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ABSTRACT
FPGA packing and placement without routability consideration
could lead to unroutable results for high-utilization designs. Con-
ventional FPGA packing and placement approaches are shown to
have severe difficulties to yield good routability. In this paper,
we propose a FPGA packing and placement engine called UT-
PlaceF that simultaneously optimizes wirelength and routability.
A novel physical and congestion aware packing algorithm and
several congestion aware detailed placement techniques are pro-
posed. Compared with the top 3 winners of ISPD’16 FPGA
placement contest, UTPlaceF can achieve 3.3%, 7.7% and 28.3%
better routed wirelength with similar or shorter runtime.

1. INTRODUCTION
The field programmable gate array (FPGA) is a type of pre-

manufactured integrated circuit designed to be configured by cus-
tomers or designers. FPGAs are becoming more and more popu-
lar nowadays because of their ability to re-program in the field to
fix bugs, shorter time to market, and lower non-recurring engi-
neering costs. Historically, FPGAs was only used for fast realiza-
tion of small digital circuits. However, in recent years, the gate
count of commercial FPGAs has reached scale of millions [1], so
much more complex digital systems are moving towards FPGA-
based design methodologies.

A representative FPGA CAD flow is shown in Fig. 1. During
logic synthesis and techcnology mapping, a circuit is translated
into a netlist composed of lookup tables (LUTs) and flip-flops
(FFs). In the packing stage, several LUTs and FFs together form
a basic logic element (BLE) and then several BLEs are grouped
into a configurable logic block (CLB). After packing, placement
is responsible for determining the physical position of all CLBs
in a two-dimensional array while optimizing some metrics (e.g.
wirelength, routability, timing, power, and etc.). Finally, routing
is performed to physically connect CLBs.

As design size and complexity continue to increase dramati-
cally, routability has become an important metric in FPGA do-
main. Traditional pure wirelength-driven optimizations without
routability consideration often failed to map circuits into FPGA
devices. Among all CAD stages, packing and placement play key
roles in optimizing various metrics, particularly routability.

Packing algorithms typically can be divided into three differ-
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Figure 1: A representative FPGA CAD flow.

ent categories: 1) seed-based approaches, 2) partitioning-based
approaches, and 3) placement-guided and cluster-merging-based
approaches. Seed-based packing approaches iteratively choose a
BLE to form an initial CLB, then keep adding other unpacked
BLEs into the CLB based on an attraction function until no
more BLEs can be added. VPack [2], T-VPack [3], RPack [4],
iRAC [5], T-NDPack [6], and MO-Pack [7] are representative
examples of seed-based algorithms with different objectives and
attraction functions. Partitioning-based approaches, like [8] and
PPack [9], first apply a k-way partitioning to get a set of poten-
tial CLBs, and then perform a sequence of inter-partition moves
to legalize the packing solution. HDPack [10] is an example of
placement-guided and cluster-merging-based methods. It incor-
porates physical information using a min-cut-partitioning based
global placement, and applies the idea of hybrid first choice clus-
tering (HFCC) from [11] to recursively group clusters with high-
est attraction until no more merging could be performed.

To improve routability, packing algorithms like [12], iRAC, [13],
Un/DoPack [14], and T-NDPack proposed several different de-
population techniques to prevent CLBs from being fully filled.
Depopulation can be classified into two categories, uniform de-
population and non-uniform depopulation. iRAC is a good exam-
ple of uniform depopulation, it limits cell utilization of all CLBs
based on Rent’s rule. Un/DoPack is a example of non-uniform
depopulation. It first runs through a regular CAD flow, then
depopulates CLBs in the congested regions based on the routing
result.

FPGA placement algorithms are very similar to ASIC’s place-
ment and typically fall into one of the following three categories:
1) simulated-annealing-based approaches, 2) min-cut-partitioning-
based approaches, and 3) analytical approaches. Simulated an-
nealing based placers, like VPR [15], apply a probabilistic search-
ing to approximate the global optimal solution. Min-cut-partitioning
based placers, e.g. [16,17], recursively apply min-cut partitioning
until cells are fully spread out. Analytical placers typically ap-

http://dx.doi.org/10.1145/2966986.2980083


proximate cost metrics, like wirelength and bin density, with a
smooth objective function, then use numeric solvers to find the
optimal solution. Different analytical placement approaches have
been extensively studied in [18–23].

