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ABSTRACT
Dummy fill insertion is widely applied to significantly im-
prove the planarity of topographic patterns for chemical me-
chanical polishing process in VLSI manufacture. However,
these dummies will lead to additional parasitic capacitance
and deteriorate the circuit performance. The main chal-
lenge of dummy filling algorithms is how to balance multi-
ple objectives, such as fill amount, density variation, par-
asitic capacitance, etc. which is the aim of ICCAD 2014
DFM contest. Traditional dummy fill insertion methods are
no longer applicable because they generate large amount of
fills or take unaffordable time. In this paper, we propose a
unified dummy fill insertion optimization framework based
on multi-starting points and sequential quadratic program-
ming optimization solver, where all objectives are consid-
ered simultaneously without approximation. Selecting the
initial points smartly with prior knowledge, the proposed
method can be effectively accelerated. Even without any
prior knowledge, it can also reach high fill quality by random
initial points with high scalability. The proposed algorithm
is verified by ICCAD 2014 DFM contest benchmark, which
shows better quality of dummy filling over the state-of-the-
art algorithms.

CCS Concepts
•Hardware→Physical design (EDA); Design for man-
ufacturability;

Keywords
Dummy Fill Insertion; Sequential Quadratic Programming
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1. INTRODUCTION
Chemical Mechanical Polishing (CMP) is widely applied

to layout planarization in integrated circuit fabrication. The
quality of post-CMP topography strongly depends on pat-
tern features of layout, especially the pattern density uni-
formity [9]. Dummy fill insertion is generally processed to
improve layout pattern density uniformity for CMP, where
those logically non-functional patterns, dummy fills, are in-
serted in the sparse regions of layout. However, dummy fill
insertion could induce additional parasitic capacitance and
deteriorate the circuit performance [11]. Planarizing layout
and avoiding performance degradation should be balanced
and optimized by adjusting the amount, location and even
shape of dummy fills.

Since a calibrated full chip CMP simulator is complicated
and expensive, most research works of dummy fill insertion
are based on prior knowledge of CMP process. And it is
formulated as an optimization problem, where those expe-
riences are formulated as optimal objectives or constraints.
Traditionally, only pattern density variation and dummy fill
amount are taken into consideration during problem formu-
lation, so dummy fill insertion problem is generally formed
as linear programming (LP) problem [8, 15]. Although an
optimal solution can be sought under such formulation, these
methods suffer from long runtime, especially when the cir-
cuit scale is getting larger and the necessary window size
turns smaller [9].

Heuristic methods based on Monte Carlo (MC) are thus
proposed to enhance the efficiency of algorithm [3, 4, 18].
The solutions are iteratively approached by filling predeter-
mined amount of dummies in selected tile in each iteration.
However, these methods either cannot ensure the satisfac-
tion of performance constrains or still demand unaffordable
runtime. The determination of fill quantity in each iteration
has no clear guidance to follow as well. Meanwhile, a cover-
ing linear programming (CLP) formulation was proposed in
[5, 6], which can effectively and efficiently balance planarity
and fill amount, but the overlay is not considered carefully.

Moreover, Kahng et al. pointed out that overlay area is an
important indicator of performance degradation other than
fill amount [10], so it should be considered during problem
formulation of dummy filling. Since the overlay is deter-



mined by all locations of fill, the new problem is formulated
as integer linear programming (ILP), while both LP and
MC methods are not directly applicable. Chen et al. [2]
proposed the first ILP-based algorithm for dummy fill in-
sertion and Xiang et al. [19] proposed an improved one to
simultaneously optimize layout planarity and control overlay
area.

