
An Effective Timing-Driven Detailed Placement
Algorithm for FPGAs

Shounak Dhar
University of Texas at Austin

Mahesh A. Iyer
Intel Corporation

Saurabh Adya
Intel Corporation

Love Singhal
Intel Corporation

Nikolay Rubanov
Intel Corporation

David Z. Pan
University of Texas at Austin

ABSTRACT
In this paper, we propose a new timing-driven detailed place-
ment technique for FPGAs based on optimizing critical paths.
Our approach extends well beyond the previously known
critical path optimization approaches and explores a sig-
nificantly larger solution space. It is also complementary
to single-net based timing optimization approaches. The
new algorithm models the detailed placement improvement
problem as a shortest path optimization problem, and op-
timizes the placement of all elements in the entire timing
critical path simultaneously, while minimizing the costs of
adjusting the placement of adjacent non-critical elements.
Experimental results on industrial circuits using a modern
FPGA device show an average placement clock frequency
improvement of 4.5%.

1. INTRODUCTION
In deep sub-micron technology nodes, Application-Specific

Integrated Circuits (ASICs) are becoming prohibitively ex-
pensive to design and manufacture. For this reason Field-
Programmable Gate Arrays (FPGAs) which are general-
purpose and flexible programmable hardware are gaining
more design wins in lower geometries. Modern FPGAs are
becoming popular in high performance data analytics, search
engines, autonomous cars, communication and networking
applications. These design applications mapped onto the
FPGA demand high maximum achievable clock frequency
(Fmax).

The FPGA CAD flow is similar in spirit to an ASIC CAD
flow with a few differences. The FPGA CAD flow consists of
key engines like logic synthesis, global placement, clustering,
detailed placement, routing, timing analysis, and physical
synthesis. Most of these engines concurrently optimize for
various metrics like Fmax, wiring usage, logic utilization,
and routing congestion.

A key stage in the FPGA CAD flow is detailed placement
that optimizes the placement of the design taking into ac-
count all the legality rules of the underlying FPGA target

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISPD ’17, March 19–22, 2017, Portland, OR, USA.
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4696-2/17/03. . . $15.00

DOI: http://dx.doi.org/3036669.3036682

architecture. In this paper, we propose a new algorithm for
detailed placement in an FPGA CAD flow.

1.1 FPGA Architecture and CAD Flow
Modern FPGA devices typically consist of a grid of dif-

ferent types of blocks like logic array blocks (LABs), dig-
ital signal processors (DSPs), RAMs and IOs along with
routing resources. LABs internally consist of lookup tables
(LUTs), flip-flops (FFs), multiplexers (MUXes) and routing
resources. The first step in the CAD flow is mapping the
synthesized netlist to LUTs and FFs. The LUTs and FFs
are subsequently packed into LABs following some complex
packing rules. Pre-placement may also be performed to as-
sist packing. Next, global placement and legalization are
performed to place the packed netlist on the FPGA grid,
followed by a local refinement phase or detailed placement
for optimizing metrics like wirelength, Fmax and routability
which are hard to model accurately during global placement
and packing. Finally, routing is performed to realize all the
nets using actual routing resources followed by signoff timing
analysis.

Although timing-driven placement and packing for FP-
GAs is similar in many aspects to that for ASICs, there are
a few important differences:

• LABs in FPGAs have many more pins (∼60) compared
to standard cells in ASICs (2-5)

• LABs in FPGAs have multiple output pins, hence can
be start-points of multiple timing paths whereas stan-
dard cells usually have one output and have fewer num-
ber of different output paths (depends only on fanout
of the output net)

• Routing resources in an FPGA are fixed. Hence, wire-
length and delay estimation for a net cannot be done
by simple steiner routes but have to take routing re-
sources in the underlying FPGA target device into ac-
count

1.2 Previous work on Timing-driven Placement
Timing-driven placement has two aspects - (i)the objec-

tive function or ‘metric’ that we are directly trying to opti-
mize (ii)how we explore our solution space. The objective
function can be loosely classified as net-based ([1],[3],[4],[5],[13]),
path-based ([9],[6],[10],[11]) or a hybrid of the two ([2],[8]).
The general theme of net-based objective functions is to run
timing analysis, generate slacks and criticalities for nets and
use those values to generate net weights (more critical nets

