapping algorithm is shown in Alg. 1,
whose input is the original solution matrix X. Initially, we read
all the solution entries, and save those xijs to each correspond-

 0

 100

 200

 300

 400

adaptec1

adaptec2

bigblue1

new
blue1

new
blue2

new
blue4

A
v
g

 (
T

c
p
)

ILP-0.5%
SDP-0.5%

(a)

 100

 1000

 10000

adaptec1

adaptec2

bigblue1

new
blue1

new
blue2

new
blue4

M
a

x
 (

T
c
p
)

(b)

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

adaptec1

adaptec2

bigblue1

new
blue1

new
blue2

new
blue4

R
u

n
ti
m

e
 (

s
)

(c)
Figure 7: Comparison between ILP and SDP on some small test cases: (a) on average delay for all critical paths; (b) on maximum delay for all
critical paths; (c) on runtime.

ing segment. Then we traverse each edge with critical segments
in the whole grid (line 2) following the order from the highest
layer to the lowest layer (line 3), for a higher metal layer has
a lower resistance and more competitive for segments to assign.
Since edges are divided into x-dimension and y-dimension for
different layers, we skip the layers containing all y-dimension
edges for x-dimension edges, and vice versa. As for layer l of
edge e, there is a specified edge capacity constraint, i.e. cape(j).
This means that the number of segments to assign should not
exceed this constraint. Here we select top cape(j) entries and
assign these segments to layer j (line 6). To avoid unnecessary
conflicts, those segments that have been assigned on higher lay-
ers in previous iterations are skipped. In this way, the edge
capacity constraint can be satisfied. Finally, the edge capacity
is updated for this division. The runtime of this mapping al-
gorithm is O(|E||L|log|Se|), where |E| is the number of edges
with critical segments, |L| is the number of layers, and |Se| is
the number of critical segments on this edge.

4. EXPERIMENTAL RESULTS
The proposed layer assignment framework is implemented in

C++, and tested on a Linux machine with 2.9 GHz Intel(R)
Core and 192 GB memory. We select GUROBI [14] as the ILP
solver, and CSDP [15] as the SDP solver. Besides, we utilize
OpenMP [16] for parallel computing. As that in [4], we test
our framework on ISPD’08 global routing benchmarks [17]. It
should be noted in our experiments, both the resistance and
capacitance values are from industrial settings, thus our experi-
mental results may have better agreement with industry timing.

In the first experiment, we compare the ILP formulation (see
Section 3.1) with the SDP based methodology (see Section 3.3
and Section 3.4). Since ILP formulation may suffer from run-
time overhead problem, i.e., it cannot finish in two hours for
some large test cases, we select some small test cases for the
comparison as shown in Fig. 7. Note that partitioning tech-
nique is applied to both methods. We can see from Fig. 7(a)
and Fig. 7(b) that SDP can obtain very similar average tim-
ing and maximum timing with ILP for these cases. This means
that our SDP based methodology provides an efficient relaxation
with ILP formulation. Meanwhile, for these test cases, SDP can
achieve significant speed-up (see Fig. 7(c)).

In the second experiment, we further evaluate our SDP based
method by comparing it with TILA [4]. To make a fair com-
parison, we release the same set of nets for both TILA and our
SDP. Table 2 lists the comparison results for SDP-based method
with TILA-0.5%. Here “0.5%” means 0.5% of most critical nets
are released for both methodologies. Columns “Avg (Tcp)” and
“Max (Tcp)” give the average and maximum timing of the criti-
cal path for all critical nets, respectively. Meanwhile, Columns
“OV#” and “via#” list via capacity overflow and via count. The
run-time is also reported in the Column “CPU(s)”. From Ta-
ble 2 we can see that comparing with TILA, our SDP-based
method can reduce the average timing by 14%, while the max-
imum timing can also be decreased by 4%. Since TILA also
devotes efforts in maximum timing optimization, the improve-

ment of maximum timing is reasonable. Our work also reduces
the via violation number by 10%, and keep the same via count
number as TILA. In addition, the reported runtime of SDP in-
creases by 3.16 times in comparison with TILA, due to the na-
ture that SDP problem is more complicated than min-cost flow
problem. However, since we propose adaptive partitioning in
SDP based method (see Section 3.2), the SDP based method
can still achieve reasonable runtime. During partitioning, we
set its allowed number of segments in each partition as 10 for
further self-adaptive partitioning methodology.