1.1 Motivation
Packing and placement are two key steps to achieve high-

quality physical implementation with good routability. How-
ever, we found that existing academic packing and placement
approaches have the following limitations:

• Existing packing algorithms do not have good knowledge of
cells’ physical locations. Logical packing, which performs
packing based only on logical connectivity, could cluster
cells that are physically far apart. As a result, it may
lead to wirelength-unfriendly netlists and worsen routabil-
ity. Most seed-based and partitioning-based packers do not
have physical location information and only perform logi-
cal clustering. Existing placement-guided packers only have
rough global placements, which is of poor quality compared
to state-of-art placement engines. We believe that accurate
physical information could better guide packing and yield
placement-friendly CLB level netlists.

• Existing packing algorithms are unaware of actual conges-
tion information, which is crucial for efficient and high-
quality depopulation. Blindly applying uniform depopu-
lation would inevitably worsen wirelength and area, and it
is more efficient to only avoid overpacking in routing con-
gested regions. Therefore accurate routing congestion in-
formation is of great importance in packing stage.

• In recent years, the gate count in modern FPGAs already
reached scale of millions. Therefore, packing and placement
algorithms with high-quality and good scalability are highly
desirable for large scale FPGAs.

1.2 Contributions
In this paper, we propose a new routability-driven FPGA pack-

ing and placement engine called UTPlaceF. Our main contribu-
tions are listed as follows:

• We propose a novel packing algorithm that incorporates
accurate physical information based on a high-quality ana-
lytical global placement.

• We propose a routing congestion aware depopulation tech-
nique to efficiently balance wirelength and routability in a
correct by construction manner.

• We propose several congestion aware detailed placement
techniques to improve wirelength without degrading routabil-
ity.

• We perform experiments on the ISPD’16 Routability-Driven
FPGA Placement Contest [24] benchmark suite released by
Xilinx. Compared to the ISPD’16 contest top 3 winners,
UTPlaceF achieves 3.3%, 7.7%, and 28.3% better routed
wirelength with similar or shorter runtime.

The rest of this paper is organized as follows: Section 2 re-
views the preliminaries and presents the UTPlaceF framework
overview. Section 3 and Section 4 give the details of UTPlaceF
packing and placement algorithms, respectively. Section 5 shows
the experimental results, followed by the conclusion in Section 6.

2. PRELIMINARIES AND OVERVIEW

2.1 FPGA Architecture
In ISPD’16 FPGA placement contest, all benchmarks are tar-

geted to Xilinx Ultrascale VU095. The architecture of BLE and
CLB in this FPGA are shown in Fig. 2. Each CLB has eight BLE
sites, and each BLE contains two LUT sites and two FF sites.
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Figure 2: BLE and CLB in Xilinx Ultrascale architecture.

The two LUT sites in a BLE could be implemented as a single
6-input LUT or two smaller LUTs with total number of different
input pins less than 6. The two FFs in a BLE must share the
same clock and set/reset pins, however their clock enable pins
could be different. There are two clock, two set/reset, and four
clock enable pins available for each CLB. Each clock, set/reset
and each two clock enables are dedicated to 4 BLEs. More details
can be found in [24].

2.2 Quadratic Placement
A FPGA netlist can be represented as a hypergraph H =

(V,E), where V = {v1, v2, ..., v|V |} is the set of cells, and E =
{e1, e2, ..., e|E|} is the set of nets. Let x = {x1, x2, ..., x|V |} and
y = {y1, y2, ..., y|V |} be the x and y coordinates of all cells. The
wirelength-driven global placement problem is to determine posi-
tion vectors x and y that minimize the total wirelength and obey
bin density constraint. Wirelength is measured by the HPWL,

HPWL(x,y) =
∑
e∈E

{max
i,j∈e

|xi − xj |+ max
i,j∈e

|yi − yj |} (1)

As HPWL is not differentiable everywhere, quadratic placers ap-
proximate it by squared Euclidean distance between cells. There-
fore, the wirelength cost function in quadratic placer is defined
as,

W (x,y) =
1

2
xTQxx + cTxx +

1

2
yTQyy + cTy y + const (2)

2.3 UTPlaceF Overview
Fig. 3 shows the flowchart of UTPlaceF. The overall flow is

composed of three parts: 1) physical and congestion aware pack-
ing (PCAP), 2) global placement, and 3) detailed placement.
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Figure 3: Overview of UTPlaceF.