151

get higher weights). Then, placement is performed to min-
imize weighted wirelength. They do not optimize critical
paths explicitly. In a linear weighted model, nets with higher
weights dominate nets with lower weights. This necessitates
the use of constraints on length or delay or slack for nets
([15],[16]). Some algorithms count the number of critical
paths passing through a net and use this information for
generating net weights [3]. Net-based approaches work well
in a global perspective. They tend to saturate when the
placement is close enough to optimal from the global per-
spective. They leave significant room for improvement as
they do not optimize the most critical paths and may cre-
ate new critical paths while trying to reduce delays of other
nets.

Path-based optimization algorithms try to model exact
delays for the most critical paths and optimize them. Many
of them use linear programming or lagrangian relaxation for-
mulations. Some approaches use simulated annealing. Lin-
ear programs scale poorly, especially for FPGAs where LABs
can have ∼60 pins and moving one LAB can affect a large
number of critical paths. Simulated annealing also has scal-
ability problems and it cannot maintain the same solution
quality with similar runtime for increasingly larger modern
designs.

A variety of ideas have been proposed for solution space
exploration or the actual ‘placement’. The most common
ones are greedy swaps or moves or shifting of cells ([1],[6]).
Some works extend the greedy approaches to tunnel through
barriers or use hill-climbing moves like simulated annealing
([3],[5],[8]). Many of the techniques prevalent in popular lit-
erature concentrate on minimizing their objective function
first to generate a placement that can have possible overlaps
and legalize afterwards ([2],[9]). Some approaches which use
linear or integer programming also incorporate the legaliza-
tion into the LP or IP. [11] proposes a discrete optimization
technique based on choosing candidate locations but the au-
thors try to address all affected critical paths together which
is infeasible for FPGAs. Also, they choose disjoint sets of
candidate locations for different nodes on a critical path,
which restricts the solution space.

1.3 Motivation
We briefly describe state-of-the-art timing-driven detailed

placement techniques, as well as their limitations and areas
for improvement, especially with respect to FPGAs.

• Traditional net-based timing optimization tends to sat-
urate at some distance from the global optimum. Fur-
ther, they tend to oscillate. The output of net-based
detailed placement has a large scope for improvement.

• Linear programming (LP) based critical path optimiza-
tions are not good for FPGAs since LABs in FPGAs
have a large number of pins and moving one LAB af-
fects many critical paths leading to a large number of
constraints for LP.

• The discrete optimization of critical paths in [11] at-
tempts to minimize the maximum delay of all the crit-
ical paths incident on a set of nodes. This is infeasible
for FPGAs due to the large number of paths per node
(LAB)

• [11] uses a branch-and bound algorithm. We need a

faster algorithm that can cope with large modern de-
signs.

• Critical path optimization techniques which move one
path node at a time are highly susceptible to getting
stuck in local minima. Therefore, we need to optimize
all the critical path nodes concurrently.

1.4 Our Contributions
The key contributions of our work are as follows:

• We propose a new timing-driven placement algorithm
which is tailored towards high connectivity netlists like
those for FPGAs

• We propose an algorithm to optimize critical paths
where the path nodes are allowed to move to a set of
candidate locations which may overlap with candidate
locations of other path nodes. This gives more freedom
for movement than [11]

• We formulate our optimization problem as a shortest
path problem on a layered network of candidate loca-
tions for each path node

• We use hard delay limits for nets which prevents degra-
dation in the worst slack. This is an effective way of
controlling side (non-critical) paths rather than mini-
mizing the maximum delay for a set of paths.

• Our formulation enables us to use breadth-first traver-
sal (similar to timing analysis) to solve for the shortest
path, whereas [11] uses branch-and-bound.

• Timing improvements from our algorithm stack up on
conventional net-based detailed placement algorithms,
thus augmenting their capabilities.

