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ABSTRACT
As VLSI technology shrinks to fewer tracks per standard cell,
e.g., from 10-track to 7.5-track libraries (and lesser for 7nm),
there has been a rapid increase in the usage of multiple-row cells
like two- and three-row flip-flops, buffers, etc., for design clo-
sure. Additionally, the usage of multi-bit flip-flops or flop trays
to save power creates large cells that further complicate criti-
cal design tasks, such as placement. Detailed placement hap-
pens to be a key optimization transform, which is repeatedly
invoked during the design closure flow to improve design param-
eters, such as, wirelength, timing, and local wiring congestion.
Advanced node designs, with hundreds of thousands of multiple-
row cells, require a paradigm change for this critical design clo-
sure transform. The traditional approach of fixing multiple-row
cells during detailed placement and only optimizing the loca-
tions of single-row standard cells can no longer obtain apprecia-
ble quality of results. It is imperative to have new techniques
that can simultaneously optimize both multiple- and single-row
high cell locations during detailed placement. In this paper, we
propose a new density-aware detailed placer for heterogeneous-
sized netlists. Our approach consists of a chain move scheme that
generalizes the movement of heterogeneous-sized cells as well as
a nested dynamic programming based approach for wirelength
and density optimization. Experimental results demonstrate the
effectiveness of these techniques in wirelength minimization and
density smoothing compared with the most recent detailed placer
for designs with heterogeneous-sized cells.

1. INTRODUCTION
Using single-row height standard cells has been the dominant

methodology for modern VLSI digital design. For a given tech-
nology node, the height and width of standard cells are care-
fully selected to optimize various characteristics, such as, timing,
packing, and pin accessibility. The common nomenclature for
cell libraries is “N”-track, with “N” being the height of the cir-
cuit row and standard cells in terms of the number of covered
routing tracks. The last few years have seen a steady decrease
in “N” with each new technology node, e.g., from 10 to 7.5 (and
possibly lesser for 7nm). In this scenario, it is getting increas-
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ingly difficult to design complex circuit components (flip-flops,
muxes, etc.) as single-row height cells, while satisfying required
performance and routing characteristics. As a result, advanced
node designs are increasingly adopting the design and usage of
multiple-row height cells for such complex circuit components.

Additionally, to satisfy stringent power requirements, flip-flop
merging and usage of multi-bit flip-flops (MBFFs) or flop trays is
becoming increasingly prevalent [1–3] in modern designs. MBFF
enables the sharing of clock buffers between flip-flops, which de-
creases both power and area. Statistics show that a 2-bit MBFF
is able to achieve around 14% power reduction and 4% area re-
duction per bit, while a 4-bit MBFF can achieve around 22%
power reduction and 29% area saving per bit [3]. But MBFFs
happen to be large, multiple-row height cells. This significantly
increases the complexity for steps like legalization and detailed
placement.

In addition, to meet die-size requirements for area, power, and
cost reduction, design densities are approaching the limit. It is
common for designs with up to 90% density, which makes de-
tailed placement critical to resolve local wiring congestion. In
an extremely dense design, it is very difficult to insert or move
large cells during legalization and detailed placement without sig-
nificant disruption to the local neighborhood. Furthermore, the
number of interconnect pins per standard cell varies for a given
cell library and often lacks correlation to the cell area. Without
careful planning, local congestion can be caused by accumulation
of cells with high pin count. Therefore, it is critical to make
proper usage of the limited die area for optimizing both wire-
length and congestion.

Placement is usually divided into three steps, global placement,
legalization and detailed placement [4]. Global placement deter-
mines the rough locations of cells while minimizing objectives,
such as, wirelength, routability and timing. But the solution
from global placement often contains overlap and thus is not de-
sign rule friendly. Legalization removes overlaps and aligns cells
to placement sites. Finally, detailed placement tries to further
improve the solution by moving cells locally. Sometimes legaliza-
tion is integrated into detailed placement instead of a separate
step.

Global placement techniques are fairly mature in handling the
mixed-sized placement problem [5–10]. But there has been little
research in detailed placement for heterogeneous-sized netlists,
especially where the number of multiple-row height cells ranges in
the hundreds of thousands, as seen in advanced node designs. Wu
et al. [11] propose a straightforward technique to handle double-
row height cells during detailed placement. In their method, they
use cell grouping and cell inflation to convert all the single-row
height cells in the design to double-row height cells. This results
in a placement problem with only double-row height cells. Con-
sequently, a conventional placement engine can be used to opti-
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Figure 1: Example of multiple-row height cells in a layout.

mize the designs. However, this approach is unable to handle the
power line alignment constraint from multiple-row height cells;
e.g. cells with power rail on top and bottom have to be placed
in rows with the same power line configuration. Another key
drawback with this approach is its inability to handle larger cells
that span three or more circuit rows. Chow et al. [12] propose
the first legalization algorithm for multiple-row height standard
cells with an objective of displacement minimization. They ex-
plore the insertion points in the layout and try to remove overlaps
with minimum displacement.

