
Detailed Placement for Modern FPGAs using
2D Dynamic Programming

Shounak Dhar
University of Texas at Austin

shounak.dhar@utexas.edu

Saurabh Adya
Intel Corporation

sadya@altera.com

Love Singhal
Intel Corporation

lsinghal@altera.com

Mahesh A. Iyer
Intel Corporation

maiyer@altera.com

David Z. Pan
University of Texas at Austin
dpan@ece.utexas.edu

ABSTRACT
In this paper, we propose a 2-dimensional dynamic program-
ming (DP) based detailed placement algorithm for modern
FPGAs for wirelength and timing optimization. By tuning a
control parameter, our algorithm can perform fast heuristic
or exact optimization. Our algorithm further enables us to
solve the single row placement problem optimally which was
not possible with the previous DP approaches, while also re-
ducing it’s complexity to Θ(p.N.2N) from the naive Θ(p.N !)
(where p is the average degree of a net). Experiments on
industrial-scale benchmarks show promising results.

CCS Concepts
•Hardware → Placement;

1. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) are becom-

ing increasingly important in the semiconductor ecosystem.
ASIC prototyping and hardware acceleration using FPGAs
are some of the important applications. An important re-
quirement for these and other applications is to ensure that
the application designs can be efficiently mapped onto the
underlying FPGA device. This motivates the need to have
a stable and robust design implementation tool flow for FP-
GAs.

1.1 FPGA architecture and tool flow
Modern FPGAs typically consist of logic array blocks (also

known as LABs), digital signal processors (DSPs), RAMs
and IO blocks in a rectangular grid, with interleaved routing
resources. LABs internally consist of lookup tables (LUTs),
flip-flops (FFs), multiplexers (MUXes) and routing resources.
The overall flow is as follows: First, the netlist is mapped to
LUTs and FFs. Then, LUTs and FFs are packed into LABs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16, November 07 - 10, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4466-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2966986.2967024

Next, global placement and legalization are performed to
place the LABs, RAMs, DSPs and IOs on the FPGA grid.
This is followed by detailed placement to reduce wirelength,
fix timing errors and improve routability. Detailed place-
ment refinement improves these metrics by accounting for
irregularities and discreteness in the underlying FPGA ar-
chitecture that may have caused modeling difficulties during
global placement. Another objective of detailed placement
is to recover from any large displacements caused during le-
galization. The final steps in the flow are routing and signoff
timing analysis.

1.2 Previous work on detailed placement
Historically, (variations of)greedy algorithms [5][8] have

been the most popular methods for detailed placement. How-
ever, they are susceptible to local minima. The chances of
finding good greedy moves decreases with increasing design
size and complexity.

Simulated annealing [3][4][9] is another important detailed
placement algorithm. It is similar to greedy algorithms, ex-
cept that it accepts suboptimal or hill-climbing moves with
some probability. However, it scales poorly with increasing
design complexity.

A different flavor of detailed placement algorithms in-
volves network flows and bipartite matching[6][7]. Typically,
a bipartite graph is formed with cells representing one set
of vertices and sites representing the other. If one allows all
cells to go to all locations, there is no accurate cost model.

Linear and/or Integer Programming approaches[1][2] can
find the exact minimum for half-perimeter wirelength and
some other cost functions, but they have exponential time
complexity and are not scalable.

Figure 1: This placement would retain the initial
configuration (local minima) unless the two pink
cells are moved together

In [10], the authors propose a dynamic programming al-

gorithm which partitions an ASIC row into 2 sets of cells
and optimally interleaves them, keeping the relative order
of cells within each partition constant. This is less suscepti-
ble to local minima than greedy approaches and allows more
movement than network flow/matching. However, partition-
ing into 2 sets only is quite restrictive and DP on rows only
would explore limited solution space. We propose a new DP
algorithm with multiple partitions and apply it to a rectan-
gular grid to address these concerns.