• Our algorithm has negligible effect on wirelength and
congestion and has a small runtime overhead

The rest of the paper is organized as follows: Section 2
presents the basic concepts and the problem formulation.
Section 3 presents the algorithms used in our technique.
Section 4 presents complexity analyses for these agorithms.
Section 5 discusses the slack allocation algorithm. Section 6
discusses parallelization and speedup techniques. Section 7
discusses various schemes related to applying our algorithm
to the whole chip. Section 8 presents our experimental re-
sults and Section 9 concludes our paper.

2. PROBLEM FORMULATION

2.1 Timing Model
We introduce virtual 2-pin nets called tnets for each source-

sink pair in each net. Tnets represent timing arcs. They
capture routing information of the corresponding net seg-
ments and hence provide accurate information for timing
calculation. Delay between any two locations on the FPGA
grid is modelled in a lookup-table fashion for fast access.
The lookup tables are sufficiently small as the regular rout-
ing architecture in FPGAs leads to uniform delays. This
delay depends on current cell placement and can be easily
modified for incremental changes. We skip the details of
the delay computation. Since we would be moving a very
small fraction of the cells (and therefore, nets), the rout-
ing information and congestion maps would be practically
undisturbed during the course of our algorithm.

152

2.2 Setting up the Optimization Problem for
a Critical Path

Let’s consider the example shown in Figure 1. It shows
a portion of the FPGA grid with different types of sites.
In this grid, A-B-C-D-E is a critical path that we expect
to optimize. We pick some candidate locations for each of
the nodes A,B,C,D,E that are in close proximity to the path
(shown in Figure 2). For example B can move to B1, B2,
etc. and C can move to C1, etc. B and C can also move
to BC1, BC2, etc. with the constraint that both of them
should not end up in the same location. Legality is also
taken into account while choosing candidate locations. The
set of these candidate locations is called ‘neighborhood’ of
the path. (Details on how the neighborhood is selected is
discussed later). The set of candidate locations for a single
path node is called a ‘sub-neighborhood’. Candidate loca-
tions for two consecutive path nodes may overlap (ex: B
and C can go to BC1, BC2, etc and D and E can go to DE1,
DE2, etc.) but candidate locations for two nodes that are
not adjacent in our chosen path may not overlap (ex: AC,
AD, BD etc. are not allowed). We stress the importance of
our ‘chosen’ path. There could be another net (which may
branch into or out of the current path) from A to C making
A and C adjacent, but we only have the edges A-B, B-C,
C-D, D-E in our chosen path. We will discuss how we tackle
side paths like A-C shortly. We ensure that original loca-
tions of the path nodes are also in the candidate location
set.

Figure 1: FPGA grid with a critical path

Candidate locations for path nodes can be empty or oc-
cupied by some other object (LAB, RAM, DSP, etc.). If a
candidate location is empty, we may allow the corresponding
path node to move there. If they are occupied by some other
object, we may swap the object with the corresponding path
node. For example, in Figure 3, assume that B1 is an empty
site and B4 is occupied. In this case, B could move to B1 or
B4. If B moves to B4, the cell that is currently at B4 must
move to B’s original site.

2.3 Classification of Tnets
We now consider the set of all tnets connected to the crit-

ical path nodes and the neighborhood nodes. They can be
classified into the following 10 types (illustrated in Figure
4):

• Type 1: tnets in the critical path (one path node to
the next or previous node)

Figure 2: Neighborhood chosen around a critical
path

Figure 3: Placement of other cells in the neighbor-
hood

Figure 4: Classification of tnets

153

• Type 2: tnets between consecutive path nodes that
are not in the current critical path

• Type 3: tnets from one path node to another path
node at distance 2 or more in the critical path

• Type 4: tnets from a path node to its neighbor

• Type 5: tnets from one path node to the neighbors
assigned to the next or previous path node

• Type 6: tnets from one path node to neighbors as-
signed to path nodes at distance 2 or more in the crit-
ical path

• Type 7: tnets from a path node to outside the neigh-
borhood

• Type 8: tnets between neighbors assigned to consec-
utive path nodes

• Type 9: tnets between neighbors assigned to path
nodes at a distance 2 or more apart in the critical path

• Type 10: tnets from a neighborhood node to a node
outside the neighborhood

When a neighbor is assigned to 2 path nodes like BC1,
DE1, etc. the types of some tnets may vary depending on
the context. For example, when we are finding new locations
of tnet pins by swapping BC1 with B, we will treat BC1
as B’s neighbor and not C’s neighbor. Similarly, when we
consider swapping BC1 with C, we will treat BC1 as C’s
neighbor and not B’s neighbor.