In PCAP, a flat initial placement (FIP) is generated to better
guide packing. FIP is responsible for generating cells’ physical



locations, and detecting cells that are likely to be placed into
routing congested regions. In the packing stage of PCAP, first
LUTs and FFs are grouped into BLEs, then BLEs are clustered
into CLBs. We assume that FIP yields the optimal cell relative
position, and packing should not perturb it too much. Therefore
PCAP, with cell physical locations information, disallows long-
distance packing and prefers close packing. Similar to iRAC,
absorbing small nets is treated as the main objective during pack-
ing stage of PCAP to reduce channel width and routing demand,
which in turn improves wirelength and routability. Besides con-
sidering grouping connected cells, UTPlaceF also packs uncon-
nected cells based on their physical locations to further reduce
number of CLBs. Leveraged by routing congestion information
from FIP, PCAP can perform loose packing only for cells that
are likely to be placed into routing hotspots, and avoid blindly
depopulating throughout whole netlists for routability enhance-
ment. By using this congestion aware depopulation technique,
PCAP is able to achieve both good wirelength and routability.

Our global placement basically shares the same framework with
FIP but handles CLBs instead of LUTs and FFs. In detailed
placement stage, a bipartite-matching-based minimum-movement
legalization is applied first. Then density preserving global move,
independent set matching, and row/column interleaving are con-
secutively performed to further reduce wirelength. To preserve
the routability optimized global placement solution, white spaces
in congested regions are handled specially throughout the de-
tailed placement stage.

3. PHYSICAL AND CONGESTION AWARE
PACKING

3.1 Flat Initial Placement
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Figure 4: Overall flow of the flat initial placement.

Our FIP adopts the main framework of an ASIC placer POLAR
2.0 [25]. Its overall flow is shown in Fig. 4. In each iteration of
wirelength-driven placement, a quadratic program is solved fol-
lowed by rough legalization [26] for reducing cells overlaps. Then
the density preserving global move [27] is applied to improve the
wirelength of the rough legalized placement while preserving bin
densities. A sequence of pure wirelength-driven placement it-
erations is performed until the gap between the upper bound
wirelength and the lower bound wirelength is less than a certain
number, which is 100% in PCAP. In the routability-driven place-
ment stage, after a certain number of placement iterations, a fast
global router NCTUgr [28] is called for routing congestion esti-
mation, then similar to POLAR 2.0, cells in congested regions
are inflated by a small ratio, and the inflation accumulates to the
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Figure 5: Different LUT and FF paring scenarios. (a) and (b): LUT
fanouts to multiple celles. (c) LUT fanouts to only one far FF. (d)
LUT fanouts to only one close FF.

end of FIP.
The two objectives of FIP are 1) generating physical location

for each LUT and FF, and 2) detecting LUTs and FFs that are in
routing congested regions. Cell physical locations are explicitly
generated by the wirelength and routability co-optimized place-
ment. Congestion information associated with cells is implicitly
obtained from history based cell inflation. The insight of cell
inflation is quantifying the possibility of a cell lying in routing
congested regions using its area – larger cell area indicates larger
possibility of being placed into congested regions. After FIP,
each LUT and FF would have a physical location and a cell area,
which indicates the congestion level associated with it.

Besides LUTs and FFs, FPGAs also contain cells, like DSPs,
RAMs, and IOs, that have their specific physical sites. Typically,
sites for these cells are discrete and scattered on FPGAs. If we
handle them like LUTs and FFs in rough legalization, they might
be far away from their legal positions in the final FIP solution.
This discrepancy would introduce inaccuracy of cell relative posi-
tion into FIP. To eliminate this discrepancy, UTPlaceF performs
an extra legalization step for DSPs, RAMs, and IOs right after
the conventional rough legalization in the second stage of FIP.
By simply doing this, DSPs, RAMs, and IOs will use their le-
gal positions as their anchor points in placement iterations, and
the discrepancy will be eliminated in the final FIP solution. The
legalization approach here is similar to our CLB legalization dis-
cussed in Section 4.2.