Figure 2: An instance which cannot be optimized
by 2 partition DP

Figure 3: Sometimes we only need to adjust spaces
during detailed placement

Figure 4: Interleaving example; The top row shows
the placement before interleaving. The bottom row
is the placement after interleaving

1.3 Motivation
We illustrate the limitations of state-of-the-art detailed

placement algorithms with some examples:

• Consider the placement problem in Figure 1. In case
of row-by-row DP, row1 and row2 are stuck in their
respective local minima. Among the approaches we
discussed, only ILP is guaranteed to solve this partic-
ular instance but it is not scalable.

• Consider the placement problem in Figure 2. It can be
verified that DP with just two partitions [10] will get
stuck with a solution that has HPWL of 10, indepen-
dent of how the cells are partitioned.

• DP is better suited than the other algorithms for han-
dling both sparse (figure 3) and dense (figure 4) cases.
However, the current DP approach offers limited scope
for pairwise swaps among cells.

1.4 Our contributions
The key contributions of our work are as follows:

• To the best of our knowledge, this is the first work
proposing multiple and tunable number of partitions
in DP, which allows good runtime vs quality tradeoff
for solving really difficult cases. The DP algorithms in
[10] and [11] are degenerate cases of our DP algorithm
with 2 partitions.

• We propose a way to do DP in a rectangular grid. This
circumvents local minima problems faced with single
row/column based techniques and also allows macros
(multi-row cells) to move.

• We prove that our algorithm runs in Θ(p.k.(N
k

+ 1)k)
time, which is tractable for reasonanle values of k,
where N is the number of cells, p is the avgerage degree
of a net and k is the number of partitions. As a spe-
cial case, we can solve the single row placement prob-
lem optimally in Θ(p.N.2N) time instead of the naive
Θ(p.N !). (Magnitude comparison: 20.220 = 20971520
whereas 20! = 2432902008176640000)

• We propose new parallelization schemes. Our formu-
lation also exploits the fact that x and y components
of HPWL are decoupled and does 2-dimensional opti-
mization in parallel.

• We propose a method to concurrently optimize timing
and wirelength in a DP framework, which is absent in
[10] and other previous works.

The rest of the paper is organized as follows: Section 2
presents the basic concepts and the problem formulation.
Section 3 presents our new algorithm. Section 4 presents
the complexity analysis and also a method to obtain the ex-
act solution. Section 5 discusses the DP formulation for a
rectangular grid. Section 6 discusses parallel implementa-
tion, partitioning and some DP schemes. Section 7 presents
our experimental results and Section 8 concludes our paper.

2. PROBLEM STATEMENT
Our two main objectives are maximum frequency (Fmax)

and wirelength optimization. Of the many wirelength rep-
resentations, half-perimeter wirelength (HPWL) is the most
widely used. To improve route correlation, the fanout of a
net is used as a weighting factor in its HPWL.

For incorporating timing information, we introduce tim-
ing nets(tnets), which are virtual 2-pin nets representing
timing arcs. They connect every load to its driver. Tim-
ing weights on tnets are generated using slack information
obtained from a static timing analysis tool[13]. We update
timing weights at fixed intervals. We assume the following
inputs and constraints for our problem:

• Given: Hypergraph H with set of vertices V, set of
nets/hyperedges E, set of sites S on which the vertices
can be placed. V is the set containing all the LABs,
IOs DSPs and RAMs in the current window in which
DP is being applied. E contains all the inter-LAB nets
among elements in V and also the new timing nets
(tnets) that we introduce.

• Each vertex and each site is a unit square.

• Each net has a weight. Each net is connected to a
vertex by a pin. Pin locations are specified by offset
from the lower left corner of the vertex. Some nets
have pins connecting to vertices not in V, which can
be treated as fixed pins with respect to the current
problem.

• Not all vertices can be placed on all sites.

• Sites in S need not be contiguous.