To address the challenges in placement for advanced technol-
ogy nodes, we propose a detailed placer for heterogeneous-sized
netlists that addresses the traditional detailed placement objec-
tives of wirelength, cell density and pin density [4, 5, 11, 13–16].
The major contributions are summarized as follows.

1. A chain move scheme that generalizes the movement of
heterogeneous-sized cells to optimize wirelength, cell and
pin density by searching for the maximum prefix sum of
the improvements.

2. A nested dynamic programming based technique solving
ordered double-row placement for wirelength optimization.

3. Outperform the most recent detailed placer for multiple-
row height cells by 3.0% in scaled wirelength, 13.3% in cell
density and 13.2% in pin density.

The rest of the paper is organized as follows. Section 2 illus-
trates the special constraints and problem formulation for the
placement. Section 3 provides a detailed explanation of our pro-
posed techniques. Section 4 verifies the effectiveness of our ap-
proach, followed by conclusion in Section 5.

2. PRELIMINARIES AND OVERALL FLOW
In this section, we will explain the constraints in placement

for designs with heterogeneous-sized standard cells and give the
problem formulation.

2.1 Power Line Alignment
Power line alignment is a special placement constraint from a

multiple-row height cell. Fig. 1 illustrates an layout example of
seven multiple-row height cells, where five cells take even number
of rows (i.e. cells a, c, d, f and g). Cells a, d and g have power rails
(VDD) on top and bottom of the cells, and ground rails (GND) in
the middle. They must be placed in alternative rows with proper
VDD/GND alignment, since we cannot fix the alignment through
cell flipping or rotation. Similarly, cells c and f have VDD in the
middle and GND on the top and bottom. The bottom of such
cells must be aligned to rows with GND at the bottom. However,
for cells with odd number of rows, such as cell b and e, there is
no such constraint, since it has power rail on the top or bottom
and ground rail on the other side. This configuration is the same
as single-row height cells, so cell flipping and rotation can fix the
alignment issue.

The constraint for power line alignment can be summarized as
follows. An even-row height cell must align to placement rows
with the same type of power line at the bottom as that in the
cell, while any odd-row height cell, including single-row height
cell, can align to any placement row with proper orientation.

2.2 Problem Formulation
In modern VLSI placement, the optimization usually includes

multiple objectives, such as wirelength and density. Wirelength
is still regarded as the major objective, while density metrics can-
not be neglected, because pure wirelength-driven placement often
produces congested solution that results in difficulty for post-
placement stages, such as routing. Therefore, in this work we
adopt the scaled wirelength metric from ICCAD 2013 placement
contest [17] considering both wirelength and cell density. Half-
perimeter wirelength (HPWL) is used as the wirelength metric,
which is defined as follows:

HPWL =
∑
n∈N

max
i∈n

xi −min
i∈n

xi + max
i∈n

yi −min
i∈n

yi, (1)

where N denotes the set of interconnections in the circuit.
Average bin utilization (ABU) evaluates the density of a place-

ment solution [8]. The average density of the top γ% bins of
highest utilization is denoted by ABUγ . The ABU penalty for
density is computed from a weighted sum of overflow, which is
defined in the following equations.

overflowγ = max (0,
ABUγ

dt
− 1), (2a)

ABU =

∑
γ∈Γ wγ · overflowγ∑

γ∈Γ wγ
,Γ ∈ {2, 5, 10, 20}, (2b)

where dt denotes the target utilization and w2, w5, w10, w20

are set to 10, 4, 2, 1, respectively. With the definition of ABU
penalty, ICCAD 2013 placement contest defines a scaled wire-
length cost to generalize both wirelength and density costs, as
shown in Eq. (3).

sHPWL = HPWL · (1 + ABU). (3)

In the ICCAD 2013 placement contest, only cell area utilization
is included in the computation of ABU. In advanced technology
nodes, area utilization is not enough to model the congestion,
because some large cells may contain very few pins, while some
small cells may in the contrast involve a lot of interconnections.
So we propose average pin utilization (APU) that captures the
pin distribution of the layout. The pin density in each bin is the
ratio of number of pins to the number of placement sites in the
bin. Once the pin density map is obtained, the computation of
APU penalty is the same as that of ABU.

With all the metrics defined, the multiple-row detailed place-
ment (MrDP) problem is defined as follows.