To motivate the development of dummy fill insertion algo-
rithm, ICCAD 2014 launched a DFM contest for dummy fill
insertion algorithm based on a set of industrial benchmark
suites [17]. This new benchmark uses multiple objectives to
formulate the quality of dummy fills, including fill amount,
overlay, density variation, line deviation and outliers, and
the quality of method, including runtime and memory cost.
Several methods have been proposed based on this bench-
mark. Liu et al. proposed a LP-based algorithm [13] and ef-
fectively produce solutions considering layout planarity and
fill amount. However, overlay is ignored in its optimization
process. Meanwhile, Lin et al. proposed an improved ILP-
based algorithm [12] taking all the objectives into account,
which shows great improvements over the top teams on IC-
CAD 2014 DFM contest. However, in [12] the non-linear
factors in ICCAD 2014 DFM contest benchmark are sim-
plified into the linear formulation, which makes it possibly
suboptimal for the benchmark.

Additionally, rule-based approaches for dummy fill inser-
tion have an intrinsic drawback that the rules can hardly de-
scribe the complex behaviours of the full chip CMP. There-
fore, the results of the rule-based methods, even based on
ICCAD 2014 DFM contest benchmark, remains dubious. In-
stead, model-based methods [14] utilize CMP simulator to
completely calculate post-CMP topography and thus can
avoid the incompleteness of rules for generating better so-
lution to dummy fill insertion. Unfortunately, only few re-
searches are performed on model-based methods, and the
efficiency of model-based algorithms should be enhanced.

In this paper, we develop a novel unified dummy fill in-
sertion framework based on Sequential Quadratic Program-
ming (SQP) with multi-starting point technique (MSP), where
both rule and model-based methods can be applied. Our
main contributions can be summarized as follows.

1. This paper proposes a novel unified dummy fill inser-
tion framework, which formulates optimization objec-
tives without simplification and approximation. There-
fore, this framework is also extended to model-based
method, or situations where the objectives are hard to
simplify.

2. In order to avoid the trap of local optimal solution
caused by complex objectives, SQP method [1] is ap-
plied togeter with MSP to obtain the optimized so-
lution. The closed forms of objective function, gra-
dient vector and Hessian Matrix of objective function
are derived, which accelerates the SQP optimization
tremendously.

3. This paper proposes an overlay estimation algorithm,
which can accurately estimate the reachable minimal
overlay before fill insertion. Meanwhile, a prior knowl-
edge based starting point generation is proposed to
improve both fill quality and efficiency.

4. The experimental results show significant improvement
in the quality of fill solution over the results of existing

methods on ICCAD 2014 DFM contest benchmarks
[17].

The rest part of this paper is organized as follows: Section
2 presents the details of ICCAD 2014 DFM contest bench-
mark and general problem formulation; Section 3 shows de-
tails of our dummy fill insertion framework; Section 4 gives
the experimental results and Section 5 concludes this work.

2. BENCHMARK
In this paper, ICCAD 2014 DFM contest benchmark is

used for evaluating the quality of dummy filling algorithm.
The benchmark requires four aspects of objectives, includ-
ing layout planarity, performance degradation, file size and
computer resource cost.

Pattern
Slack
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M columns
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Figure 1: Example of Layout Grid and Window

In ICCAD 2014 DFM contest benchmark, a chip layout is
divided into N ×M square windows of given size for density
calculation, as shown in Fig. 1(a), where Wl,i,j denotes the
window at row i and column j of layer l, the density ρl,i,j
of Wl,i,j is the ratio of total pattern area to window area,
and the slack area sl,i,j is the total area of blank regions for
dummy filling in window Wl,i,j as shown in Fig. 1(b), where
the narrow blank space surrounding patterns is left for DRC
rules.

Three objectives are calculated to evaluate the layout pla-
narity, including density variation σ, line deviation σ∗ and
outliers ol. In detail, σ represents the standard deviation
of window densities, σ∗ represents the summation of density
variation per window from column average and ol represents
the summation of density variation per window beyond 3σ
corner. These objectives are repeatedly computed for each
layer and the results are added up. For each layer, they are
calculated as

σl =

√√√√ 1

N ×M

N∑
i=1

M∑
j=1

(ρl,i,j − ρ̄l)2 (1a)

σ∗
l =

N∑
i=1

M∑
j=1

|ρl,i,j − ρ̄l,j | (1b)

oll =

N∑
i=1

M∑
j=1

max(0, ρl,i,j − 3 · σl) (1c)

where ρ̄l and ρ̄l,j refer to the average window density of



layer l and of column j in layer l respectively, i.e.