• Number of vertices = number sites = N (blank spaces
are treated as dummy vertices with no nets)

Objective: Assign vertices to sites such that the sum
over all nets of weighted HPWL is minimized:

min
x(v),y(v) ∀v∈V

{
∑

net∈E

weight(net)×HPWL(net)} (1)

where HPWL is defined as:

HPWL
of net

= max
v∈net

x(v)− min
v∈net

x(v) + max
v∈net

y(v)− min
v∈net

y(v)

(2)
where x(v), y(v) are coordinates of the pin on vertex v con-
necting to the corresponding net. We can also have indepen-
dent x and y weights for HPWL of each net. In that case,
the objective becomes:

min
x(v),y(v) ∀v∈V

{
∑

net∈E

weightedHPWL(net)} (3)

where weightedHPWL is:

weightedHPWL
of net

= x weight× {max
v∈net

x(v)− min
v∈net

x(v)}

+ y weight× {max
v∈net

y(v)− min
v∈net

y(v)}
(4)

3. DYNAMIC PROGRAMMING IN ONE DI-
MENSION

For cells in either a row or a column, we partition the set
of vertices (cells to be placed in the row or column) into
k sets S1, S2, S3, . . . , Sk with N1, N2, N3, . . . , Nk vertices re-
spectively. Note that N1 + N2 + N3 + · · · + Nk = N , and
the relative order among the vertices in each set must be
preserved. Only interleaving among sets is allowed. For ex-
ample, Figure 4 shows 3 partitions in 3 different colors, and
the rearrangement of the cells in the same row maintains the
relative order of cells within each partition (color).

Figure 5: Computing cost[3][2][2] in the DP ma-
trix - it depends on cost[2][2][2], cost[3][1][2] and
cost[3][2][1]. Here, k=3 and N=12

3.1 Subproblem definition
We extend the formulation used in [10] from two parti-

tions to k partitions. We define a k-dimensional martix
cost[][] . . . []. Each dimension in the matrix corresponds to
a partition and is of size Ni + 1, where the partition con-
tains Ni elements. Thus the cost of placing the first i1 cells
from S1, the first i2 cells from S2, the first i3 cells from S3,
. . . , the first ik cells from Sk is represented in the entry of
the matrix indexed as cost[i1][i2][i3] . . . [ik]. This cost repre-
sents the best solution for this subproblem that essentially
occupies the first m = i1 + i2 + i3 + · · · + ik sites. As the
cost matrix gets incrementally computed during dynamic
programming, we can conclude that the final minimum cost
will be indexed as cost[N1][N2]...[Nk].

The entries of the cost matrix are computed as follows:

cost[0][0]...[0] = 0;

cost[i1][i2]...[ik] =min{
cost[i1 − 1][i2] . . . [ik] + cost of S1[i1]

at end

cost[i1][i2 − 1] . . . [ik] + cost of S2[i2]
at end

.

.

.

cost[i1][i2] . . . [ik − 1] + cost of Sk[ik]
at end

}
(5)

We illustrate this cost computation using an example.
Consider a row of 12 cells with three partitions as shown in
Figure 5. When computing the minimum cost for the sub-
problem indexed as cost[3][2][2], we consider three cases: (i)
The optimal cost of the subproblem cost[2][2][2] + the cost
pf placing S1[3] at the end (ii) The optimal cost of the sub-
problem cost[3][1][2] + the cost of placing S2[2] at the end
(iii) The optimal cost of the subproblem cost[3][2][1] + the
cost of placing S3[2] at the end. The minimum cost among
all these three cases becomes cost[3][2[2]. It is worth noting
that the costs are additive, and the cost of a subproblem
depends on the pre-computed costs of smaller adjacent sub-
problems. If a site cannot be occupied because it is occupied
by a cell whose placement is fixed, or the site is dedicated to
special cells like RAMs, DSPs, etc. we set the cost of placing
one of our cells in such a site as infinity. This ensures that
such illegal solutions are never considered.

Lemma 1: This recurrence relation yields the optimal
result satisfying the constraints of preserving relative order
of vertices within each set. (Note that this is not the global
optimum in general)

Proof: When N = 1, we trivially obtain the optimal
solution. When computing the solution for N = 2, we use
the optimal solution from the N = 1 subproblem and add
the minimum cost of placing the next cell at the second site
location. Our costs are strictly additive, since we compute
the HPWL costs only for the pins of the affected nets that
are considered in any subproblem. As more pins of a net
are considered in future solutions, the HPWL cost for the
net may only monotonically increase. This ensures that the
solution with N = 2 is optimal. Through induction, we
can conclude that optimal solutions are computed for N =
3, N = 4, etc. That is, for any N , the placement solution

computed is optimal. 4
It can also be inferred that the optimal arrangement of

the first s sites is independent of the arrangements of the
next N − s sites for any s ≤ N . However, the placement of
a cell on the q-th site depends on the placements of all cells
in sites < q.