Problem 1 (MrDP). Given an initial heterogeneous-sized stan-
dard cell placement plus a number of fixed macro blocks, either
legal or not, we produce a legal placement solution with opti-
mized wirelength and density, i.e. sHPWL and APU.

2.3 Overall Flow
The overall flow of our detailed placement engine is shown in

Alg. 1. Given the placement solution from global placement,
we first check whether the placement is legal. If it is not le-
gal, legalization is performed to remove overlaps and align power
line of multiple-row cells. In this step, we first perform chain
move algorithm (see Section 3.1) in overlap reduction mode. Be-
cause the initial placement solutions may contain many overlaps
leading to large wirelength degradation in legalizer. Next the
legalizer from [12] is called to ensure legality with minimum dis-
placement. Then we perform wirelength optimization to improve
both wirelength and density until less than 1% cells are moved
or maximum iteration is reached. We allow at most 6 iterations
in the experiment. The ordered double-row placement (see Sec-
tion 3.2) is performed to further optimize wirelength before the
final placement is produced.



Algorithm 1 Overall Placement Flow

Input: A set of placed cells C in the layout.
Output: Legal placement with optimized wirelength and den-

sity.
1: if placement is not legal then
2: Perform Chain Move in overlap reduction mode;
3: Perform legalization if still not legal;
4: end if
5: repeat
6: Perform Chain Move in wirelength mode;
7: until converged or maximum iteration reached
8: Perform ordered double-row placement;
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Figure 2: Example of (a) placement with multiple-row height cells
(b) inserting another cell t by slightly shifting cell g and j.

3. DETAILED PLACEMENT FOR MULTIPLE-
ROW CELLS

In this section, we will explain our placement algorithms such
as Chain Move and Ordered Double-Row Placement in details.

3.1 Chain Move Algorithm
One of the typical detailed placement approaches is to improve

wirelength in a cell-by-cell manner; i.e. pick a cell and move to
better position or try to swap with another cell for better wire-
length [4, 14, 15]. It is proved to be very effective in the detailed
placement for single-row cells. However, the situation changes
when it comes to multiple-row height cells. Since a multiple-
row height cell occupies the space of contiguous rows, it is more
likely to involve overlaps with multiple cells, which results in
the failure of position search with previous approach. Fig. 2(a)
gives an example of placement which is difficult to insert another
multiple-row height cell t into the dashed region without perturb-
ing at least two cells. With slightly shifting cells g and j, shown
as Fig. 2(b), cell t can be placed in the dashed region without
overlap. Similar situation may also occur to very large single-row
height cells which are difficult to be fit into dense regions without
perturbation of multiple cells.

If it is able to allow the movement of multiple cells at a time,
there will be more candidate positions for better placement qual-
ity. Inspired by density preserving refinement from [9] and gain
map from [18, 19], we develop an algorithm to allow other cells
to move together when optimizing a target cell.

Definition 1 (Chain Move). Each chain move contains a set
of movements for one or several cells.

A chain move involving multiple cells is usually triggered by the
attempts of inserting a cell into a position resulting in overlaps
with existing cells in that region, so the overlapped cells need
to find new positions to resolve overlaps. If a cell is placed to a
position without any overlap, there is only a single movement in
the chain move.

Definition 2 (Cell Pool). It is a queue structure used for tem-
porary storage of cells within a chain move.

In the example of Fig. 2, cell t overlaps with cells g and j when
inserted to the dashed region, so cells g and j are added to the cell
pool. In the following steps, cells in the cell pool are first popped
out and placed until the cell pool goes empty, which indicates the
end of a chain move.
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Cell t: p0
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Cell g: p0
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Cell j: p0
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Figure 3: A chain move example of (a) 1st movement: place cell
t to p1 from p0

1 and push overlapped cell g and j to cell pool (b)

2nd movement: pop cell g from cell pool and place to p2 from p0
2 (c)

3rd movement: pop cell j from cell pool and place to p3 from p0
3 (d)

corresponding chain move entry in scoreboard.

Definition 3 (Scoreboard). It consists of an array of chain
move entries with corresponding changes in wirelength cost for
each chain move.

Since the positions of all cells are determined at the end of a
chain move, we can compute accurate wirelength cost and record
the differences with that at the beginning of the chain move. The
scoreboard can help find a cumulatively good solution instead of
that in a very greedy approach which usually requires improve-
ments in each movement.