3.2 Max-Weighted-Matching-Based BLE Packing
As a BLE in our target FPGA architecture, Xilinx Ultrascale,

contains 2 LUTs and 2 FFs, existing VPR-style BLE packing can-
not be directly applied. To address this new BLE architecture,
we propose a two step BLE packing algorithm that comprises: 1)
LUT and FF pairing, and 2) LUT, FF pairs matching.

In PCAP, we apply the LUT and FF paring in a similar manner
to the BLE packing in VPack. As shown in Fig.5, we group a
LUT and a FF together if the LUT only fanouts to the FF.
Besides that, long-distance packing is rejected, and only packing
within maximum packing distance of BLE (λb) is allowed.

In the second step, max-weighted matching is used for finalizing
the BLE packing. We construct an undirected weighted graph
UWG = (V,E), where each vi in V = v1, v2, ..., v|V | is a LUT/FF
pair, a single LUT, or a single FF. E = e1, e2, ..., e|E| represents
the set of legal mergings. To apply high-attraction and close
packing, we say a merging (vi, vj) is legal if and only if,

1. vi and vj are connected in the netlist.

2. Merging vi and vj into the same BLE does not violate any
packing rules.

3. The merging attraction is greater than the minimum pack-
ing attraction of BLE (φb).



In the UWG, edge weights are set as merging attractions. The
attraction value for any merging is defined as,

φb(vi, vj) =

(1− eγb(dist(vi,vj)−λb))
∑

p∈Net(vi∩vj)

kb
deg(p)− 1

(3)

where γb is a constant value being experimentally set as 0.2,
dist(vi, vj) is the Manhattan distance between vi and vj , λb is the
maximum packing distance of BLE which is 4 in PCAP, Net(ci∩
cj) is the set of nets shared between vi and vj , deg(p) is the total
number of pins of net p that is exposed in cluster level, and kb is
2 for 2-pin nets and 1 for other nets.

The first term, 1 − eγb(dist(vi,vj)−λb), is a packing distance
penalty factor in range (−∞, 1). This factor is very close to
1 for mergings of distance much less than λb. It drops quickly as
dist(vi, vj) gets close to λb, and becomes negative once dist(vi, vj)
is greater than λb. By using the first term, short-distance merg-
ings in PCAP are always preferred. The second term,

∑
p∈Net(vi∩vj)

kb
degreep−1

, is introduced for reducing number of nets exposed in

cluster level, which in turn improves wirelength and routabil-
ity. With the second term, merging two clusters that share more
small nets is of high priority, and 2-pin nets are given even higher
weight by the factor kb = 2.
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Figure 6: A simple max-weighted cluster matching example.

Fig. 6 shows a simple cluster matching example. Due to our
rules for legal merging, the constructed UWG typically is not
connected and comprises many small connected subgraphs. Merg-
ings in different connected subgraphs are independent, so PCAP
performs a max-weighted matching algorithm on each of these
subgraphs and all matched cluster pairs would be merged. The
location of a merged cluster is set as the average location of all
cells (LUTs and FFs) it contains, and the cluster area is simply
the sum of cell areas. After each pass of matching and merging,
PCAP rebuilds the UWG and re-solves the max-weighted match-
ing for each new connected subgraph until no more legal merging
exists. The pseudo-code of our BLE packing is summarized in
Alg. 1.

3.3 Related CLB Packing with Congestion Aware
Depopulation

After BLE packing, we create a CLB for each single BLE. CLB
packing is done by successively merging smaller CLBs into larger
ones. CLBs that share common nets are said to be related, and
in this stage only related CLBs mergings are considered.

The BestChoice Clustering (BC) [29] is used as our main en-
gine for related CLB packing. In BC, the attractions of all legal
CLB mergings are calculated first, then the algorithm iteratively
merges CLB pairs with the highest attraction. The location and
area of a merged CLB is set as the average location and total
area of cells it contains, respectively. After each merging, the

Algorithm 1 Max-Weighted-Matching-Based BLE Packing

Input: Post-FIP netlist.
Output: BLE level netlist with external nets reduced.
1: Pair LUTs and FFs;
2: while legal cluster merging exists do
3: Construct an UWG using Eqn. (3);
4: for each connected subgraph do
5: Run max-weighted matching;
6: for each matched edge do
7: Merge corresponding clusters;
8: Set location and area of the merged cluster;
9: end for

10: end for
11: end while

legality and attraction of mergings related to the new CLB are
updated accordingly. The pseudo-code of our BC-based related
CLB packing is summarized in Alg. 2.