In the third experiment, we demonstrate the effectiveness of
our self-adaptive partitioning methodology for SDP, as shown in
Fig. 8. We try different partition granularities (from 5 to 80) for
three small test cases, where the maximum number of segments
in each partition is limited. From Fig. 8(a) and Fig. 8(b), the av-
erage and maximum timing are quite similar, which means that
partitioning has negligible impact on performance because the
tighter constraints would lead to more partitions. Although each
partition is dealt in parallel with multiple threads, the impact
of performance is insignificant. Furthermore, Fig. 8(c) shows
that the run-time increases drastically with the partition granu-
larity. Notably, without self-adaptive partitioning methodology,
the number of critical segments to deal with is so high that it
takes more than one hour to run even a small benchmark by
releasing 0.5%. Therefore, we can see that self-adaptive parti-
tioning methodology benefits the run-time for SDP significantly.
Meanwhile, we can observe that when the constraint is set to
10, the run-time can reach its lowest point. Therefore, in our
implementation for SDP we set the default partition granularity
as 10.

In the last experiment, we further analyze the impact of criti-
cal ratio to the performance of SDP based method. Critical ratio
is an important parameter to determine how many critical nets
are released. In Table 2, we release 0.5% critical nets to see the
improvement. Here we evaluate SDP-based method by releasing
more critical nets. Meanwhile, we compare the average critical
path timing, maximum critical path timing, and run time with
TILA for one small benchmark adaptec1. From Fig. 9(a) and
Fig. 9(b), we see that the average timing decreases slightly with
the increase of critical ratio for both SDP and TILA. However for
maximum timing comparison, we see that TILA does not con-
trol the maximum timing well. The reason may be that TILA
applies a Lagrangian-based relaxation optimization for via ca-
pacity constraints, which may affect the timing improvements.
In Fig. 9(c), we observe that for SDP-based method the runtime
increases in proportion to the critical ratio. This illustrates that
our method has a well-controlled scalability.

5. CONCLUSION
This paper targets at optimizing critical path timing during

layer assignment stage. First we propose the ILP formulation
for the problem, and then present the self-adaptive quadruple
partition algorithm to benefit the run-time for SDP. Based on
this speed-up algorithm, SDP based method is developed. The
experimental results show that our work can outperform TILA

Table 2: Performance Comparison on ISPD’08 Benchmarks

TILA-0.5% [4] SDP-0.5%

bench Avg(Tcp) Max(Tcp) OV# via# CPU(s) Avg(Tcp) Max(Tcp) OV# via# CPU(s)

(103) (103) (105) (s) (103) (103) (105) (s)

adaptec1 228.54 4378.58 49121 19.31 85.66 204.88 4205.71 50947 19.26 188.32

adaptec2 101.13 1432.26 43352 19.27 72.99 93.88 1421.68 38478 19.32 158.60

adaptec3 219.88 4613.90 89429 36.74 216.53 209.41 4583.29 92299 36.76 739.73

adaptec4 134.40 5610.61 71275 32.22 180.04 117.43 5590.84 73186 32.44 635.44

adaptec5 275.11 5492.27 98099 55.26 265.94 216.15 5311.75 84537 55.26 723.02

bigblue1 409.88 2596.13 45715 21.70 105.07 322.41 2065.42 46256 21.56 229.29

bigblue2 98.98 10571.84 100530 43.32 123.38 95.58 10728.23 115240 43.49 322.90

bigblue3 29.27 1007.70 78860 52.67 224.18 21.53 373.80 66795 52.92 843.42

bigblue4 39.91 3798.42 107745 110.03 395.86 33.56 3750.95 97148 110.37 1191.26

newblue1 43.13 354.48 56863 22.34 61.26 39.52 343.09 57744 22.44 113.87

newblue2 109.96 6166.35 57889 29.05 102.87 107.85 6130.09 35566 29.25 175.13

newblue4 112.93 5776.33 104657 47.66 182.92 105.53 5395.42 85163 47.73 408.32

newblue5 182.41 2839.57 188697 86.80 419.45 151.41 2771.55 157943 87.00 1952.86

newblue6 159.83 2480.43 113461 78.55 312.79 124.75 2298.74 97859 78.53 736.43

newblue7 31.04 1283.51 175834 163.95 597.62 25.33 1254.22 144580 164.28 2137.26

average 145.09 3893.49 92101.8 54.6 223.10 124.61 3748.32 82916.1 54.7 704.39

ratio 1.00 1.00 1.00 1.00 1.00 0.86 0.96 0.90 1.00 3.16

 0

 50

 100

 150

 200

 250

 300

 350

 16 64

A
v
g

 (
T

c
p
)

(x
1

0
3
)

Segment# in each partition

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 16 64

M
a

x
 (

T
c
p
)

(x
1

0
3
)

Segment# in each partition

(b)

 100

 1000

 16 64
R

u
n
ti
m

e
 (

s
)

Segment# in each partition

adaptec1
adaptec2
bigblue1

(c)
Figure 8: Partition size impact on three small cases. (a) The impact on Avg(Tcp); (b) The impact on Max(Tcp); (b) The impact on runtime.