2.4 Shortest Path Problem
Our objective is to achieve minimum delay for the path

A-B-C-D-E while ensuring that other paths do not become
more critical than the one which is currently most criti-
cal. To achieve this, we formulate a shortest path problem
with certain constraints on tnet delays. The maximum delay
that can be allowed on a tnet is denoted by delay limittnet.
These delay limits are calculated by a slack allocation algo-
rithm right after each timing analysis (discussed later).

Let there be N nodes on the critical path. This implies
there are N-1 tnets on the critical path. Each path node
has a choice of some candidate locations. We construct a
graph as follows: The graph has N layers, one for each node
in the critical path. Each layer has nodes corresponding to
the candidate locations for that path node. For example, in
Figure 5, the layer for B has nodes B1 to B5 and BC1 to
BC3. We add an edge for each feasible pair of locations of
adjacent nodes in the critical path. For example, two adja-
cent nodes, B and C have a feasible pair of locations B5, C1
if B can move to B5 and C can move to C1. The edge repre-
sents the delay between B and C after the movement. Also,
observe that all BCs in B’s layer have outgoing edges to all
Cs, BCs and CDs in C’s layer except the corresponding BC.
This exclusion is necessary to prevent nodes from overlap-
ping. BC2 in B’s layer does not have an edge to BC2 in C’s
layer as that could potentially lead us to choose both BC2s
implying that B and C both go to site BC2. The edges es-
sentially model the delays of the type 1 tnets defined above.
For example, the edge from B1 to C1 in the graph represents
the delay of the tnet B-C when B is moved to B1 and C is
moved to C1.

We want to find locations for the path nodes such that
the delay of the critical path (which is the sum of the de-
lays represented by these edges) corresponding to the node
locations is minimized.

Figure 5: Shortest path problem; All outgoing edges
for only some of the nodes are shown. Note that
BC2 in B’s layer does not have an edge to BC2 in C’s
layer. This is necessary to prevent overlaps. Similar
case with CD1 and DE2

When we move or swap nodes, the delays of tnets con-
nected to the nodes being moved will change. These tnets
can be classified into the following types:

• Case (i): delay independent of any other move or swap

• Case (ii): delay dependent on move or swap of adjacent
path node

• Case (iii): delay dependent on move or swap of a path
node at a distance of 2 or more in the critical path

Case (i) consists of tnet types 4, 7 and 10. Case (ii) consists
of tnet types 1, 2, 5 and 8. Case (iii) consists of types 3, 6
and 9.

As stated earlier, each tnet has a delay limit. Some place-
ments in the chosen candidate locations may violate the de-
lay limits of some tnet connected to the nodes being moved.
If such a case occurs, we remove that candidate location
from our graph.

Tnet delays in case (i) can be computed for each can-
didate location with the current placement information of
the other nodes in the netlist. If we find a candidate loca-
tion that violates the delay limit of some tnet, we remove
that location from our graph. Tnet delays for case (ii) are
computed by considering pairs of location assignments for
consecutive path nodes. If any pair of location assignments
causes a tnet delay limit violation, we remove the corre-
sponding edge from the graph. For case (iii), we compute
tet delays based on the current placement of nodes and we
update the delays when we reach the corresponding path
node downstream while finding the shortest path. We re-
move the edge to the corresponding node from the graph if
there is a delay limit violation.

154

3. ALGORITHMS

3.1 Finding the Shortest Path
Once we have built the graph, we can find the shortest

path from any node in the first layer to any node in the
last layer. We do this using breadth-first traversal on layers
which runs in Θ(E) time on a layered graph like ours, where
E is the number of edges. We do not need an elaborate
algorithm like Dijkstra’s due to the layered nature of our
network. The delay for a node in layer i can be calculated
from the delays for layer i − 1 and the delays of the edges
between the two layers.