In PCAP, a related CLB merging (ci, cj) is said to be legal if
and only if

1. ci and cj are connected in the netlist.

2. Merging ci and cj into the same CLB does not violate any
packing rules.

3. The merging attraction is greater than the minimum pack-
ing attraction of related CLB (φrc).

4. Total area of ci and cj is no grater than maximum CLB
area (ac).

The first three rules are inherited from our BLE packing. The
fourth rule is introduced to perform congestion aware depopu-
lation and avoid overpacking in routing congested regions. As
discussed in Section 3.1, cells with larger area have higher possi-
bility to be placed into routing congested regions. By constrain-
ing area of each CLB, PCAP would apply loose packing in routing
congested regions, and tight packing in other regions. This con-
gestion awareness makes PCAP able to achieve a good trade-off
between wirelength and routability. Fig. 7 illustrates the con-
gestion aware depopulation technique in PCAP, note that BLEs
with larger area are in routing congested regions.

BLE
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Uncongested region
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Congested region

Figure 7: Congestion aware depopulation of PCAP during packing.

The attraction function of related CLB mergings (ci, cj) is de-
fined as,

φrc(ci, cj) =

(1− eγrc(dist(ci,cj)−λrc))
∑

p∈Net(ci∩cj)

krc
deg(p)− 1

(4)

Eqn. (4) is basically a replica of our BLE packing attraction
function defined in Eqn. (3), but differs only by some constant
parameters. We experientially set γrc to 0.2, and λrc to 8. krc is
2 for 2-pin nets and 1 for other nets.



Algorithm 2 BC-based Related CLB Packing

Input: Post-BLE-packing netlist.
Output: CLB level netlist with external nets reduced.
1: Create an empty priority queue PQ;
2: Find all legal mergings (ci, cj) and their attraction φrc(ci, cj);
3: Insert all legal mergings with φrc(ck, cj) ≥ φrc into PQ;
4: while PQ is not empty do
5: Pick merging (ci, cj) with the highest attraction from PQ;
6: if ci or cj has been merged already then
7: continue;
8: end if
9: Merge ci and cj to form cij ;

10: Set location and area of cij ;
11: for each CLB ck that connects to cij do
12: if merging (ck, cij) violates packing rules then
13: continue;
14: end if
15: Calculate attraction φrc(ck, cij);
16: if φrc(ck, cij) ≥ φrc then

17: Insert (ck, cij) into PQ;
18: end if
19: end for
20: end while

3.4 Unrelated CLB Packing
CLBs without common nets are said to be unrelated. After

related CLB packing stage, unrealted CLB mergings are consid-
ered. Different from related CLB packing, in which reducing
external nets is the main objective, unrelated CLB packing aims
to reduce number of CLBs.

BC-based approaches typically could yield very good packing
solutions for given attraction functions. However, it has an in-
herent drawback – incapability of making tight packing. Gener-
ally, BC would generate a large number of medium-sized clusters
that are difficult to merge further due to the cluster capacity
constraint. In contrast, seed-based approaches are effective to
achieve tight packing but with degradation of packing quality.
In PCAP, we apply both strategies properly in different scenar-
ios.

Initially, PCAP performs BC-based unrelated CLB packing in
a manner similar to our related CLB packing, but with the fol-
lowing three differences: 1) merging unrelated CLBs could be
legal, 2) in Alg. 2 line 2 and line 11, instead of only evaluating
related CLB mergings, all mergings within distance λuc would
be considered, and 3) a different attraction function defined in
Eqn. (5) is used.

φuc(ci, cj) =

(1− eγuc(dist(ci,cj)−λuc)) · (NBLE(ci) +NBLE(cj))
(5)

The attraction function φuc comprises two terms. The first term,

1− eγuc(dist(ci,cj)−λuc), is a packing distance penalty factor sim-
ilar to Eqn. (3) and Eqn. (4). The second term, NBLE(ci) +
NBLE(cj), is the total number of BLEs of the two merging CLBs.
By applying this term, which gives higher priority to mergings
that yield larger CLBs, PCAP can achieve tighter packing even
using BC.