For the chain move example in Fig. 2, Fig. 3 gives the corre-
sponding example of interaction between the cell pool and score-
board. Here the horizontal cylinders on top of each Fig. 3(a) to
3(c) indicate the status of the cell pool before any movement,
while the ones on the bottom indicate the status after the move-
ments. At the beginning of the 1st movement, the cell pool is
empty. Cell t is moved to position p1 from p0

1 but results in
overlap with cells g and j during the 1st movement, so they are
pushed into the cell pool. In the 2nd movement, cell g is popped
from the cell pool and moved to position p2 from p0

2 to resolve
overlap. Similarly, the 3rd movement places cell j to position p3

from p0
3. Fig. 3(d) shows the corresponding chain move entry in

the scoreboard, which not only records each movement but also
the change of wirelength cost before and after this chain move.

3.1.1 Overview of Chain Move Algorithm
The overview of the chain move algorithm is shown in Alg. 2

and the notations are defined in Table 1. In general each cell
is only allowed to move once during one iteration. The function
ReorderCells in line 1 of Alg. 2 shuffles the cell sequence in
C. Then cell set C is copied to a first-in-first-out queue structure
and the main loop of chain move algorithm begins.

Within the loop, we first try to fetch a cell from the cell pool. If
the cell pool is empty, we then obtain the first cell ci in C. Then
region ri for cell ci is computed for search of candidate positions,
which is completed by function ComputeSearchRegion.

For each candidate position aj in Ai, the cost is computed
by function ComputeMoveCost and the position with the best
cost is applied to the cell from lines 15 to 28. When applying
the best position, it is necessary to push all the overlapped cells
in Ob to the cell pool and update the movement records in the
scoreboard. If the cell pool goes to empty after a movement,



Table 1: Notations used in Chain Move Algorithm

Pool The cell pool.
Board The scoreboard.

p0
i Initial position of Cell ci.
pi Candidate position of cell ci.
Oi The set of cells overlapping with cell ci at pi.
costi The cost of cell ci at pi.
pb, Ob, costb Correspond to best pi, Oi, costi, respectively.

Algorithm 2 Chain Move Algorithm

Input: A set of placed cells C in the layout.
Output: Move cells to minimize wirelength cost.
1: ReorderCells(C);
2: Re-structure C as a queue;
3: while C is not empty or Pool is not empty do
4: if Pool is not empty then
5: ci ← Pool.pop();
6: else
7: ci ← C.pop();
8: if ci has already been moved then
9: Continue;

10: end if
11: end if
12: ri ← ComputeSearchRegion(ci);
13: Ai ← collect candidate positions in ri;
14: costb ←∞;
15: for each aj ∈ Ai do
16: (costi, pi, Oi)← ComputeMoveCost(ci, aj);
17: if costi < costb then
18: costb ← costi; pb ← pi; Ob ← Oi;
19: end if
20: end for
21: Move ci to pb;
22: Pool.push(Ob);
23: Board.last.append(ci, p

0
i → pb);

24: if Pool is empty then
25: Compute ∆WL for Board.last;
26: end if
27: end while
28: BacktraceToBestEntry(C, Board);

which means the end of the chain move, we can now compute the
accurate wirelength change and update the scoreboard. At the
end of each pass, function BacktraceToBestEntry scans the
scoreboard to find the best cumulative wirelength.

3.1.2 Max Prefix Sum of Wirelength Improvement
Like that in the well-known KL and FM partitioning algorithm

[18,19], we have a scoreboard that records the wirelength changes
in each chain move, which helps find the maximum prefix sum of
wirelength improvement by BacktraceToBestEntry. So the
chain move scheme allows temporary degradation of wirelength
as long as it eventually achieves better solutions, which can help
find the best cumulative wirelength.

3.1.3 Constraints to Chain Move
There exist corner cases where a cell may fail to find any legal

position in its search region. The corner case is likely to be
triggered when all cells in a dense region have already been moved
in this pass, because each cell is only allowed to move once in each
pass. If such corner cases are triggered, we discard current chain
and recover all the movements in this chain. Another corner case
lies in the involvement of too many cells in a chain, which may
result in the difficulty in searching for legal positions for the last
cell. Therefore, we set an upper bound to the length of a chain
to avoid long chains. Any chain exceeding the upper bound will

trigger the discarding process. The maximum length of chain is
set to 10000, but it is never triggered in the experiment.

Lemma 1. If the placement is legal at the beginning of a chain
move, the legality is maintained at the end of the chain move.

Proof. If the chain is discarded, all movements are recovered,
so there is no perturbation to the placement. Otherwise, the
chain ends because the cell pool goes empty, which means the
last movement does not cause any overlap. So the placement
is still legal at the end of the chain move. The maintenance of
legality is very meaningful to avoid wirelength degradation from
extra legalization effort.