Figure 6: Sections of nets included in partial cost

Figure 7: Filling the DP matrix hyperplane-by-
hyperplane in 2 and 3 dimensions; Each color rep-
resents a hyperplane

3.2 DP cost matrix computation
The cost matrix in the above DP formulation is a k-

dimensional matrix, with sizes N1 + 1, N2 + 1, . . . , Nk + 1
in the corresponding dimensions. Each entry in the matrix
stores the minimum cost for the corresponding subproblem
and some other details (omitted due to page limit) for trac-
ing the optimal arrangement. This matrix can be visualized
as a k-dimensional hypercube. Each entry in the hypercube
is computed from the k entries adjacent to it in the lower
dimensions. For example, in the 2-dimensional(square) ma-
trix of Figure 7, the dark grey entry depends on the two
light grey entries. In the 3-dimensional matrix (cube), the
brown entry depends on the three yellow entries.

There are two different ways of filling the cost matrix:

1. Dimension-wise: Order the dimensions. Start filling
from the lowest dimension. When it is full, move to
the next dimension. This is like filling a square matrix
row by row. For a cube, it is like filling plane by plane.
Each plane(square matrix) is filled row by row.

2. Hyperplane-wise: We can imagine a set of k−1 dimen-
sional hyperplanes cutting through the k dimensional
hypercube. For a 2 dimensional case, hyperplanes are
lines of the form x+y = constant. For 3D, hyperplanes
are planes of the form x + y + z = constant. We can
generalize for kD as x1 + x2 + · · · + xk = constant.
Varying this constant from 0 to N touches upon all
the points in the hypercube. For each hyperplane,
the entries in the cost matrix can be computed using
the cost matrix entries computed earlier for an adja-
cent hyperplane. For example in Figure 7, the entries
for the purple hyperplane can be computed using the
pre-computed entries for the blue hyperplane above
it. This makes the computation of all entries in a hy-
perplane independent of each other, thereby enabling
parallelization.

Figure 8: Various components in the HPWL cost:
extending, starting, ending and continuing.

3.3 Keeping track of nets
For computing the cost while placing a vertex v at the ith

site, we encounter 3 types of nets:

1. Nets which start at v (i.e, no vertex of the net has been
considered yet)

2. Nets which end at v (i.e, remaining vertices for the net
have already been considered)

3. Continuing nets. These may or may not be connected
to v.

Finding which nets start at v is easy. For each net, we know
the vertices connected to it and their position in their re-
spective sets. From the subproblem index (i1, i2, . . . , ik), we
check if the lowest index of any vertex connected to the net
is greater than the i′s (i1, i2, . . . , ik) for the corresponding
set. Similarly, we can find the nets ending at v. For con-
tinuing nets, we just store the sum of the weights of the
continuing nets. While calculating the cost of placing v at
site i1 + i2 + · · · + ik − 1, we first extend the nets from
the previous site to the current site (take the distance be-
tween the sites and multiply by sum of weights of continuing
nets). Next, we add the costs for the starting and ending
nets (nets may start/end at different points within the unit
square). We also add the cost of the continuing nets (nets
which started before and did not end at v).

4. COMPLEXITY ANALYSIS

4.1 General case
The k-dimensional cost matrix has (N1 + 1)× (N2 + 1)×
· · · × (Nk + 1) entries. This is (N

k
+ 1)k if the set sizes are

roughly equal (This is an upper bound; this number will be
lower if set sizes are unequal). For filling each entry, we
look at the k entries in the dimensions immediately below.
So, the complexity is lower bounded by k.(N

k
+ 1)k. Next,

consider cost computation. For each of the k choices we
consider for filling an entry, we have to compute net costs.
For this we have to go through all the nets connected to the
vertices being placed. This can be bounded by a constant.
For determining which nets start/end at v, one might think
that the time complexity is k, but is is very unlikely that all
nets will be connected to vertices in k different sets for large
k. If we take the sum over all matrix entries, this would lead
to Θ(p.k.(N

k
+1)k) operations, where p is the avg. number of

pins per net, which can be practically bounded by a constant
for realistic benchmarks. (This can be further reduced to
min(p, k).k.(N

k
+1)k operations. We omit the details due to

page limit.)

