Gate-Level Netlist Reverse Engineering for Hardware

Security: Control Logic Register Identification

Travis Meade*, Yier Jin*, Mark Tehranipoor!, and Shaojie Zhang*
“Department of Electrical Engineering and Computer Science, University of Central Florida
TDepartment of Electrical and Computer Engineering, University of Florida

Abstract—The heavy reliance on third-party resources, in-
cluding third-party IP cores and fabrication foundries, has
triggered the security concerns that design backdoors and/or
hardware Trojans may be inserted into fabricated chips. While
existing reverse engineering tools can help recover netlist from
fabricated chips, there is a lack of efficient tools to further analyze
the netlist for malicious logic detection and full functionality
recovery. While it is relatively easy to identify the functional
modules from the netlist using pattern matching methods, the
main obstacle is to isolate control logic registers and reverse-
engineering the control logic. Upon this request, we proposed a
topology-based computational method for register categorization.
Through this proposed algorithm, we can differentiate data
registers from control logic registers such that the control logic
can be separated from the datapath. Experimental results showed
that the suggested method was capable of identifying control logic
registers in circuits with various complexities ranging from the
RS232 core to the 8051 microprocessor.

I. INTRODUCTION

Globalization has drastically changed the entire integrated
circuit (IC) supply chain. A modern computer system may
include chips that have had some portion of their manufactur-
ing (fabrication, assembly, etc.) performed in many different
parts of the world, leaving it extremely difficult to trace the
origin of each component [1]. Furthermore, due to the fact
that IC fabrication heavily relies on oversea foundries and
the heightened awareness of how chips are vulnerable to
hardware Trojan insertion at said foundries, security concerns
have significantly risen recently.

In order to ensure the trustworthiness of the fabricated
chips, various hardware Trojan detection methods have been
proposed [2]-[4]. The detection accuracy is the main ob-
stacle of the previously developed non-destructive approach.
Therefore, the chip-level reverse engineering becomes the last
resort to solve the Trojan detection problem, despite its high
cost. Thanks to the advanced imaging techniques, reverse
engineering companies (e.g, Chipworks [5]) can easily derive
the full netlist from a fabricated chip. Designers who have the
full design information may compare the original design with
the reverse engineered netlist to identify whether any addi-
tional logic has been inserted during the fabrication process.
However, this method may not apply to the commercial-of-
the-shelf (COTS) ICs and SoCs with third-party IPs because
of the lack of golden models.

Restoring the trust in the suppliers can be achieved by as-
sisting the users in determining and, potentially, verifying chip
functionality. Besides the straightforward design comparison
method, a more sophisticated design analysis tools is needed.
The tool should be capable of using a recovered netlist as the
input and then recover the chip’s full functionality. Relying on
these tools, users can verify the trustworthiness of purchased

978-1-4799-5341-7/16/$31.00 ©2016 IEEE

ICs. Various tools have been developed recently in this area
[6]. These tools treat all internal registers the same way and try
to identify the functional logic through pattern matching. As
a result, the identified functional components mix the control
logic and the datapath. This leaves the testers with the difficult
task of fully recovering the design’s functionality.

Given this situation, this paper presents a novel method
for analyzing and classifying the registers of an arbitrary
unlabeled netlist. Employing this method a user is capable of
accurately identifying the control logic registers of a netlist,
whether they are malicious or intended. It will be assumed that
the chip design can be obfuscated, and techniques to sanitize
the chip and diminish the effects of such chip design will be
described. After this pre-processing, an algorithm for scoring
registers will be presented that aids in grouping registers
and, eventually, classifying the groups as logic registers and
non-logic registers. The registers’ scores will be generated in
an unsupervised fashion, with no reference list of common
module structures. This is done to help accurately analyze
chips that use a set of unintentional logical structures.