3.1.4 Visiting Order of Cells
The visiting order of cells during each pass matters to the so-

lution quality. If we keep a fixed order for each iteration, the
wirelength saturates quickly and fails to descent further. So
a suitable visiting order is essential to the solution quality un-
der different objectives. Here we discuss the details about the
function ReorderCells for different optimization objectives. In
overlap reduction mode, multiple-row height cells and large cells
have higher priority, because it is easier for small cells to find
overlap-free positions and thus a legal placement can be found
more efficiently. When it comes to wirelength minimization from
a legal placement, those cells far away from their optimal re-
gions are granted with high priority, because higher gain can be
achieved by moving cells with longer distances.

3.1.5 Search Region Computation
We discuss the function ComputeSearchRegion here on search

region computation. First we compute the optimal region as most
previous global move algorithms do [14], but it is often congested.
We extend the optimal region by mirroring the original position
of the cell to the center of the optimal region and form a new
box. Any bin intersecting with the search region will be consid-
ered for collection of candidate positions to the set Ai. We check
bins from the ones close to the optimal region to farther ones.
We observe that after several updates in line 18 to 20 for each
cell, the final solution quality converges. To save runtime we exit
early from the loop after trying several positions for each cell in
the experiment.

3.1.6 Move Cost Computation
Now we explain the function ComputeMoveCost. The objec-

tive of the placement includes wirelength and density. In addi-
tion, each movement may lead to overlapping cells that will be
collected to the cell pool. So the cost consists of three parts:
wirelength cost, density cost, and overlap cost, shown as follows,

cost = ∆WL · (1 + α · cd) + β · cov, (4)

where ∆WL denotes the wirelength cost, cd denotes density cost
and cov denotes the overlap cost. The weights α and β are set to
1.5 and 0.5 in the experiment.

Wirelength cost is in general defined as the HPWL change for
the movement. However, if the cell is connected to some cells
in the cell pool whose positions are not determined yet, such
connections are ignored.

In the density cost, we consider both area density and pin
density. In the placement that involves multiple-row height cells,
the cells can be very large and result in the intersections with
multiple bins. So the density increases in all bins are summed up
for cost. Let cad denote the cost of area density and cpd denote
the cost of pin density. Let B be the set of bins intersected with
the cell ci at candidate position pi and da(b) and dp(b) denote



the original area and pin density for bin b.

cad =
∑
b∈B

∑
γ∈Γ

wγ · f(da,∆da,ABUγ), (5a)

cpd =
∑
b∈B

∑
γ∈Γ

wγ · f(dp,∆dp,APUγ), (5b)

cd = 0.5× (
cad
dat

+
cpd
dpt

), (5c)

f(d,∆d, d) =

{
∆d
d
, if d+ ∆d ≥ d,

0, otherwise,
(5d)

where ∆da and ∆dp denote the area and pin density increase in
each bin, dat and dpt denote the target area and pin density for the
layout, respectively. Function f computes the density cost and
the cost only happens when the new density exceeds the average
density of the top γ% bins. Although the weights for cad and cpd
can be adjusted for different targets, we set them equal in the
experiment for simplicity.

The overlap cost cov is defined as the total area of overlapped
cells times the total number of pins divided by row height. As
the overlapped cells need to be inserted to the cell pool which
results in the inaccuracy of wirelength cost computation, fewer
pins are preferred for less contribution to the wirelength cost.

There are some hard constraints for a candidate position that
lead to invalidate this candidate. Each overlapped cell must be
no larger than current cell; otherwise, it is even more difficult to
find legal positions for those overlapped cells. The overlapped
cells must not be moved yet in current pass, because each cell
can only move once within each pass of iteration.

3.1.7 Various Optimization Modes
The Chain Move algorithm can be configured to either over-

lap reduction or wirelength minimization. The main difference
lies in the function BacktraceToBestEntry which will not be
called in overlap reduction mode, because we observe that apply-
ing all the chain moves removes most of the overlaps regardless of
potential wirelength degradation. Empirically we often still get
some wirelength improvements. In this mode, there is an addi-
tional part of displacement cost added to Eq. (4). The purpose of
the displacement cost is to reduce the perturbation to the global
placement solution.

In wirelength minimization mode, we also perform local clus-
tering of horizontally abutting cells in every odd iteration if we
detect they become the bottlenecks of wirelength reduction. Af-
ter chain move iterations, we fix multiple-row height cells and
perform conventional global move to single-row height cells for
further wirelength improvements. This incremental step usually
converges at 1 or 2 iterations.