4.2 Exact solution
Lemma 2: If we set k = N , we will have the optimal

solution. We already know that our algorithm gives optimal

solution within our setting. We need to show that the setting
allows exploration of the full solution space.

Proof: We will proceed by induction. For N = 1, it
is trivial as we have only one choice in placing one vertex.
Induction assumption: suppose our algorithm can arrange
M vertices optimally. For a problem of size M + 1, the last
site can take any of the M + 1 vertices. For each choice of
the last site, the previous M must be arranged optimally.
Our algorithm does so by the induction assumption. Since
we take the optimum among all the possible M + 1 choices,
our algorithm gives the optimal solution for M + 1 vertices.
4

The complexity for the exact solution is Θ(p.N.(N
N

+1)N) =

Θ(p.N.2N). One may think that this problem requires check-
ing all the N ! possible enumerations(Θ(p.N !)), but it’s actu-
ally not so. To see why, let’s consider a simple case - 6 ver-
tices 1, 2, 3, 4, 5, 6. Suppose we already found that 3, 1, 2 is
the best arrangement for vertices 1, 2, 3 when they are placed
in the first half. Knowing this, we don’t have to consider per-
mutations 1, 2, 3,−,−,− , 2, 1, 3,−,−,− at all (Since the
cost is additive; total cost = cost for 1st half + cost of 2nd

half; the 2 halves can be optimized independently). It is
worthwhile noting that N.2N is orders of magnitude less
than N ! for even moderately large N . N ! is ∼ (N/e)N . For
an idea of the magnitudes: 20.220 = 20971520 whereas 20!
= 2432902008176640000.

5. DP IN TWO DIMENSIONS
Interleaving within a single row/column has its own lim-

itations - it can get stuck in a local minima due to bad
ordering of cells (LABs/DSPs/RAMs/IOs etc.) in adjacent
rows/columns as was shown with example in Figure 1. It
is therefore necessary to optimize locations of cells in 2-
dimensions all at once.

Extending our 1-dimensional DP formulation to 2 dimen-
sions is non-trivial because the costs in the 2 dimensions are
not additive. When placing a cell at a particular site, the
cost of placing it cannot be directly added to the optimal
solution for all cells below it, as some of the unfinished nets
in the optimal solution of the subproblem may have differ-
ent range of x or y coordinates. We introduce additional
constraints to make 2-dimensional DP formulation feasible:

1. cells in the same row will stay together

2. cells in the same column will stay together

Figure 9: 2D DP: cells in the same row stay in one
row, cells in the same column stay in one column.

For simplicity, we show a problem formulation with just 2
partitions for rows (Sr1,Sr2) and 2 partitions for columns
(Sc1,Sc2). This easily generalizes for multiple partitions.

Figure 10: 2D DP as applied on a window; In this
example, the cells in the white region are assumed
to be stationary. Instead of moving a whole row or
column, we move parts of rows or columns.

Figure 11: Selecting columns for 2D DP: We reject
columns where macros don’t fit in the window

cost[i][j][k][l] = min cost considering i rows from Sr1, j
rows from Sr2, k columns from Sc1 and l columns from Sc2:

cost[i][j][k][l] =min{
cost[i− 1][j][k − 1][l] + (Sr1[i], Sc1[k])

at ends

cost[i− 1][j][k][l − 1] + (Sr1[i], Sc2[l])
at ends

cost[i][j − 1][k − 1][l] + (Sr2[j], Sc1[k])
at ends

cost[i][j − 1][k][l − 1] + (Sr2[j], Sc2[l])
at ends

}

(6)

We start from (i, j, k, l) = (0, 0, 0, 0) and go till (|Sr1|, |Sr2|,
|Sc1|,|Sc2|). We can simplify our formulation with the fol-
lowing lemma:

Lemma 3: Cost of placing (Srm, Scn) and the ends =
cost of placing Srm at row end + cost of placing Scn at
column end.