The remainder of this paper is organized as follows: we will
first cover current work related to state register identification
and classification of netlist in Section II. There will be a brief
overview of this paper’s proposed tool (RELIC) followed by
a detailed description in Section III. Section IV will present
a method for determining the effectiveness of RELIC. A
thorough analysis of three netlists will then be presented along
with an analysis of the parameters and their affects on RELIC
in Section IV. This paper will then wrap up with Section V
which will give a brief summary of the paper and present ideas
for different applications of RELIC.

II. RELATED WORKS

One of the main issues for reverse engineering digital
circuits is determining state registers. State registers, or control
logic, affect what a circuit will do with both the stored data
on the chip and the data passed in through the inputs. Subtle
manipulation of a circuit’s state registers can be destructive
and dangerous to users of these afflicted cores. Even worse,
in order to lower the time to market (TTM), many ICs are
fabricated by untrusted third parties these days. One problem
with brute force checking each manufactured chip is the
amount of time it takes. In a situation where each register
is independent of each other and can either have ‘1’ or ‘0’
value, a chip with only 100 registers has over 1030 states.

Knowing the registers of the netlist’s state logic is crucial to
understanding the chip’s functionality, malicious or not. Many
tools for specification recovery require having prior knowledge
of the state registers [7], [8]. Using these state registers the

1334

listed methods can reconstruct part of the chip’s functionality.
Methods have been proposed for state register recovery. For
example, the authors in [7], [9] utilized a similar method for
finding such registers. Both methods classify a register as a
state register if its output could indirectly affect itself. This
technique reduces to classifying a register as logic if it is in
a connected component. Although simple, it provided a good
and fast baseline for determining logic registers. It should be
noted, this technique fails to identify any data registers, if all
registers are in the same connected component.

Another strategy was to determine word-level registers.
When groups of registers are identified as words certain regis-
ters that affect their output will normally be sought after state
registers. An example of that was the subgraph isomorphism
between subgraphs of the circuit and a component library used
in [10]. If the subgraphs were identified, then their function
would become known, which would lead to knowledge of
the individual registers as well. This technique does not
perform well, if the netlist was made with the intention of
not having similar subgraphs to the libraries provided. Also
obfuscating the graph by adding useless combinational gates
between important gates can prevent subgraph isomorphism
from properly matching subgraphs. WordRev [6] used the
intersection of bounded fan-in subtrees of gates to find control
logic. This method fails to identify words if the subtree is too
small or the control logic is spoofed.

These methods show that there is a need for identifying a
netlist’s important logic registers. To fulfill said need, this pa-
per aims to classify registers quickly using a scoring function
generated by examining the logical and topological similarity
between pairs of registers in the netlist. Other methods have
been proposed that classify netlists, potentially infected with
Trojans, based on a scoring metric [2]. This noteworthy paper
also used structure checking to generate values for its metric.
However, unlike RELIC, the proposed method in [2] compared
sub-structures of the given netlists to known Trojan structures.
This reliance on a set of known structures could potentially
fail to identify novel Trojans. Our tool, RELIC, removes the
dependency of a structure library and classifies registers as
logic or data based on a self-structure analysis in an attempt to
detect potential novel Trojan structures, while maintaining an
accuracy similar to other methods on known Trojan structures.

III. RELIC

Reverse Engineering Logic Identification and Classification
(RELIC), as previously mentioned, takes in an arbitrary netlist
and produces a list of “Similarity Scores” for each register
gate pairs. These scores allow for a classification of registers
that are important (e.g., a Trojan register or an intended
chip control logic register). This paper covers a method for
generating Similarity Scores through the use of a mixture of
Dynamic Programming techniques and advanced graph algo-
rithms, thereby creating a type of pseudo graph isomorphism.
However, rather than comparing against a secondary graph
structure, the structures of the netlist’s registers are compared
against each other. This technique can also be adapted to
comparing other netlists to an original one. The idea is based
on an observation that register pairs from the same datapath