ρ̄l =
1

M
·
M∑
j=1

ρ̄l,j , ρ̄l,j =
1

N
·
N∑
i=1

ρl,i,j (2)

Parasitic capacitance is another major concern during dummy
fill insertion. [10] and [16] point out that overlay area and
total fill amount during dummy fill insertion are two major
factors relevant to performance degradation of post-CMP
circuit. In the benchmark, the total overlay area ov is the
summation of all overlay in adjacent layers, and total fill
amounts fa are used to evaluate performance degradation.
They are defined as

ov =

L−1∑
l=1

N∑
i=1

M∑
j=1

(ovd−dl,i,j + ovd−ll,i,j+ov
l−d
l,i,j) (3a)

fa =

L∑
l=1

N∑
i=1

M∑
j=1

xl,i,j (3b)

where ovd−dl,i,j refers to overlay between dummies in win-

dow Wl,i,j of the l-th layer and in Wl+1,i,j of the (l + 1)-th
layer, where the supperscript d−d means dummy-to-dummy.
In the same manner, ovd−ll,i,j and ovl−dl,i,j refers to dummy-
to-layout and layout-to-dummy overlay between Wl,i,j and
Wl+1,i,j , respectively. xl,i,j refers to the fill amount in win-
dow Wl,i,j , and L is the total layer number of a chip layout.

Furthermore, the inputs of benchmark are a layout with
blackboxs for hiding signal wires, and densities of each win-
dow. The objective of the benchmark is to maximize Obj
as

Obj = Quality + Comp (4a)

Quality = fpd(ov + fa) + fσ(σ)

+ fσ∗(σ∗) + fol(ol) + ffs(fs)
(4b)

Comp = ft(t) + fmem(mem) (4c)

where the fill quality Quality includes scores of overlay and
fill amount fpd, layout planarity fσ, fσ∗ , fol, and file size
of output layout ffs. The computing cost Comp of algo-
rithm includes the scores of run time ft and memory fmem.
The weighted score function is defined in [17] with the form
fX(x) = αX ·max(0, 1 − x

βX
), where αX and βX are given

benchmark-based weighted coefficients, and X can be pd, σ,
σ∗, ol, fs, t and mem. Additionally, since file size is hard
to formulated, it is not optimized in this paper.

3. FRAMEWORK OF DUMMY FILL INSER-
TION

The framework of the proposed dummy fill insertion algo-
rithm is shown in Fig. 2, which mainly includes three phases:
density analysis, dummy fill synthesis and dummy fill inser-
tion. In density analysis phase, window densities ρl,i,j and
slacks sl,i,j are calculated in each window as shown in Fig.
1(b). In dummy fill synthesis, the problem is firstly formu-
lated into an optimization problem without approximation
and simplification. Then in order to solve this optimization
problem, multiple starting points are generated and they
are optimized by sequential quadratic programming method
[1] to obtain better Quality defined in (4b). Since SQP is
designed for non-linear optimization, this framework should
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Figure 2: Framework of Dummy Filling Algorithm

be available even if the objective is modified or model-based
dummy filling method is applied. Finally, the locations of
all dummies are determined in dummy fill insertion phase,
where the overlay and number of fills are balanced to de-
crease file size, and stored in a GDS file.

3.1 Dummy Fill Synthesis
In this section, a SQP-based dummy fill synthesis method

is proposed, where window density ρl,i,j and slacks sl,i,j are
used as inputs to determine the fill amount xl,i,j of each
window with maximal Quality. Since the objective of opti-
mization becomes more complicated, a linear approximation
formulation can likely lead to a suboptimal solution. SQP
method [1], known as one of the most popular algorithm for
non-linear optimization, is applied directly in our framework
for fill amount optimization. With SQP and error-free for-
mulation of the original problem, perhaps, a better solution
for dummy fill insertion can possibly be obtained.