Proof: HPWL of a net = horizontal span + vertical span.
Since all cells in the same column stay together, the y com-
ponents of HPWLs of all nets incident on that column will be
invariant w.r.t column movement (does not change vertical
span), only row movement will affect them. Similarly, since
all cells in the same row stay together, the x components
of HPWLs of all nets incident on that row will be invariant
w.r.t row movement (does not change horizontal span), only
column movement will affect them. 4

Figure 9 illustrates the main idea. Cells 1, 7 and 13 are
initially in the same column, and they stay together in one
column, even if they move to different rows. Similarly, cells
1, 2 and 3 stay together in one row, even if they move apart
in columns. Observe that we need not move all the cells
in the grid. Figure 10 illustrates the procedure in a small
window. Here, we move sections of rows/columns instead of
entire rows/columns. Observe that the x and y components

of HPWL are now independent, so interleaving of rows and
columns can be done in parallel. Another advantage of our
2-dimensional formulation is that it allows macros to move as
demonstrated in Figure 11. For a fixed window, some macros
may be protruding out and those columns are discarded from
the current optimization problem. Those macros will be
included when the window slides up/down.

6. PARALLELIZATION AND DP SCHEMES

Figure 12: Parallel DP in rows: different shades are
different threads

Figure 13: Parallel DP in columns: different shades
are different threads

Figure 14: Parallel 2D DP in windows: different
shades are different threads

The main workload of our 1D DP algorithm is computing
the entries in the cost matrix. If we compute the matrix en-
tries hyperplane-by-hyperplane, we can parallelize the steps
within each hyperplane (figure 15) as the entries in a hy-
perplane only depend on the entries already computed for
an adjacent hyperplane. Figures 12-15, illustrate how we
can parallelize our cost computation for multi-dimensional
problems.

In our window-based scheme, non overlapping windows in
a row are processed in different threads, as shown in fig-
ures 12, 13 and 14 with one color representing one thread.
One possible problem with passing different rows/columns
to different threads is stale data hazard(Figure 16), which
can lead to non-determinism. To address this issue, location
data is cached and updated only when all threads have fin-
ished their jobs. To minimize inaccuracy with cached data,
rows and columns are chosen far apart so that chances of
having a net between the chosen rows is negligible. We have

Figure 15: Parallelization: (hyper)plane divided
among 3 threads

Figure 16: Hazard in parallel implementation:
Movement of the grey cell affects movement of the
brown cell and vice versa

experimentally observed that this works well and the degra-
dation in wirelength as a result is insignificant.

For ensuring that pairs of cells get sufficient opportunity
to interchange their positions. We can vary the partitions
from coarse to fine (figure 17).

Figure 17: Fine, coarse and intermediate partitions

7. RESULTS
We tested our algorithm on an industrial benchmark set

and also on the ISPD 2016 FPGA Placement Contest bench-
marks.

7.1 Results for industrial benchmarks

Table 1: Benchmark set details
Design size # LABs, RAMs and DSPs
Minimum 4156
Maximum 40889
Average 14850

Number of designs 86

The industrial benchmark set details are given in Table 1.
We used the output of an industrial strength global placer
and legalizer as starting point for all experiments in this
subsection. For 2D, we present the results for column sec-
tion interleaving. We update timing weights after every four
iterations. In all the data presented in this subsection, we re-
port the geometric average across all benchmarks that have
high statistical confidence. For our experiments, we have 3
parameters: N (window length), k (number of partitions)

and I (number of iterations). One iteration consists of one
pass each of row DP, column DP and 2D DP.

We compare our results with an implementation of the
row-based DP algorithm in [10], with window size of 25 and
16 iterations. Each DP iteration for this implementation
has 3 rounds of row optimization to be comparable in terms
of number of moves attempted. On the average, our al-
gorithm improves wirelength by 3.46%, and the maximum
clock frequency (Fmax) by 0.45%. We observe that the par-
allel runtime of our algorithm is 5.66x lower than the serial
runtime of [10].