Simplify Structure Generate Pair Scores

Unprocessed Netlist

~===— S

Classify Registers
based on Final
Scores

Turn Pair Scores into
Final Scores

A

| Meta-Graph Classification |

Fig. 1: Flow Diagram for RELIC

will have a similar deep logical structure. Two data registers
with the same word rely on the same control logic registers
to propagate their signals along the same datapath from fan-
in to output. The corresponding data signals on the datapath
most-likely come from a similar logical structure from the
previous clock cycles. A similar logic structure will be present
all the way to the input signals. By taking advantage of
the similarity of the data logic registers’ fan-in structure,
RELIC was developed to accurately analyze a netlist that has
a datapath controlled by potentially obfuscated signals. This
method identifies chip logic registers by finding registers that
are not exclusively part of any datapath. Lastly this technique
can help find malicious logic inserted by others, since Trojan
logic registers normally have logic different than other original
register logic structure.

RELIC was developed to replace the graph isomorphism
approaches with a faster heuristic by loosely comparing the
topology of the fan-in logic. Due to its pseudo-isomorphism’s
fuzzy logic, RELIC can match registers of the same word
with a higher accuracy than traditional word checking methods
that require the logic to meet a very specific structure. Figure
1 shows the work flow diagram for RELIC. It can identify
registers, or even words, that are similar, but if there is an
obvious word that is improperly connected within the chip,
RELIC might allow it to go undetected. This tool can be used
in combination with functional testing (or another lower level
tool of the sort) to verify its findings.

A. Preprocessing

Taking an arbitrary pair of logic vertexes (registers or logical
gates) RELIC will generate values that represent how similar
their fan-in logic structure is to each other. The most obvious
thing to do is to check if the logic function used by the logic
vertexes is equivalent. If this preliminary check fails, a score
of near zero is given to the pair. However, this check is strict.
For example, NOR and AND have similar output types. Also
an XOR can be simulated by an OR and two AND gates. In
these two cases registers can easily have the same logic but
have varying raw structures. Thus RELIC uses a preprocessing
step to reduce the structure complexity, e.g., all XOR gates will
be reduced to AND-OR-INV logic.

When designing a netlist some gate level obfuscation might
occur, either purposefully or accidentally. Figures 2a and 2b
show simple examples of functional obfuscation. There are
two main scenarios. The first scenario is when the input logic

1335

A Ao
A A
]
B
A A

(a) Similar gate types. (b) Differing gate types.

Fig. 2: Different types of gate level obfuscation.

vertex has a similar AND-OR logic to that of its parent logic
vertex, and its output is not inversed (see Figure 2a). The
second scenario is when the input logic vertex is inversed, and
it has a different AND-OR (see Figure 2b), then the child logic
vertex can be merged. In the first part of preprocessing, the fan-
in is checked for potential inputs that can be combined. If so,
all wires can then be merged, and this process is repeated until
the logic vertexes cannot merge with any of their un-merged
children. Obviously no registers have their logic merged with
a logical gate, because we assume that registers update only
on one edge of the clock cycle.

After the above step, a color is given to INPUT, AND, OR,
Register AND, and Register OR logic vertexes. Additionally
when checking two logic vertexes one might also want to
check if the structure of one is similar to the inverse of the
other. This can be simulated by swapping AND color vertexes
with OR color vertexes and vice versa, in the inversed logic
fan-in subgraph. This color/logic swap can then be used as a
preliminary verification that the inversed logic vertexes have
the potential to be similar.

B. Generating Similarity Scores Through Topological Analysis

RELIC generates similarity scores for an arbitrary pair of
logic vertexes. Each score will fall in the range from O to
1, where scores of 1 will denote identical fan-in structure, 0
will be no common structure. These scores will be obtained
by determining the similarity of all pairs of inputs between
the logic vertexes in question. A connection will be added
to a bipartite graph, if the score was above a predetermined
threshold. A matching algorithm is then used to find the
maximum disjoint children pairs that are similar between
the original logic vertexes in the constructed bipartite graph.
Figure 3 shows an example of the bipartite matching of the
two wires.