We use the same objective proposed in ICCAD 2014 DFM
contest benchmark as defined in (4b) and the problem can
thus be formulated as

min
xl,i,j

[g(x) = gpd(ov + fa) + gσ(σ) + gσ∗(σ∗) + gol(ol)]

(5a)

s.t. xl,i,j ∈ [0, sl,i,j ] (5b)

gX(x) =
αX
βX
· x (5c)

where x refers to the vector of fill amount xl,i,j , and gX(x) is
reformed from of fX(x) defined in (4b). Therefore, Quality
can reach its maximum as long as (5a) has its minimal value.
The key point of this formulation is without any approxima-
tion and simplification compared with (4b).

Since there exist inequality constrains in (5), we use La-
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Figure 3: Framework of MSP-SQP Algorithm

grangian function to merge these constrains into objective
function, which is a general process of SQP for optimization
with constrains[1]. The objective with merged constrains
becomes

min
xl,i,j

L(x,v1,v2) = g(x) + vT
1 · (x− s) + vT

2 · (−x) (6)

where s refers to the vector of slack sl,i,j ; v1 and v2 refer to
vectors of Lagrangian multipliers for constrain merging and
they are iteratively calculated during SQP optimization.

After all inequality constrains are added to the original
objective function, the optimized solution can possibly be
found in the points where gradient of objective function is
zero.

Moreover, since SQP algorithm can be trapped during the
optimization by local optimal point, MSP technique is ap-
plied. Although SQP suffers from its extremely high runtime
due to Hessian-matrix-related calculation, we can easily per-
form the parallel algorithm. The parallel performance of the
algorithm is shown in Section 4.

Fig. 3 shows the basic flow of the MSP-SQP algorithm.
The simplest strategy of generating starting points is by
random methods, i.e. all initial xl,i,j are randomly and
uniformly sampled in range [0, sl,i,j ]. From these starting
points, the SQP optimization algorithm is followed, and fi-

nally select the best results as the output.
The standard SQP algorithm usually includes steps of it-

eratively evaluating objective function, calculating gradient
and Hessian matrix, determining iterative direction and step
size, and improving the results.

However, there is a big obstacle in this flow, in that all
objective function can be easily evaluated, except the over-
lay area, i.e. gpd(ov) in (5a). The exact overlay area can
be obtained only after the locations of all dummies are de-
termined, which is performed in the final dummy insertion
phase. If we have to perform dummy fill insertion in each
iteration of SQP to determine locations of dummies and eval-
uate the overlay area, it will extremely obstruct algorithm
efficiency. Fortunately, an accurate and efficient overlay area
estimation method is proposed, which does not need the lo-
cations of dummies, and will be described in detail in Section
3.2.

Furthermore, the CMP simulator can be introduced in this
framework during optimization process. Generally speak-
ing, model-based approach can provide better solution for
dummy fill insertion than rule-based one, and a model-based
method based on our framework can possibly improve it fur-
ther.

3.2 Overlay Area Estimation
Overlay area remains unknown until the locations of all

dummy fills are determined. However, before dummy inser-
tion, there are two methods to minimize the overlay area.
One is slightly decreasing the fill amount, and the other is
planning the places of dummies into different locations. The
key idea of the latter is trying to divide the slack regions
carefully into different types as shown in Fig. 4.

According to the signal wire locations in neighbouring
layer, the slack regions of layer l can be divided into four
types. Slack Type1 region in layer l refers to no signal wires
in the same region in layer l+1 and l−1, slack Type2 refers
to signal wires appearing only in layer l+ 1, Type3 refers to
signal wires appearing only in layer l − 1, and Type4 refers
to signal wires appearing in both layers.

Then in each window Wl,i,j , the unknown fill amount
xl,i,j also need to be divided into four variables x1l,i,j , x

2
l,i,j ,

x3l,i,j , and x4l,i,j according to their different slack types. Al-
though the extra three variables introduced in each window
increases the complexity of optimization, such fillable re-
gion separation make overlay area estimation possible before
dummy insertion.