Table 2: Comparison with [10]
Parameters ∆Wirelength(%) ∆Fmax(%)

[10], N=25, I=16 -1.11 1.14
ours, N=25, k=3, I=16 -1.97 1.39

row DP only
ours, N=25, k=3, I=16 -4.57 1.59
row + column + 2D DP

We run separate experiments by varying N, k and I in-
dividually to see their effect on wirelength and Fmax. The
results are shown in Tables 3, 4 and 5.

Table 3: Effect of changing window length for k=3
and I=16

Parameter ∆Wirelength(%) ∆Fmax(%)
N=10 -4.04 1.48
N=25 -4.57 1.59
N=50 -4.98 2.24
N=100 -5.11 1.89

From Table 3, we see that increasing window length yields
better improvement in wire and Fmax on average. A longer
window allows larger cell displacement. Since we use tnets
and weights on nets, it is important that they actually cor-
relate with the net criticality in order to model timing cor-
rectly. If we move a cell too far in one step, some other
nets may become critical. This can explain the slight dip in
Fmax improvement for N=100.

Table 4: Effect of changing number of partitions for
N=25 and I=16

Parameter ∆Wirelength(%) ∆Fmax(%)
k=3 -4.57 1.59
k=5 -4.93 1.28
k=7 -5.02 0.71

Table 4 shows an interesting result. Increasing number of
partitions improves wire but decreases Fmax improvement.
Wire improvement is related to cell displacement, and big-
ger k allows more displacement (less number of relative or-
der constraints). However, large displacement steps are not
good for Fmax, for the same reason as stated before.

Table 5: Effect of changing number of iterations for
N=25 and k=16

Parameter ∆Wirelength(%) ∆Fmax(%)
I=10 -4.38 0.98
I=16 -4.57 1.59
I=25 -4.70 2.28
I=40 -4.81 3.23

Table 5 shows that iterating more with same N and k
consistently improves both wire and Fmax. From these ex-
periments, we learn that making many small moves is better
than making a few abrupt moves for increasing Fmax. In
general, running more iterations also allows our algorithm
to work with more accurate timing information since the
timing weights are updated after every four iterations.

Table 6 shows the runtime improvement our algorithm
gets by parallelizing. Experiments were run on 2.7 GHz, In-
tel Xeon 2680, 16 core machines with 16 threads. Runtime
vs. design size is shown in Figure 18. Sorted %Fmax and
%wirelength changes are shown in Figures 19 and 20. As we
discussed before, our linear timing cost with tnets and net
weights may not be accurate for very large displacements.
However, we can always cache the initial placement and dis-
card our changes if Fmax degrades. By doing this for N=25,
k=3 and I=16, we get 2.51% better Fmax and 3.60% better
wirelength over our starting point (legalized global place-
ment). Running more iterations will in general cost more
runtime, but can improve wirelength and Fmax as shown in
Table 5.

Table 6: Runtimes
Experiment (N,k,I) Runtime(s)

1 Serial (25,3,16) 113.12
2 Parallel(16 threads) (25,3,16) 14.28

Parallel speedup = 7.92
3 [10] serial (25,-,16) 80.89

7.2 Results for ISPD 2016 Routability-driven
FPGA Placement Contest benchmarks

The challenge in this contest [15] was to minimize total
routed wirelength for hard-to-route designs. We incorpo-
rated congestion-awareness in our DP by not moving empty
spaces out of congested regions. We used a bin-level global
router to estimate routing congestion and implemented 1D
dynamic programming (both row and column) in this frame-
work. We streamlined our implementation for k=3 and
hence were able to set N as high as 168. We used the pack-
ing, global placement and legalization flow of the 1st place
team in the contest. We compare our DP with the indepen-
dent set matching based detailed placement algorithm [14]
which the 1st place team used. Even with just 3 partitions
in 1D DP, we are able to obtain 2.1% better wirelength over
independent set matching. The comparison is shown in Ta-
ble 7. We run 3 passes of row DP and 3 passes of column
DP in total. The runtime of our algorithm is slightly faster
than the algorithm used by the 1st place team.

8. CONCLUSION
We proposed a dynamic programming based FPGA de-

tailed placement algorithm with two key enhancements, of
which one is using tunable number of partitions and the
other is applying DP to a rectangular grid. We also pro-
posed parallelization schemes related to our algorithm. Ex-
perimental results on industrial-scale benchmarks demon-
strate that our algorithm achieves good improvements in
wirelength and Fmax, with minimal runtime overhead, when
compared to existing DP approaches and the output of in-
dustrial strength global placement and legalization engines.