After finding the maximum matching of the bipartite graph,
the similarity score (number of matches) for the given wire
pair is normalized by the maximum number of inputs between
the two logic vertexes (max(n, m)). Re-computing similarity
scores can hurt run-time performance, especially if a logic
vertex has a large fan-out set. To prevent re-computations, a
dynamic programming technique of memoization is used.

One question that arises is “How does this procedure handle
infinite recursion?” Based on the current scoring functions, a
pair of logic vertexes that each contain a fan-in path affected
by their respective outputs might not halt on RELIC. To
prevent this infinite loop from occurring a user defined depth,

Wire i's inputs

Wire j’s inputs

Fig. 3: Conceptual weighted matching of two wires ¢ and j.
Thicker lines would represent the best weighted matching.

Algorithm 1 Compute similarity score between two logic
vertexes in a graph, with indexes ¢ and 7, using a given depth,
d, of their fan-in subgraphs.

1: function GETSIMILARITYSCORE(graph, i, j, d)

2: max < MAX(graph[i].numChildren, graph[j].numChildren)
3 min < MIN(graph[i].numChildren, graphlj].numChildren)
4: if graphli].color # graph[j].color then

5: return 0

6: end if

7 if d = 0 then

8: return min / max

9: end if

10: Let G be a graph with a node for each child of ¢ and j
11: for a € graphli].children do

12: for b € graphlj).children do

13: stmScore <~ GETSIMILARITYSCORE(graph,a,b,d — 1)
14: if simScore > Threshold then

15: Add edge from a to b in G

16: end if

17: end for

18: end for

19: return MAXMATCHING(G) / max

20: end function

d, is also passed into each of these score queries. This depth is
reduced by 1 in each recursive function call, and if the current
depth is zero, then the return score is the smaller number
of children (min(n,m)) over the larger number of children
(max(n,m)) The pseudo-code for RELIC’s main procedure
is described in Algorithm 1.

The run-time for this algorithm can be easily determined.
Each pair of logic vertexes will be checked at most d
times. If Score(i, j, k) was already computed, the Dynamic
Programming technique of memoization would return the
previously computed value. The worst case run-time becomes
dx N2 x O(MAXMATCHING), where N is the total number
of logic vertexes in the netlist. Since maximum matching’s
run-time is polynomial, so is RELIC’s run-time, which is
one additional advantage RELIC has over traditional graph
isomorphism based approaches.

Once the similarity scores are obtained, a simple classi-
fication is performed to identify logic registers. Each register

1336

TABLE I: Control logic register identification results on different netlists with varying parameters.

Name Number of Gates | Number of Registers | Meta-Graph Threshold | Accuracy | Time
MC 8051 6590 578 0.9 89.1 10 sec
RS232 168 59 0.8 79.6 2 sec
32-bit RSA 2139 555 0.8 95.3 3 sec
AES-128 12576 3968 0.8 100.0 4 min

has a counter initialized with zero, and for each similar pair of
logic registers (register pairs that have a similarity score above
some pre-determined threshold), the logic registers respective
counters are updated. Registers with high counters (above
some pre-determined value, normally 0) are selected as non-
logic affecting registers.

IV. RESULTS

A collection of netlists, including AES, MC8051, RS232,
RSA, 349, and AES-128 were used to benchmark the perfor-
mance of RELIC. For testing purposes RELIC used a depth
of 7 on every netlist. With 100% sensitivity of recovering the
control logic registers, the overall accuracy was about 90%
except in the instance of RS232. Detailed results can be found
in Table I and the two low-accuracy cases of RS232 and
MCB8051 are discussed below. All simulations were run on
a desktop of a 3.40 GHz Intel i7-4770 processor.