Figure 4: Four Types of Fillable Regions

Considering the fact that overlay only exists in the ver-
tical direction, the overlay of a window sandwich at planar
location (i, j), i.e., the overlay among Wl,i,j , l = 1, ..., L, can
be estimated as follows.

Dummy-to-layout overlay area of a window sandwich can
be observed from Fig. 5, where dummies filled in slacks
Type2 and Type4 in Wl,i,j are overlapped with signal wires
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Figure 5: Overlay between Fills in Wl,i,j and Wl+1,i,j

in Wl+1,i,j and produce overlay area as

ovd−li,j =

L−1∑
l=1

ovd−ll,i,j =

L−1∑
l=1

x2l,i,j + x4l,i,j (7)

And layout-to-dummy overlay can be estimated in similar
way,

ovl−di,j =

L−1∑
l=1

ovl−dl,i,j =

L−1∑
l=1

x3l+1,i,j + x4l+1,i,j (8)

The lack of x1l,i,j in (7) and (8) means that no overlay is
produced by dummies in slack Type1.

Though the initial patterns of given benchmark are black-
boxes, we can still use the window densities as weighted co-
efficients to carefully estimate the dummy-to-layout overlay
area as

ovd−ll,i,j = ρ0l+1,i,j · (x2l,i,j + x4l,i,j) (9a)

ovl−dl,i,j = ρ0l,i,j · (x3l+1,i,j + x4l+1,i,j) (9b)

where ρ0l,i,j and ρ0l+1,i,j are the given initial layout pattern
densities of Wl,i,j and Wl+1,i,j respectively.

For dummy-to-dummy overlay area, however, it depends
on fill amounts and locations of dummies on neighbouring
layers, but it satisfies the following constraints

ovd−di,j =

L−1∑
l=1

max (0, ovd−dl,i,j ) (10a)

ovd−dl,i,j = (x1l,i,j + x3l,i,j) + (x1l+1,i,j + x2l+1,i,j)− s∗l,i,j (10b)

where s∗l,i,j refers to the shadow region area as shown in
Fig. 5, i.e. the slack area of fillable regions interaction
between Wl,i,j and Wl+1,i,j . If arranging these dummies
properly, it will be possible for ovd−dl,i,j to be zero when total
fill amount of both layers is not greater than s∗l,i,j . However,
if these dummies excess the slack regions s∗l,i,j , there exists a
minimal overlay at least. Those excessive dummies have to
overlap with dummies located in the same region in adjacent
layers.

Finally, the total overlay area can be estimated as (3a),
and since slack region is separated into four types, the opti-
mization problem can be reformed as

min
xk
l,i,j

gpd(ov + fa) + gσ(σ) + gσ∗(σ∗) + gol(ol) (11a)

s.t. xkl,i,j ∈ [0, skl,i,j ] (11b)

where skl,i,j refers to slack area of Typek region in Wl,i,j .
Therefore, random starting points should be generated by
randomly determining all xkl,i,j in corresponding range [0, skl,i,j ].
Furthermore, the meaning of x in (6) should be changed to
the vector of fill amount in any type of region xkl,i,j and s

refers to the vector of slack skl,i,j now. The flow of optimiza-
tion process keeps unchanged.

3.3 Prior Knowledge Based Starting Point Gen-
eration

Since layout is getting more and more complicated, the
problem size of dummy fill insertion optimization becomes
larger. As the result, optimization algorithm suffers a lot
from its high runtime, especially when SQP method requires
computing Hessian matrix in each iteration, and MSP strat-
egy is applied. However, there are prior knowledges that we
can apply for improving the efficiency of algorithm. In this
subsection, a Prior Knowledge (PK) based starting point
generation method is proposed which includes two separated
phases, i.e., target density planning and overlay minimiza-
tion with determined target fill amount. The two phases can
be combined as a pre-optimized solution, and used as a good
starting point for the following SQP optimization algorithm.
This strategy can improve the runtime and effectiveness of
the SQP sovler tremendously, though this prior knowledge
only considers the objectives of planarity and overlay.