We initialize delays of all nodes in the graph except the
first layer to infinity. The nodes in the first layer are assigned
delay value 0. We proceed layer by layer. At step i, we
compute the outgoing delays for each node in layer i − 1
by adding the previously computed delay for that node to
the delay of the outgoing tnet. Thus, we get a set of delay
values for each node in layer i corresponding to the incoming
tnets for that node. We set the delay for that node to the
minimum of all its incoming delays. We also keep a pointer
to the incoming tnet which led to the minimum delay for
each node. This is useful for tracing the optimal location
assignment for the critical path nodes.

The cost(cumulative delay) for a node v in the graph is
given by:

cost(v) = min
u∈input(v)

{cost(u) + edge cost(u, v)} (1)

Figure 6: A solution to the shortest path problem

When we have chosen a tnet with minimum cumulative
incoming delay for a node in level i, we also store the loca-
tions of the nodes in levels before i that affect the case (iii)
tnets. Thus we will have accurate placement information
when computing tnet delays for layer i + 1.

Once we have found the shortest path, we change the node
locations to reflect the same. Figure 6 shows a possible
shortest path. Here, the shortest path goes through A’s
originl location, B1, CD1, DE2 and E3. So, we choose A’s
original location for A, B1 for B, CD1 for C (and move the
object previously at CD1 to C’s original location), DE2 for
D and E3 for E (and move the object previously at E3 to
E’s original location), as shown in Figure 7.

Figure 7: Changing placement to reflect the shortest
path

3.2 Selecting a Critical Path
We store the delay and slack values obtained from timing

analysis in the tnets. For each tnet, we compute a parameter
called criticality (∈ [0, 1]), according to [5]:

criticalitytnet = 1− slacktnet − worst slack

Dmax
(2)

Where Dmax is the critical path delay (maximum of arrival
times of all sinks for the corresponding clock) and slacktnet

is the difference between the required and arrival times of
the tnet’s load pin.

We pick all the nets with criticality greater than a certain
threshold c. We have empirically determined the best value
of c to be 0.98. We extract critical paths from these selected
tnets based on connectivity information from the netlist.
Note that a tnet can belong to more than one critical path.

Critical paths are extracted by the following algorithm:
Initialize a critical path consisting of only one tnet. The
path is grown by successively adding tnets to the front and
back of our current critical path. For the starting node of
the critical path, we go through all the tnets that drive the
tnet connected to this node and find the one with the highest
criticality (this criticality value will be same as the criticality
of all the tnets in the current critical path) and add that
tnet to critical path. Ties in criticality value are broken
arbitrarily, but such cases are highly unlikely. For the ending
node of the critical path, we similarly go through all the
tnets that are driven by the tnet connected to this node
and find the one with the highest criticality and add it to
the critical path. Propagation stops when we reach timing
start/end points.

The criticality metric normalizes the slack of a tnet to the
longest path delay for the corresponding clock. This allows
us to distinguish between similar slack tnets, weighting ones
with a higher longest path delay to be more critical.

3.3 Neighborhood Extraction
We extract candidate locations for each node in the critical

path from within a square of size d centered at that path
node. For example, Figure 8 shows a critical path A-B-C
and three squares of side length 5 centered at A, B and
C respectively. It is highly likely that these squares would
overlap, and we have to decide which location to assign to
which node or pair of nodes adjacent in the critical path. For
this, we first check the legality of placing a critical path node

155

in all the locations lying within its square. Illegal locations
would not be considered henceforth.

After this, we compute the distances of each of the loca-
tions lying within some square from the corresponding criti-
cal path nodes (shown in Figure 8). We assign each location
to the critical path node which is closest to it (Figure 9). We
can also add a second node that is adjacent to the chosen
node in the critical path. Consider the example in Figure 9.
The black location AB is closest to A. So, we assign it to A
first. The next closest path node is C, but C is not adjacent
to A in the critical path. So, we assign it to B. The case
with the black location(s) C is similar. They are closest to
C, so we assign them to C first. The next closest path node
is A, but A is not adjacent to C in the critical path, so we
cannot assign it to A. They are not in B’s box, se we cannot
assign them to B either. We are left with C only.