For high-utilization designs, the BC-based unrelated CLB pack-
ing might still not be able to generate tight enough packing solu-
tions that satisfy FPGA capacity constraint. In this case, existing
packing solution will be ripped up, and a seed-based packing will
be applied instead of the BC-based approach to aggressively re-
duce number of CLBs. The details of this rip-up and re-packing
phase will be further discussed in Section 3.5.

Note that, although the objective of our unrelated CLB pack-
ing is to reduce number of CLBs and yield tight packing, the con-
gestion aware depopulation technique described in Section 3.3 is
still applied in this stage to maintained good routability.

3.5 Net Reduction and Packing Tightness Trade-off

Our related CLB packing works effectively to reduce number
of external nets, however it often yields relatively loose packing
due the the inherent shortcoming of BC mentioned in section 3.4.
In contrast, our unrelated CLB packing is capable of aggressively
reducing number of CLBs and achieving tight packing. There-
fore, if more packing is performed in the related CLB packing
stage, a loose packing solution with less external nets would be
yielded. However, if we only do a small portion of packing in the
related CLB packing stage and leave most of work to unrelated
CLB packing, the final packing would be more inclined to the
“tight” side with more external nets.

In PCAP, φrc (the minimum packing attraction of related CLB

packing) and λuc (the maximum packing distance of unrelated
CLB) are used to control the amount of packing work for each
(related/unrelated) CLB packing stage. Initially, φrc is set as 0

to aggressively reduce number of external nets, and λuc is set as
8 to only allow close packing in unrelated CLB packing stage.
This initial setting typically results in a loose packing with large
amount of net reduction. For high utilization designs, however,
the packing solution generated by the initial setting could be
sparse to the extent that number of CLBs exceeds the FPGA
capacity. To address this problem, PCAP would discard the
existing CLB packing solution and perform a re-packing step,
which applies related and unrelated CLB packing again. In the
re-packing phase, however, φrc is increased to reduce related CLB

packing, and λuc is also increased to allow unrelated CLB pack-
ing of longer distance. As results, the re-packing step would yield
tighter packing but sacrifice net reduction. The re-packing step
would be repeated until the number of CLBs is less than the
FPGA capacity.

For high-utilization designs, barely relying on BC-based unre-
lated CLB packing cannot guarantee tight enough packing so-
lutions that satisfy FPGA capacity constraint. It would reach
saturation points where number of CLBs cannot be further re-
duced even with larger λuc. To address this issue, as mentioned
in Section 3.4, PCAP will switch to seed-based unrelated CLB
packing once λuc is larger than a certain value.

4. POST-PACKING PLACEMENT

4.1 Global Placement
After PCAP, the global placement is performed immediately

to further optimize wirelength and routability. Our global place-
ment shares the same framework with FIP, but instead of opti-
mizing flat LUT/FF netlist, it considers each CLB as a whole.
FIP is used as the starting point for global placement and the
routability-driven placement stage is applied directly. To avoid
global placement being stuck in the local optimal around FIP,
the weight of pseudo-nets for cell spreading is reduced at the
beginning of global placement.

4.2 Min-Cost Bipartite Matching Based Legalization
A notable difference between ASIC and FPGA legalization

is that ASIC standard cells have different dimensions whereas
FPGA CLBs have the same size. Because of this special prop-
erty, FPGA legalization problem could be formulated as a min-
cost-max-cardinality bipartite matching problem with Manhat-
tan distance between CLBs and slices as cost. By solving the
corresponding bipartite matching problem, global placement can
be legalized with minimum total movement by the nature of this
problem. However, solving a complete bipartite matching for
large designs is impractical in terms of runtime. To address this
problem, we apply min-cost matching in a window-by-window
manner so that only a small matching within each window is
solved. Windows in congested regions are legalized first, and
neighboring available slices would be considered if number of



CLBs is larger than number of available slices within a window.
Our legalization approach is summerized in Alg. 3.