3.3.1 Target Density Planning
Target density planning is proposed by Lin[12] to max-

imize layout planarity regardless of any other objectives.
Layout planarity is irrelevant between layers so each layer
can be considered separately and processed among layers in-
dependently. A target layer density tdl is first determined
in advance for each layer, which represents the expecting
density of each window. After tdl is determined, a trivial
solution to fill dummies for maximum density uniformity
can be obtained,

xl,i,j =


0, if tdl < ρ0l,i,j

sl,i,j , if tdl > A · ρ0l,i,j + sl,i,j

A · (tdl − ρ0l,i,j), otherwise

(12)

where A refers to the window area. Eq.(12) shows a simple
strategy to minimize density variation, which is fill dummies
to let window density as near as target layer density. Then
the goal of this phase becomes finding the best target layer
density for each layer.

For each window, the density will be in the interval [ρ0l,i,j ,

ρ0l,i,j + sl,i,j ], if dummies are inserted. The best situation of
target layer density tdl is when there exists a available value
in all windows intervals in layer l. In this case, tdl can be
determined as

tdl = max(ρ0l,i,j), i ∈ [1..M ], j ∈ [1..N ] (13)

Otherwise, a linear search of target layer density is per-
formed on this layer and the solution with the best layout
planarity is chosen. The search range is from max(ρ0l,i,j) to

min(ρ0l,i,j + sl,i,j) and the search step should be relatively
small. Although the result of this phase is possibly not the
optimal solution for maximizing layout planarity, it should
be enough to generate a starting point.

3.3.2 Overlay Minimization in Window Sandwich
After target density is determined, i.e. the fill amount

xl,i,j of window is obtained, the local optimization of overlay
minimization is processed immediately. In this phase, the fill
amount xl,i,j of each window should be assigned within four
type of slack regions skl,i,j , k = 1, ..., 4, for a minimal overlay
area.

For each window sandwich (i, j), we try to arrange the
dummies xl,i,j , l = 1..L properly to find the optimal fill



amount xkl,i,j , k = 1, ..., 4 in different slack types for mini-
mal overlay among this window sandwich. The formulation
is

min
xk
l,i,j

ovd−li,j + ovl−di,j + ovd−di,j (14a)

s.t. xkl,i,j ∈ [0, skl,i,j ], k ∈ 1, 2, 3, 4 (14b)

xl,i,j =

4∑
k=1

xkl,i,j (14c)

The formulation is linear after removing the absolute op-
erations in (14a), so local optimals of each segment are easily
available. And the solution to (14) is the best one of these
local optimals. Because the number of variables in each win-
dow sandwich is very small, this optimization problem can
be solved quickly. Meanwhile, different window sandwich
is totally independent, all window sandwich can be parallel
solved.

Combined with the above two phases, a better starting
point for dummy fill synthesis is obtained, which will be
helpful for the following SQP optimization.

3.4 Dummy Fill Insertion
After optimizing the fill amounts in each slack type in each

window, the dummy fill insertion phase will determine all
positions of fills without violating DRC rules. The dummy
fill insertion flow is briefly shown in Algorithm 1.

Algorithm 1 Dummy Fill Insertion

Input: Fill amount xkl,i,j of each type in each window
Output: Locations of all dummies
1: Classify slack into four types
2: Cut the slack patterns into rectangles by the method

proposed in [7].
3: Shrink slacks to satisfy all DRC rules
4: Insert dummies into each type of slacks of each Wl,i,j in

order of their areas
5: Insert a proper small dummy to minimize fill amount

gap

4. EXPERIMENTAL RESULTS
We implement the proposed algorithm in C/C++ lan-

guage. All the experiments of our algorithm are performed
on a 2.67GHz Linux server with 64 CPU cores. In Table 2,
the results proposed by [12] are tested on an 8-Core 3.4GHz
Linux server, and the results of the top three of ICCAD 2014
contest are tested on a 2.6GHz computer. The coefficients
to calculate objective function listed in Table 1 are exactly
the same as the ones of ICCAD 2014 benchmark.