3.2 Ordered Double-Row Placement
The ordered single-row placement has been well explored in

detailed placement for wirelength minimization and legalization
[13, 16, 20–23]. There are also many single-row algorithms de-
signed for manufacturability compliance, such as multiple pat-
terning lithography, FinFET process and E-beam lithography
[24–30]. The problem can be formulated into a dual min-cost
flow problem that can be solved in O(n2logm2) time complexity
for wirelength minimization [20], where n is the number of cells
in a row and m is the number of nets involved. The runtime is
reduced to O(m logm) by the clumping algorithm from [21]. If
each cell in a row has a maximum displacement M , the problem
can be transferred to a shortest path problem and a dynamic
programming (DP) based algorithm is able to solve the problem
in O(M2n) [16, 26]. It can be further improved to O(Mn) by
exploiting the monotonicity and pruning the solution space [30].
However, most of these algorithms only focus on single-row place-
ment and are not able to deal with multiple-row height cells. Here

c

b lj

mg

fa

d kh
e i

Partition 1 Partition 2 Partition 3

(a)

c

b l

j

m
g

fa

d kh

e
i

(b)
Figure 4: Example of (a) an ideal case in ordered double-row place-
ment (b) a general case with large splitting cells and crossing cells such
as cells e and j.

we define an ordered double-row placement problem as follows.

Problem 2 (Ordered Double-Row Placement). Given two
rows of cells that are ordered from left to right in each row,
horizontally move the cells to optimize HPWL without ruining
the order of cells in each row.

Please note that the two sequences of cells may contain multiple-
row height cells, shown as Fig. 4. Here are several definitions to
the cells in the double-row placement problem.

Definition 4 (Double-Row Region Rdr). The rectangular re-
gion defined by the target two rows to be solved.

The target rows to be solved by double-row placement form a
rectangular box. The region defined by the other rows will be
referred to as a region outside the double-row region, denoted by
Rdr.

Definition 5 (Splitting Cell). Any multiple-row height cell spans
both rows in Rdr.

In Fig. 4, cells e and i cover both lower and upper row in Rdr, so
they are considered as splitting cells.

Definition 6 (Crossing cell). Any multiple-row cell spans only
one of the two rows in Rdr.

Cells like g and j in Fig. 4 either take the lower or upper row in
Rdr, and also intersect with Rdr. They are considered as crossing
cells.

There are several cases to this problem. The ideal case is that
the double-row placement problem only consists of single-row
height cells and double-row height splitting cells, which means
all the cells will lie in Rdr, shown as Fig. 4(a). Two splitting cells
e and i separate the each row into three parts, i.e. partition 1, 2,
and 3. But this is not often true due to the existence of crossing
cells and large splitting cells. Fig. 4(b) gives a general case for
the double-row placement problem where some splitting cells and
crossing cells span more than two rows. In this case where cells
e, g, and j spread out of the rows, their movements must keep
the order within the two rows and not cause any overlap in the
other rows. We will first explain the algorithm with the ideal case
in Fig. 4(a) and extend it to handle the general cases. For sim-
plicity, we further assume in the ideal case, there is no inter-row
connection between cells in the lower and upper row within each
partition. The general double-row placement problem without
ordering constraints is very difficult, since the general single-row
placement problem is already known as NP-hard [31].

3.2.1 Nested Shortest Path Problem
We first formulate the ordered double-row placement problem

into a nested shortest path problem with outer and inner level.



Table 2: Notations in Ordered Double-Row Placement

M Maximum displacement for a cell.
di The displacement of cell ci, −M ≤ di ≤M .
zi A splitting cell in the splitting cell set SC.
yi A crossing cell in the crossing cell set CC.
vi A single-row height cell or crossing cell in the

lower row of a partition.
ui A single-row height cell or crossing cell in the

upper row of a partition.
PCi The set of cells in the partition between split-

ting cell zi−1 and zi.

Then we solve it with a nested dynamic programming algorithm.
Table 2 gives the notations used in the ordered double-row place-
ment problem. We define the maximum displacement M such
that each cell has K = 2M + 1 displacement values. Let zij de-
note the jth position for splitting cell zi. Let r be the number of
splitting cells in Rdr, b be the number of cells in the lower row
of a partition, and t be the number of cells in the upper row of a
partition.

The key observation to the ordered double-row placement prob-
lem is the independence of sub-problems within each partition
providing the positions of splitting cells fixed. For instance, the
sub-problem for cells in partition 1 of Fig. 4(a) becomes inde-
pendent as long as the position of splitting cell e is determined.
Similarly, the sub-problem in partition 2 only relies on the posi-
tions of splitting cells e and i. Therefore, if we can determine the
positions of the splitting cells, it is possible to solve the corre-
sponding independent sub-problem. With such observation, we
formulate a nested shortest path problem shown as Fig. 5, where
we solve the positions of all the splitting cells with an outer-level
shortest path problem whose edge weights are determined by a
set of inner-level problems.