It may so happen that some path nodes in the middle
of the path are assigned too few sites due to conflict with
other path nodes. In such cases, we adjust the site assign-
ment by borrowing sites from adjacent path nodes so that
each node has sufficient chance to move. If we want to assign
more locations to a particular critical path node, we traverse
the locations within its box that are assigned to some other
node(s) one by one and keep assigning them to this node
subject to the condition that the resultant number of lo-
cations assigned to the node from which we are borrowing
should not be less than that for the current node. If we as-
sign a location to 2 nodes, we ensure that they are adjacent
in the critical path.

The nodes in the middle of the critical path are connected
to two tnets which are likely to be in different directions.
However, the starting and ending nodes have only one tnet
each from the critical path. Hence we give a higher priority
to the starting and ending nodes in the critical path in case
of ties as these nodes have a definite direction of movement
which could shorten the path.

Figure 8: Extracting neighborhood around a critical
path

4. COMPLEXITY ANALYSIS
We assume that the average length of a critical path is

N , the average size of sub-neighborhood for each path node

Figure 9: Assignment of locations to critical path
nodes

is M (=d2) and the average no. of pins per node (CLB or
DSP or RAM) is p.

Extracting the critical path from a tnet: Path ex-
traction involves forward and backward propagation for the
seed tnet. At each step, we go through all the incoming or
outgoing tnets for a node that share a combinational path
with the seed tnet and choose the one with the highest crit-
icality. The amortized no. of tnets that we go through per
node is p. We do this for at most N nodes. Hence, the
complexity for extracting a path is pN .

Extracting the neighborhood from a path: The av-
erage number of sites that we consider for each path node
is M . We have to compute distances from each path node
to all sites within its box. This will require a total of MN
operations. Assigning the sites to nodes will take a constant
multiple of MN time.

Generating the graph given the neighborhood: Time
complexity here is dominated by edge costs. There are
(N − 1)M2 edges in the graph. We have to iterate over
at most 2p tnets for each edge. Hence, edge cost computa-
tion requires 2p(N − 1)M2 time. Cost computation for case
(i) tnets takes an additional pNM time.

Solving for shortest path: We iterate over the incom-
ing edges for each node at each level and store the minimum
cost. We have to go through at most M incoming edges
for each node starting from the second layer. There are a
total of M(N − 1) such nodes. Hence the total time taken
is (N − 1)M2.

We see that the overall complexity is dominated by com-
plexity of graph generation, which is O(pNM2)

5. SLACK ALLOCATION
The simplest way of allocating slack while preserving the

worst slack is to assign the minimum possible marginal de-
lay increase for each tnet. We get slack values for each tnet
from timing analysis. Assuming there are no combinational
cycles in the logic, we can count the number of distinct tim-
ing paths passing through each tnet. These are paths with
respect to different timing end points. We also compute
the length of the longest timing path (number of tnets on

156

that path) passing through each tnet by forward propaga-
tion. This can be done only once as the netlist is not being
changed. Now, we can set delay limit for a tnet as follows
(extending the concepts from [3] and [16]):

delay limittnet = delaytnet +
slacktnet − worst slack

longest path lengthtnet
(3)

This slack allocation scheme ensures that even if all tnets
increase in delay to be at their upper bound limits, the total
delay of the worst path through these tnets would not be any
worse than that of the original worst critical path. However,
note that this is not the optimal slack allocation. We have
pessimistically limited the maximum delay for some tnets
but they could go even higher without affecting the worst
slack. [12] discusses the slack allocation problem in detail.
Optimal slack allocation is generally achieved by solving lin-
ear programs, but that would be too slow for our purpose. In
our work, we use a simple slack allocation algorithm similar
to the idea described above.

6. PARALLELIZATION SCHEMES
The most widely used method of speeding up an opti-

mization procedure is to divide the problem into subprob-
lems with little or no interaction and solve them in parallel.
In out context, this would mean optimizing different criti-
cal paths in parallel. We are thus forced to ensure that the
neighborhoods that we choose for different paths are disjoint
and that there is no tnet connecting these neighborhoods.
Also, critical paths are not spread uniformly over the chip
but tend to form clusters at a few spots. Many different crit-
ical paths can share a LAB. Therefore, these paths cannot
be optimized in parallel. Instead, we look at ways to speed
up our algorithm for a single critical path.