Algorithm 3 Min-Cost Bipartite Matching Based Legalization

Input: Rough-legalized CLB level netlist.
Output: Legalized placement with minimum movement.
1: Split the placement region into non-overlapping windows;
2: Sort windows by their routing congestion in descending order;
3: for each unlegalzied window do
4: while Num. CLBs > Num. slices do
5: Add neighboring unoccupied slices into window;
6: end while
7: Run min-cost bipartite matching between CLBs and slices with

Manhattan distance as cost.
8: Move each CLB to its matched slice, and set the slice as occu-

pied.
9: end for

4.3 Congestion Aware Independent Set Matching
The idea of bipartite matching can also be applied to opti-

mize wirelength. For a given set of legalized CLBs, a wirelength
optimization problem could be formulated as a max-weighted bi-
partite matching with edge weights as HPWL improvement of
moving CLBs to different slices. However, solving this match-
ing problem cannot guarantee the optimal HPWL improvement,
since the edge weight of a CLB depends on the positions of other
connected CLBs in the same matching set. To overcome this
drawback, we adopt the independent set matching (ISM) idea
from NTUPlace3 [30], and only apply matching within a set of
CLBs that do not share any common nets. Based on that, spaces
are also considered in our matching to further increase the solu-
tion space.

The ISM works effectively for optimizing HPWL. However it
could ruin the local CLB density optimized for routability, espe-
cially when spaces are considered in our ISM. To mitigate this
problem, we propose a congestion aware ISM with three extra
constraints introduced: 1) CLBs can be moved out of but not
into routing congested regions, 2) spaces can be moved into but
not out of congested regions, and 3) moves within congested re-
gions are disallowed. Fig. 8 shows a simple matching example
with the extra constraints applied. To get accurate congestion
information, the routing congestion map is updated after a cer-
tain number of ISM iterations. By applying our congestion aware
ISM, HPWL could be optimized without routability degradation.
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Figure 8: Illustration of our congestion aware ISM.

4.4 Other Detailed Placement Techniques
Besides ISM, UTPlaceF also applies two other effective detailed

placement techniques, global move and cell interleaving [31]. We
borrow the density preserving global move idea from [27] and
extend it to detailed placement by only moving cells to legal
positions in their optimal regions. Cell interleaving is performed
in both rows and columns because of the regularity of FPGA
slices. To avoid routability being degraded, spaces in routing
congested regions are fixed during cell interleaving.

5. EXPERIMENTAL RESULTS

Table 1: ISPD’16 Placement Contest Benchmarks Statistics

Benchmark #LUT #FF #RAM #DSP #Ctrl Set

FPGA-1 50K 55K 0 0 12
FPGA-2 100K 66K 100 100 121
FPGA-3 250K 170K 600 500 1281
FPGA-4 250K 172K 600 500 1281
FPGA-5 250K 174K 600 500 1281
FPGA-6 350K 352K 1000 600 2541
FPGA-7 350K 355K 1000 600 2541
FPGA-8 500K 216K 600 500 1281
FPGA-9 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281

Resources 538K 1075K 1728 768 N/A

UTPlaceF was implemented in C++ and tested on a Linux
machine with 3.40 GHz CPU and 32GB RAM. The benchmark
suite released by Xilinix for ISPD’16 FPGA placement contest
was used to evaluate the efficiency of UTPlaceF.

5.1 Benchmark Characteristics
The characteristics of ISPD’16 benchmark suite are listed in

Table 1. This benchmark suite has numbers of cells ranging from
0.1 to 1.1 million, which are much larger than that of existing aca-
demic FPGA benchmarks. Note that several benchmarks have
extremely high cell utilization, which raises two requirements to
FPGA placement packing and placement engines: 1) the capa-
bility to yield tight packing solutions to satisfy the CLB capacity
constraint, and 2) the capability to reduce routing resource de-
mand, since little white space is available for cell and routing
demand spreading.