Fig. 5(a) gives the graph representation of the outer-level short-
est path algorithm where each node denotes a candidate position
of a splitting cell. We need to find the shortest path from s to t.
However, the weights of edges in Fig. 5(a) are not determined yet
because the minimum placement cost for cells within each parti-
tion is still unknown. With the previous independence property,
we can compute the weight of any edge zi−1,k → zij by solv-
ing the inner-level problem shown in Fig. 5(b). The inner-level
problem consists of two shortest path problems for the lower and
upper row in the partition. These two shortest path problems
are independent due to the assumption in ideal case that there is
no inter-row connection in a partition. Node zi−1,k and zij serve
as the starting and terminating node in the inner-level problem.

3.2.2 Nested Dynamic Programming
In general any algorithm that solves shortest path can be ap-

plied to the nested shortest path problem defined above. For
efficiency, we adapt the dynamic programming algorithm in [30]
to solve the nested shortest path problem in the ordered double-
row placement, which results in a nested dynamic programming
scheme. Alg. 3 gives the skeleton of the nested dynamic pro-
gramming algorithm. To highlight the nesting scheme, we omit
the details that are the same as the ordered single-row place-
ment and only keep the simplified key steps. The algorithm calls
the function SolveOuterLevel to solve the outer-level short-
est path problem. The kernel procedure of SolveOuterLevel
lies in the three loops from lines 7 to 15. The cost of each
candidate position is evaluated in lines 10 to 12 where function
ComputeDPCost computes the cost for zi−1 and zij themselves
and function SolveInnerLevel solves the inner-level problem
for cost in the partition. Within a partition, SolveInnerLevel
computes the cost of lower and upper row separately with the cost
function ComputeDPCost and return the total cost. Since the
dynamic programming for the inner-level problem is the same as
single-row version in the ideal case, the details are omitted.

Algorithm 3 Ordered Double-Row Placement

Input: Two ordered sequences of cells.
Output: Shift cells to minimize wirelength.
1: . . . // prepare data SC
2: SolveOuterLevel(SC);
3: return
4:
5: function SolveOuterLevel(SC)
6: . . .
7: for each zi ∈ SC, i← 2 to r do
8: for each di ∈ [−M,M ] do
9: for each di−1 ∈ [−M,M ] do

10: costi(di)←ComputeDPCost(di−1, di)
11: +SolveInnerLevel(di−1, di, PCi);
12: . . . // process costi(di) in DP
13: end for
14: end for
15: end for
16: . . . // apply solution
17: end function
18:
19: function SolveInnerLevel(di−1, di, PCi)
20: cost1 ← solve DP for lower row in PCi;
21: cost2 ← solve DP for upper row in PCi;
22: return cost1 + cost2;
23: end function

The wirelength cost computed in ComputeDPCost adopts the
cost function defined in [14] for single-row placement. If a cell
ci connects to another cell cj in the same row and cj is on the
left of ci, we assume the position of cj is on the left boundary of
the row for wirelength cost computation; if cj is on the right of
ci in the same row, the position of cj is assumed to be the right
boundary of the row. For any cj in a different row to ci, its actual
position is used. This wirelength cost turns out to be equivalent
to HPWL in single-row placement and the equivalence holds in
the ideal case of double-row placement as well.

Lemma 2. Alg. 3 gives optimal solution for the wirelength cost
to the ordered double-row placement under the ideal case.

The proof is omitted here due to page limit.
The runtime for Alg. 3 turns out to be O(M2n) where n is

the total number of cells in Rdr. Considering the r + 1 par-
titions defined by r splitting cells, within each partition PCi,
the lower row contains bi cells and the upper row contains ti
cells. Assume ComputeDPCost takes constant time and n� r.
The dynamic programming scheme takes O(Mn) to solve single-
row placement [30]. So solving partition PCi for one time takes
O(Mbi)+O(Mti) in SolveInnerLevel. The runtime complex-
ity for Alg. 3 can be computed as follows,

complexity ≈
r+1∑
i=1

M · (O(Mbi) +O(Mti))

= O(M2(n− r)) ≈ O(M2n).

(6)

3.2.3 Extension To General Cases
The potential overlaps to Rdr must be considered due to the

existence of large splitting cells and crossing cells in a general
case. During the ordered double-row placement, any position
of a cell overlapping with any placement site already taken by
other cells in Rdr should be avoided; i.e. assign a very large
cost to such positions. We can add a large penalty to a posi-
tion in ComputeDPCost without losing the optimality since such
penalty only depends on the position of the cell itself.