9. REFERENCES

Table 7: % Wirelength change on ISPD benchmarks
Benchmark Independent Ours

set matching
FPGA01 -2.07 -3.99
FPGA02 -1.79 -3.93
FPGA03 -1.01 -2.89
FPGA04 -1.10 -3.23
FPGA05 -0.98 -4.62
FPGA06 -1.39 -3.43
FPGA07 -1.36 -3.12
FPGA08 -1.12 -2.37
FPGA09 -0.52 -2.93
FPGA10 -2.00 -3.67
FPGA11 -1.13 -3.16
FPGA12 -1.60 -3.88
Average -1.34 -3.44

Figure 18: Serial(light blue) and parallel(dark blue)
runtimes(in seconds) vs design size; #CBEs =
#LABs + #DSPs + #RAMs

Figure 19: % Wire change (sorted from smallest to
largest) for all designs

Figure 20: % Fmax change (sorted from smallest to
largest) for all designs

[1] Shuai Li, Cheng-Kok Koh, “Mixed integer
programming models for detailed placement”,
Proceedings of the International Symposium on
Physical Design, 2012

[2] Shuai Li, Cheng-Kok Koh, “MIP-based detailed placer
for mixed-size circuits”, Proceedings of the
International Symposium on Physical Design, 2014

[3] V. Betz and J. Rose, “VPR: A new Packing,
Placement and Routing Tool for FPGA Research”,
Proceedings of the 7th Int. Workshop on
Field-Programmable Logic and Applications, 1997

[4] Ednaldo Mariano Vasconcelos de Lima, Dr. Antonio
Carlos Cavalcanti and Dr. Lucidio dos Anjos Formiga
Cabral, “A New Approach to VPR Tool’s FPGA
Placement”, World Congress on Engineering and
Computer Science, 2007

[5] Min Pan, Natarajan Viswanathan and Chris Chu, “An
efficient and effective detailed placement algorithm”,
IEEE/ACM International Conference on
Computer-Aided Design, 2005

[6] H. Bian, A.C. Ling, A. Choong, J. Zhu, “Towards
scalable placement for FPGAs”, Proceedings of the
18th annual ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, 2010

[7] Konrad Doll, Frank M. Johannes, and Kurt J.
Antreich, “Iterative placement improvement by
network flow methods”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems (Volume:13 , Issue: 10), 1994, pp 1189-1200

[8] Myung-Chul Kim, Jin Hu, Dong-Jin Lee and Igor L.
Markov, “A SimPLR Method for Routability-driven
Placement”, Proceedings of the International
Conference on Computer-Aided Design, 2011

[9] Ken Eguro, Scott Hauck and Akshay Sharma,
“Architecture-Adaptive Range Limit Windowing for
Simulated Annealing FPGA Placement”, Proceedings
of the 42nd annual Design Automation Conference,
2005

[10] Sung-Woo Hur and John Lillis, “Mongrel: Hybrid

Techniques for Standard Cell PlacementâĂİ,
Proceedings of the International Conference on
Computer-Aided Design, 2000.

[11] Devang Jariwala, John Lillis, “On Interactions
Between Routing and Detailed Placement”,
Proceedings of the International Conference on
Computer-Aided Design, 2004

[12] A. E. Caldwell, A. B. Kahng and I. L. Markov,
“Optimal End-Case Partitioners and Placers for
Standard-Cell Layout”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems (Volume:19, No. 11), November 2000

[13] David Z. Pan, Bill Halpin and Haoxing Ren, “Timing
Driven Placement”, Chapter 21, Handbook of
Algorithms for Physical Design Automation, 2008

[14] T.C. Chen, Z.W. Jiang, T.C. Hsu, H.C. Chen and
Y.W. Chang, “Ntuplace3: An analytical placer for
large-scale mixed-size designs with preplaced blocks and
density constraintsâĂİ, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 7, pp. 1228âĂŞ1240, 2008.

[15] http://www.ispd.cc/contests/16/