5.2 Comparison with Contest Winners
We compare our results with the top 3 winners of ISPD’16

placement contest, and results are shown in Table 2. All routed
wirelength are reported by Xilinix Vivado v2015.4, and runtime
of the contest winners are evaluated on a Linux Machine with
3.20 GHz CPU and 32GB RAM. Ratios in the last row of Table 2
are based on comparisons with our results, and only benchmarks
that the contest winner completed are considered in each compar-
ison. It can be seen that UTPlaceF yields the best overall routed
wirelength. On average UTPlaceF outperforms by 3.3%, 7.7%,
and 28.3% on routed wirelength compared with the top 3 contest
winners, respectively, and note that only UTPlaceF is able to
route all 12 benchmarks. In terms of runtime, as UTPlaceF is
evaluated in a different machine, it is not fair to compare them
directly. However we still can see that the runtime of UTPlaceF
is about the same as the first place team, which has the fastest
runtime among the top 3 contest winners.

5.3 Runtime Analysis
The runtime breakdown of UTPlaceF is shown in Table 3. On

average, about 75.3% of total runtime is token by PCAP, while
CLB global placement and detailed placement respectively take
about 7.2% and 17.4% of total runtime, and legalization only
takes about 0.1% of total runtime. In PCAP, FIP takes about
72.6% of total runtime, and the rest of packing stages take the
remaining 2.7%. In detailed placement stage, ISM takes about
13.6% of total runtime, global move takes 0.3%, and cell inter-
leaving takes 3.5% of total runtime.

6. CONCLUSION
With the utilization of FPGA designs being pushed to the

upper limit, routability optimization is becoming a fundamen-
tal issue in modern physical design flow for FPGA. In this pa-
per we have proposed a routability-driven FPGA packing and
placement engine called UTPlaceF. A novel packing algorithm
PCAP and several detailed placement techniques for wirelength
and routability co-optimization are proposed. The experimental



Table 2: Placement Quality Comparison with ISPD’16 Contest Winners

Benchmark
UTPlaceF 1st Place 2nd Place 3rd Place

Routed WL Runtime(s) Routed WL Runtime(s) Routed WL Runtime(s) Routed WL Runtime(s)

FPGA-1 384709 215 PE* N/A 379932 118 581975 97
FPGA-2 652690 399 677877 435 679878 208 1046859 191
FPGA-3 3181331 1555 3223042 1527 3660659 1159 5029157 862
FPGA-4 5504083 1289 5628519 1257 6497023 1149 7247233 889
FPGA-5 10068879 1237 10264769 1266 UR N/A UR N/A
FPGA-6 6411247 2827 6630179 2920 7008525 4166 6822707 8613
FPGA-7 10040562 2588 10236827 2703 10415871 4572 10973376 9169
FPGA-8 8113483 2705 8384338 2645 8986361 2942 12299898 2741
FPGA-9 13616625 3407 UR† N/A 13908997 5833 UR N/A
FPGA-10 8866049 4091 PE N/A PE N/A UR N/A
FPGA-11 10834629 3267 11091383 3227 11713479 7331 UR N/A
FPGA-12 8246410 4625 9021769 4539 PE N/A UR N/A

Ratio 1.00 1.00 1.033 1.004 1.077 1.505 1.283 1.949
* PE: Placement error
† UR: Unroutable placement

Table 3: Runtime Breakdown of UTPlaceF

Benchmark PCAP GP Legalization DP Total

FIP
BLE

Packing
Related

CLB Packing
Unrelated

CLB Packing
Global Move ISM

Cell
Interleaving

FPGA-1 130 2 1 1 17 1 1 47 15 215
FPGA-2 265 3 3 1 26 1 1 74 25 399
FPGA-3 1108 7 7 3 106 1 4 228 91 1555
FPGA-4 755 8 8 3 143 1 5 280 86 1289
FPGA-5 635 9 9 5 157 1 7 256 158 1237
FPGA-6 2152 10 24 59 170 1 8 326 77 2827
FPGA-7 1723 11 28 77 235 1 9 416 88 2588
FPGA-8 1965 12 16 6 213 1 8 412 72 2705
FPGA-9 2440 15 48 35 261 2 12 498 96 3407
FPGA-10 3291 10 17 42 230 2 11 415 73 4091
FPGA-11 2287 14 38 109 235 1 10 446 127 3267
FPGA-12 3714 14 66 52 240 2 11 440 86 4625

Ratio 0.726 0.004 0.009 0.014 0.072 0.001 0.003 0.136 0.035 1.000

results show that UTPlaceF provides high-quality packing and
placement solutions, which outperform the top 3 teams of the
ISPD’16 placement contest.
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