However, under a general case, the wirelength cost computed
by ComputeDPCost in the inner-level problem is no longer al-
ways equivalent to HPWL. because a cell in the lower row of
a partition may have connection with another cell in the upper
row. Such inaccuracy from the wirelength cost usually comes
from short inter-row connections, so the overhead is small. Be-
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Figure 5: (a) Outer-level shortest path problem that solves the positions of splitting cell z1, z2, . . . , zr. The weights of edges in each partition
need to be computed by solving the inner-level problems and (b) an inner-level problem computes the edge weight of zi−1,k → zij by solving the
shortest path problem of lower and upper row in the partition with given positions of the splitting cells zi−1,k and zij .

sides wirelength, the nested dynamic programming scheme can
also be adapted to support other objectives, such as displacement
and local congestion.

Although ordered double-row placement can minimize wire-
length, it may squeeze the whitespaces in dense regions and re-
sult in congestion. To mitigate such side effects, we fix the cells
in congested regions and only move cells in low-density regions.
In general the algorithm can also be applied to resolve overlaps
for legalization, but the computation effort becomes an issue for
layouts with large amount of overlaps due to its quadratic rela-
tion with maximum displacement. Therefore, we adopt it as an
incremental optimization technique for legal designs.

4. EXPERIMENTAL RESULTS
Our algorithm was implemented in C++ and tested on an

eight-core 3.40 GHz Linux server with 32 GB RAM. Single thread
is used in the experiment. We validate our algorithm on two sets
of benchmarks. The first set of benchmarks are generated from
ISPD05 placement benchmark suite by [11] with only single-row
and double-row height cells. Double-row height cells are ran-
domly generated from about 30% single-row height cells. The
state-of-the-art wirelength-driven global placer POLAR [9] is used
for global placement. We obtain the binary from [11] and all
the results are collected from our machine. The second set of
benchmarks are modified from ICCAD14 placement benchmark
suite [32] in which we resize cells such as flip-flops to double-row
height and some large cells such as NAND4 X4 and INV X32
to three-row and four-row height cells. We adopt the evaluation
script from ICCAD13 placement contest to verify the legality,
wirelength and density of our placement solution. The bin sizes
are set to 9 × 9 row heights according to the evaluation script.
The target pin density for APU evaluation is set to the average
pin density of top 60% densest bins.

Table 3 shows the information of benchmarks and comparison
between our algorithm and [11]. The sizes of the designs vary
from 200K to 2M with utilizations from 67.70% to 91.10%. The
ratio of multiple-row height cells are shown as “DH”. The wire-
length for the input global placement solution is shown as “GP”,
which is not legalized yet. The results of our algorithm is shown
as “MrDP”. Runtime is shown as “CPU” in seconds.

Since [11] only considers wirelength, we first compare wire-
length in which MrDP achieves smaller HPWL in all benchmarks
on an average of 1.2%. We can also see from the table that MrDP
can achieve even more significant improvement in sHPWL, 3.0%
on average, which indicates better cell density in the placement
solution. The ABU penalty from MrDP is 13.3% smaller than that
from [11] and APU penalty shows 13.2% improvement. Although
MrDP is slightly slower than [11], even the largest benchmark with
2 million cells can be finished within 10 minutes, which is still

affordable in placement.
Table 4 gives experimental results on modified ICCAD14 bench-

marks. To the best of our knowledge, no published detailed
placers are reported to explicitly handle such benchmarks with
various multiple-row height cells yet. The ratio of multiple-row
height cells varies from 17.17% to 41.09% for different bench-
marks, shown as “MH”. We keep the same target utilizations as
the contest setting. The data under “Initial” denotes the eval-
uation of initial solutions that still contain overlaps. We can
see that MrDP achieves 3.0% improvement in HPWL and 3.7%
improvement in sHPWL. The cell and pin density penalty also
decreases by 22.5% and 15.3% respectively.

We also study the trade-off between performance and runtime
for different maximum displacement M in ordered double-row
placement in Fig. 6. With the increase of M , wirelength drops
while the runtime rises quadratically. The wirelength starts to
saturate after M goes larger than 8. To trade-off runtime and
performance, we set M to 8 placement sites in the experiment. In
addition, although we call [12] in the legalization step, it actually
does nothing because the chain move in overlap reduction mode
has already removed all overlaps in the experiment.

5. CONCLUSION
In this paper, we have addressed the placement challenges in

advanced technology nodes and proposed a detailed placer for
heterogeneous-sized cells to help resolve these challenges. Two
major techniques have been introduced to generalize the opti-
mization of both single-row height cells and multiple-row height
cells, including a chain move scheme to find maximum prefix
sum of wirelength improvement and a nested dynamic program-
ming algorithm for double-row placement. Experimental results
demonstrate our algorithm outperforms the most recent detailed
placer for multiple-row height cells in both wirelength and den-
sity.
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