4.1 Results of Scores
The experimental results of our algorithm, the algorithm

proposed in [12] and ICCAD 2014 contest top three are listed
in Table 2.

In Table 2, Design lists layout names. Performance rep-
resents the score of overlay. Variation, Line Deviation and
Outliers represent the score of density planarity. File Size is
the score of file size. Quality is a weighted score represents
the filling score including overlay, density planarity and file
size, which is the same as definitions in (4b). Overall is the

total weighted score including Quality, Runtime and Mem-
ory.

In these methods, the top three of ICCAD 2014 are list in
first 3 rows. Lin is the algorithm proposed in [12]. MSP+SQP
is the proposed method of SQP optimization algorithm with
20 random starting points. PKB is the results only after the
prior knowledge based initial filling as proposed in section
3.3. PKB+SQP(8c) is the result of using PKB’s result as
a starting point and then optimizing it by SQP algorithm
with 8 CPU Cores, and the 64 Cores results are also listed
for scalability.

Table 2 shows that the fill quality of all our three proposed
methods MSP+SQP, PKB and PKB+SQP are better than
that of Lin’s state-of-the-art method in all designs. Our
best Quality scores is PKB+SQP, which is 8.16% higher
than Lin’s on average.

The PKB method gets the highest Overall scores, which is
attributed to its extremely high run speed. The key point of
the high speed of the PKB method is dividing the fill amount
x into four type xi based on the four different slack type,
which only needs to solve many small linear optimization
problems independently.

However in our opinion, the PKB method can still obtain
the highest overall score for industry layouts is suspicious.
A more robust strategy is taking the filling results of PKB
method as a good starting point of SQP optimization al-
gorithm. The optimization of SQP will improve the initial
result to some extent, at least to a local optimization. As
shown in Table 2, the results of PKB+SQP are always with
higher quality than that of the PKB’s.

Certainly, the trade-off is the more CPU time. Though
the overall scores of PKB+SQP are less than that of PKB.
However, for the big layout m with 2.2GB file size, the extra
18 min time for optimization is possibly affordable for a
robust and better fill quality, and with the help of parallel
computing the extra CPU time can be decreased to 6.5 min
with 64 CPU cores.

MSP+SQP method costs the longest CPU time, because
20 random starting points are generated and then glob-
ally optimized by SQP method. In the biggest design m,
MSP+SQP method needs about 12 hours. MSP+SQP’s
filling qualities, however, can still beat all results of the ex-
isting methods without any prior knowledge. This is ex-
tremely helpful for the unified dummy filling framework,
in that if new optimization objectives are included and no
prior knowledge methods are developed, it will be the only
left method for such situations. Meanwhile, the unified
dummy filling framework with random MSP strategy will
become more feasible with the prevalence of high perfor-
mance computation clusters, which makes the significance
of well-designed objective-oriented methods weak to some
extent.

4.2 Scalability of SQP
Furthermore, the SQP optimization is the most time-consuming

process of SQP-based algorithms (MSP+SQP and PKB+SQP).
However, it can be effectively accelerated by parallel com-
putation. Fig. 6 shows the scalability of SQP on design b,
where we can see that the speedup of SQP is roughly linear
to CPU cores within maximal 64 cores. For the MSP part,
the starting points are totally independent, so good scalabil-
ity can easily be obtained for high performance computing
platform.



Table 1: Coefficients of ICCAD 2014 Contest Benchmark
Design #L File Size αPD βPD ασ βσ ασ∗ βσ∗ αO βO αFS βFS αt βt αmem βmem

s 3 48M 0.2 79154 0.2 0.077 0.2 11.758 0.15 0.014 0.05 32 0.15 60 0.05 1024
b 3 1.1G 0.2 6111303 0.2 0.517 0.2 3578 0.15 22.801 0.05 2048 0.15 600 0.05 32768
m 3 2.2G 0.2 10276835 0.2 0.53 0.2 6052 0.15 27.56 0.05 1536 0.15 1200 0.05 32768