Consider our shortest path problem. While computing
the cost for each edge in the graph, we have to iterate over
all the tnets under case (ii) incident on the two path nodes
corresponding to that edge. We have already seen that the
complexity for computing the edge costs is O(pNM2), which
is high. Hence we would like to speed up this part of our
algorithm.

Observation 1: The cost of each edge in the graph that
we form is independent of the cost of other edges.

Using this observation, we can compute all the edge costs
in parallel. A similar observation shows that delays for tnets
under case (i) can also be computed in parallel.

Observation 2: Each node within a single layer of our
graph (for finding shortest path) is independent of the other
nodes in the same layer.

Each node only depends on the nodes on the previous
layer which have outgoing edges to that node. Since we
solve for shortest path dynamically layer-by-layer, we can
parallelize the computation at each layer. This is similar
to parallelization of timing analysis where the computations
for different timing end-points are independent.

None of the above parallelization schemes affect the place-
ment or Fmax results. They only change runtime.

7. OPTIMIZATION SCHEMES FOR THE
WHOLE CHIP

We run a fixed number of iterations of our critical path
optimization algorithm. At each iteration, we select all tnets
with criticality ≥ 0.98. We extract critical paths from all of

these tnets, limiting each tnet to be in at most one critical
path. We extract neighborhoods and solve the shortest path
problem for each critical path. After this, we update timing.
We keep track of those paths which do not improve.

If certain paths are not improving even after a few itera-
tions, we iterate over those paths one by one. For each such
path, we attempt to move the nodes connected to the path
nodes closer to the path without violating the delay limit of
any tnet. We then run our shortest path algorithm on the
path.

It may so happen than a critical path cannot be optimized
as it disturbs other critical paths connected to it. In such
a case, we follow a recursive approach. We first identify
the path with higher criticality and make all its nodes fixed.
We then apply shortest path algorithm to other critical side-
paths of this path to help create more delay budget on these
side-paths. Then, we free the fixed path nodes and optimize
the original critical path.

8. RESULTS
We tested our algorithm on an industrial benchmark set.

Table 1: Benchmark set details
Design size # LABs, RAMs and DSPs
Minimum 4156
Maximum 40889
Average 14850

Number of designs 86

The industrial benchmark set details are given in Table 1.
Logic utilizations for all designs are shown in Figure 10. Our
base flow consists of an industrial strength timing-driven
global placer followed by a legalizer followed by the net-
based timing-driven detailed placement from [18]. In our
new flow, we run our critical path based detailed placer after
the net based detailed placer. We set the value of d to
5. In all the data presented in this subsection, we report
the geometric average across all benchmarks that have high
statistical confidence.

Figure 10: % Logic utilization (y-axis) for all designs

We compare our results with the net-based detailed place-
ment algorithm in [18]. On the average, our algorithm im-
proves the maximum clock frequency (Fmax) at placement
stage by 4.5% on top of the net-based placer in [18], while
degrading wirelength by only 0.2%. Our runtime overhead
is 7.5% of placement and packing runtime.

We have thus confirmed our hypothesis that we need both
net-based and path based optimization for achieving better

157

timing. Also, we verified that net based approaches work
better earlier in the flow and path-based approaches work
well towards the end.

Table 2: Results for our Algorithm
∆Fmax(%) ∆Wirelength(%) ∆Runtime(%)

4.5 0.2 7.5

Figure 11: % Fmax change (y-axis) for all designs

Figure 12: % Wirelength change (y-axis) for all de-
signs

The Fmax and wirelength histograms for all designs are
shown in Figures 11 and 12 respectively. We observe that
the majority of the Fmax changes are within 10% but there
are some extremely good outliers. The variance in the Fmax
changes are due to factors like the structure of the design,
congestion, etc. Two designs have a negative Fmax change,
which may be due to our relaxation of delay limits slightly
beyond the worst slack. Most of the wirelength changes
are within 0.5%. The negligible impact on wirelength is
expected as our algorithm only works on a few critical paths
and leaves most of the nets undisturbed.