A. Analysis - MC8051

The MC8051 proved to be very challenging. Due to the
size of the fan-in trees a smaller depth was used. This small
depth caused many pairs of registers to have higher scores than
what they should have. To combat this shift towards a denser
Meta-Graph a higher threshold was used. After the parameter
changes RELIC using the Meta-Graph heuristic identified 63
registers with the potential to be logic registers. All intended
logic registers were in this subset.

B. Analysis - RS232

The RS232 was an example of a netlist that can potentially
have poor results when run on RELIC. The most notable
problem was that around one third of the registers were
classified as being potential state registers. When only one
tenth of the total registers are, semantically speaking, state
registers. We can try to reduce error by changing the threshold
but it still leaves about 20% of the registers being false
positives.

This result is believed to have happened due to the structure
of the RS232 chip itself. RS232 is the concatenation of
two independent modules into one chip. This can cause the
registers to be improperly identified as being similar to each
other from different modules. These false positives can make
the actual similarity harder to detect. This false matching can
be prevented by using methods similar to those used in other
papers, such as WordRev [6]. Also using both fan-in and
fan-out RELIC can reduce the number of false positives and
improve accuracy.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel polynomial time method for
classifying control logic registers and data registers from an

arbitrary, and potentially obfuscated, netlist. The significant
advantage RELIC has over previously proposed methods for
register classification is its ability to use the given netlist
as a reference when determining data words. This allows
RELIC to bypass most obfuscation techniques and accurately
determine and group word registers. By using max-cost-flow
and Dynamic Programming RELIC is able to quickly classify
medium size netlists. The preliminary results show that this
method works on a large number of netlists with different
structures and libraries. As a secondary function the given
procedure was capable of grouping together logic with similar
functions, which can help a user when attempting to determine
the full functionality of a chip.

To increase RELIC’s run-time efficiency and capability we
plan to utilize a representative for distinguishable subgroups.
This new method may speed up the current RELIC while
generating comparable results and a larger depth can be used
on the more complex chip structures to generate a more
accurate classification of these registers. Furthermore, we aim
to combine this tool with current techniques for determining
the full functionality of chips. Tools have been developed
to analyze and generate RTL code for netlists, if given the
registers that are meaningful to the logic of the chip. The
current results produced by RELIC can be used to generate
such RTL from netlists, finally allowing end users to verify
the trustworthiness of purchased chips or IP cores.

REFERENCES

[1] Http://www.adnas.com/.

[2] M. Oya, Y. Shi, M. Yanagisawa, and N. Togawa, “A score-based classi-
fiication method for identifying hardware-trojans at gate-level netlists,”
in 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), ser. DATE ’15, 2015, pp. 465-470.

[3] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware trojans
in third-party digital ip cores,” in Hardware-Oriented Security and Trust
(HOST), 2011 IEEE International Symposium on, 2011, pp. 67-70.

[4] F. Koushanfar and A. Mirhoseini, “A unified framework for multimodal
submodular integrated circuits trojan detection,” IEEE Transactions on
Information Forensics and Security, vol. 6, no. 1, pp. 162-174, 2011.

[5] Http://www.chipworks.com/.

[6] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. Seshia, “Wordrev: Finding word-level structures in a
sea of bit-level gates,” in Hardware-Oriented Security and Trust (HOST),
2013 IEEE International Symposium on, 2013, pp. 67-74.

[71 Y. Shi, C. W. Ting, B.-H. Gwee, and Y. Ren, “A highly efficient method
for extracting fsms from flattened gate-level netlist,” in Circuits and
Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on, 2010, pp. 2610-2613.

[8] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2016, pp. 655-660.

[9]1 K. S. McElvain, “Methods and apparatuses for automatic extraction of

finite state machines,” U.S. Patent 6 182268, 2001.

W. Li, Z. Wasson, and S. Seshia, “Reverse engineering circuits using

behavioral pattern mining,” in Hardware-Oriented Security and Trust

(HOST), 2012 IEEE International Symposium on, 2012, pp. 83-88.

[10]

1337