Table 2: Experimental Results on ICCAD 2014 Contest Benchmark
Design Team Performance Variation Line Deviation Outliers File Size Runtime Memory Quality Overall

s

3rd 0.613 0.985 0.990 1.000 0.158 0.842 0.429 0.676 0.823
2nd 0.743 0.909 0.967 0.975 0.103 0.846 0.831 0.675 0.844
1st 0.743 0.636 0.733 1.000 0.976 0.877 0.885 0.621 0.797
Lin 0.723 0.948 0.979 0.994 0.887 0.872 0.818 0.724 0.895

MSP+SQP 0.725 1.000 1.000 1.000 0.792 0(6min) 0.805 0.735 0.775
PKB 0.725 1.000 1.000 1.000 0.802 0.900 0.805 0.735 0.910

PKB+SQP(8c) 0.725 1.000 1.000 1.000 0.802 0.687 0.805 0.735 0.878
PKB+SQP(64c) 0.725 1.000 1.000 1.000 0.802 0.780 0.805 0.735 0.892

b

3rd 0.576 0.485 0.601 0.000 0.568 0.554 0.339 0.361 0.461
2nd 0.841 0.381 0.534 0.000 0.053 0.513 0.828 0.354 0.472
1st 0.748 0.368 0.364 0.871 0.924 0.515 0.891 0.473 0.594
Lin 0.685 0.499 0.470 0.953 0.765 0.351 0.852 0.512 0.607

MSP+SQP 0.410 0.851 0.872 0.867 0.756 0(14h) 0.847 0.594 0.637
PKB 0.460 0.858 0.917 0.788 0.730 0.110 0.847 0.601 0.662

PKB+SQP(8c) 0.480 0.848 0.911 0.783 0.761 0(22min) 0.847 0.604 0.646
PKB+SQP(64c) 0.480 0.848 0.911 0.783 0.761 0.280(7.2min) 0.847 0.604 0.688

m

3rd 0.510 0.509 0.689 0.000 0.807 0.748 0.772 0.382 0.533
2nd 0.668 0.460 0.618 0.000 0.000 0.780 0.761 0.349 0.504
1st 0.598 0.462 0.486 0.204 0.941 0.556 0.845 0.387 0.513
Lin 0.493 0.643 0.766 0.088 0.905 0.750 0.786 0.439 0.591

MSP+SQP 0.677 0.543 0.790 0.000 0.901 0(12h) 0.771 0.447 0.489
PKB 0.723 0.550 0.814 0.000 0.803 0.234 0.771 0.458 0.533

PKB+SQP(8c) 0.716 0.553 0.825 0.000 0.837 0(18min) 0.771 0.461 0.499
PKB+SQP(64c) 0.716 0.553 0.825 0.000 0.837 0.680(6.5min) 0.771 0.461 0.601

Figure 6: Scalability of SQP Method

4.3 Quality of MSP-SQP with Different Num-
ber of Starting Points

Although the MSP strategy and SQP optimization method
are very suitable to the unified dummy filling framework,
they suffers the long runtime. It is important to study how
many starting points are needed. Fig. 7 shows the quality
of MSP-SQP on design b with number of starting points,
where x -axis is number of starting points and y-axis is the
quality of MSP-SQP. From Fig. 7, we can see that MSP
strategy can efficiently reach the high quality within only 15
random starting points.

5. CONCLUSIONS
In this paper, we propose a novel unified framework for

dummy fill insertion, which is suitable for complicated op-
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Figure 7: Number of Starting Points vs. Quality of
MSP+SQP

timization objectives. ICCAD 2014 contest benchmark is
applied to verify the performance of our algorithm. Ex-
perimental results show that our algorithm is effective for
multiple objectives for dummy fill insertion. To obtain so-
lution with better quality, our algorithm requires more run-
time than other proposed algorithm while the cost is af-
fordable. A prior-knowledge-based starting point genera-
tion method is proposed to improve both performance and
efficiency. Meanwhile, parallel computation can be easily
applied to enhance the efficiency. In the future, we plan
to improve the algorithm for run-time and consider more
factors, such as lithography impacts and CMP model.
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