9. CONCLUSION
In this paper, we discuss the challenges in timing-driven

detailed placement for modern FPGAs and propose a new
critical path optimization technique to address them. Two
enhancements to critical path optimization have been pro-
posed, of which one is using a shortest path formulation
and the other is using hard limits on delays for each net to
prevent timing degradation in other non-critical paths. We
also proposed parallelization schemes related to our algo-
rithm. Experimental results on industrial-scale benchmarks
demonstrate that our algorithm achieves good improvement
in Fmax with negligible wirelength and runtime penalty.

10. REFERENCES
[1] Chrystian Guth, Vinicius Livramento, Renan Netto, Renan

Fonseca, Jose Luis Guntzel, Luiz Santos, “Timing-Driven
Placement Based on Dynamic Net-Weighting for Efficient
Slack Histogram Compression”, International Symposium
on Physical Design, 2015

[2] Amit Chowdhary, Karthik Rajagopal, Satish Venkatesan,
Tung Cao, Vladimir Tiourin, Yegna Parasuram, Bill
Halpin, “How Accurately Can We Model Timing In A
Placement Engine?”, Design Automation Conference, 2005

[3] Tim Kong, “A novel net weighting algorithm for
timing-driven placement”, International Conference on
Computer Aided Design, 2002.

[4] Haoxing Ren, David Z. Pan, David S. Kung, “Sensitivity
guided net weighting for placement-driven synthesis”, IEEE
Transactions on Computer Aided Design of Integrated
Circuits and Systems, 2005.

[5] Alexander Marquardt, Vaughn Betz, Jonathan Rose,
“Timing-Driven Placement for FPGAs”, International
Symposium on Field Programmable Gate Arrays, 2000

[6] Haoxing Ren, David Z. Pan, Charles J. Alpert, Gi-Joon
Nam, Paul Villarrubia, “Hippocrates: First-Do-No-Harm
Detailed Placement”, Asia and South Pacific Design
Automation Conference, 2007

[7] Huimin Bian, Andrew C. Ling, Alexander Choong, Jianwen
Zhu, “Towards scalable placement for FPGAs”,
International Symposium on Field Programmable Gate
Arrays, 2010

[8] Natarajan Viswanathan, Gi-Joon Nam, Jarrod A. Roy,
Zhuo Li, Charles J. Alpert, Shyam Ramji, Chris Chu,
“ITOP: Integrating Timing Optimization within
Placement”, International Symposium on Physical Design
2010

[9] Tao Luo, David Newmark, David Z. Pan, “A New LP
Based Incremental Timing Driven Placement for High
Performance Designs”, Design Automation Conference,
2006

[10] Andrew B. Kahng , Stefanus Mantik, Igor L. Markov,
“Min-Max Placement for Large-Scale Timing
Optimization”, International Symposium on Physical
Design, 2002

[11] Michael D. Moffitt, David A. Papa, Zhuo Li, Charles J.
Alpert, “Path Smoothing via Discrete Optimization”,
Design Automation Conference, 2008

[12] Siddharth Joshi, Stephen Boyd, “An Efficient Method for
Large-Scale Slack Allocation”, 2008

[13] Ken Eguro, Scott Hauck, “Enhancing Timing-Driven
FPGA Placement for Pipelined Netlists”, Design
Automation Conference, 2008

[14] Chao Chris Wang, Guy G. F. Lemieux, “Scalable and
Deterministic Timing-Driven Parallel Placement for
FPGAs”, International Symposium on Field Programmable
Gate Arrays, 2011

[15] Mei-Fang Chiang, Takumi Okamoto, Takeshi Yoshimura,
“Register Placement for High-performance Circuits”,
Design Automation and Test in Europe, 2009

[16] Bill Halpin, C. Y. Roger Chen, Naresh Sehgal, “Detailed
Placement with Net Length Constraints”, International
Workshop on System On Chip, 2003

[17] Igor L. Markov, Jin Hu, Myung-Chul Kim, “Progress and
Challenges in VLSI Placement Research”, International
Conference on Computer Aided Design, 2012

[18] Shounak Dhar, Saurabh Adya, Love Singhal, Mahesh A.
Iyer, David Z. Pan, “Detailed Placement for Modern
FPGAs using 2D Dynamic Programming”, International
Conference on Computer Aided Design, 2016

158