 0

 50

 100

 150

 200

 250

 0.5 1 1.5 2 2.5

A
v
g

 (
T

c
p
)

(x
1

0
3
)

Critical Ratio

(a)

 0
 500

 1000
 1500
 2000

 2500
 3000
 3500
 4000
 4500
 5000

 0.5 1 1.5 2 2.5

M
a

x
 (

T
c
p
)

(x
1

0
3
)

Critical Ratio

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.5 1 1.5 2 2.5

R
u

n
ti
m

e
 (

s
)

Critical Ratio

TILA-0.5%
SDP-0.5%

(c)
Figure 9: Critical ratio impact on benchmark adaptec1. (a) The impact on Avg(Tcp); (b) The impact on Max(Tcp); (b) The impact on runtime.

by 14% for average delay and 4% for maximum delay of the
critical paths.

Acknowledgment
This work is supported in part by NSF, Oracle, and CUHK
Direct Grant for Research.

6. REFERENCES
[1] J. H.-C. Chen, T. E. Standaert, E. Alptekin, T. A. Spooner, and

V. Paruchuri, “Interconnect performance and scaling strategy at 7
nm node,” in Proc. IITC, 2014, pp. 93–96.

[2] J. Hu and S. S. Sapatnekar, “A survey on multi-net global routing
for integrated circuits,” Integration, the VLSI Journal, vol. 31,
no. 1, pp. 1–49, 2001.

[3] M.-K. Hsu, N. Katta, H. Y.-H. Lin, K. T.-H. Lin, K. H. Tam, and
K. C.-H. Wang, “Design and manufacturing process co-optimization
in nano-technology,” in Proc. ICCAD, 2014, pp. 574–581.

[4] B. Yu, D. Liu, S. Chowdhury, and D. Z. Pan, “TILA: Timing-driven
incremental layer assignment,” in Proc. ICCAD, 2015, pp. 110–117.

[5] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer
assignment for via minimization in global routing,” IEEE TCAD,
vol. 27, no. 9, pp. 1643–1656, 2008.

[6] K.-R. Dai, W.-H. Liu, and Y.-L. Li, “Efficient simulated evolution
based rerouting and congestion-relaxed layer assignment on 3-D
global routing,” in Proc. ASPDAC, 2009, pp. 570–575.

[7] W.-H. Liu and Y.-L. Li, “Negotiation-based layer assignment for via
count and via overflow minimization,” in Proc. ASPDAC, 2011, pp.
539–544.

[8] T.-H. Lee and T.-C. Wang, “Simultaneous antenna avoidance and
via optimization in layer assignment of multi-layer global routing,”
in Proc. ICCAD, 2010, pp. 312–318.

[9] J. Ao, S. Dong, S. Chen, and S. Goto, “Delay-driven layer
assignment in global routing under multi-tier interconnect
structure,” in Proc. ISPD, 2013, pp. 101–107.

[10] M. Queyranne, “Performance ratio of polynomial heuristics for
triangle inequality quadratic assignment problems,” Operations
Research Letters, vol. 4, no. 5, pp. 231–234, 1986.

[11] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang, “Multi-layer global
routing considering via and wire capacities,” in Proc. ICCAD, 2008,
pp. 350–355.

[12] A. D. Gunawardena, S. Jain, and L. Snyder, “Modified iterative
methods for consistent linear systems,” Linear Algebra and its
Applications, vol. 154, pp. 123–143, 1991.

[13] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
Review (SIREV), vol. 38, no. 1, pp. 49–95, 1996.

[14] Gurobi Optimization Inc., “Gurobi optimizer reference manual,”
http://www.gurobi.com, 2014.

[15] B. Borchers, “CSDP, a C library for semidefinite programming,”
Optimization Methods and Software, vol. 11, pp. 613–623, 1999.

[16] “OpenMP,” http://www.openmp.org/.

[17] G.-J. Nam, C. Sze, and M. Yildiz, “The ISPD global routing
benchmark suite,” in Proc. ISPD, 2008, pp. 156–159.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

