Cross-level Monte Carlo Framework for System Vulnerability
Evaluation against Fault Attack

Meng Li!, Liangzhen Lai?, Vikas Chandra?, and David Z. Pan'

1ECE Department, University of Texas at Austin, Austin, TX, USA
2 ARM Research, San Jose, CA, USA

ABSTRACT

Fault attack becomes a serious threat to system security and requires to
be evaluated in the design stage. Existing methods usually ignore the
intrinsic uncertainty in attack process and suffer from low scalability. In
this paper, we develop a general framework to evaluate system vulnera-
bility against fault attack. A holistic model for fault injection is incorpo-
rated to capture the probabilistic nature of attack process. Based on the
probabilistic model, a security metric named as System Security Factor
(SSF) is defined to measure the system vulnerability. In the framework,
a Monte Carlo method is leveraged to enable a feasible evaluation of
SSF for different systems, security policies, and attack techniques. We
enhance the framework with a novel system pre-characterization proce-
dure, based on which an importance sampling strategy is proposed. Ex-
perimental results on a commercial processor demonstrate that compared
to random sampling, a 2500X speedup is achieved with the proposed
sampling strategy. Meanwhile, 3% registers are identified to contribute
to more than 95% SSF. By hardening these registers, a 6.5X security
improvement can be achieved with less than 2% area overhead.

1. INTRODUCTION

System vulnerability against fault attacks has become a serious con-
cern when designing secure systems [1-3]. Different from passive side
channel analysis [4, 5], fault attack actively injects errors into hardware,
which can lead to leakage of critical information [6—8] and nullification
of security policies [9, 10]. In recent works [6-8], it has been demon-
strated that with deliberate fault attacks, the cryptographic keys of the
system can be recovered and the system execution privilege can be al-
tered as well. Therefore, it becomes important to take the fault attack
into consideration in the design stage, which leads to a strong require-
ment on the framework that is capable of evaluating the system vulnera-
bility systematically.

Several methods have been proposed to evaluate the system vulnera-
bility against fault attack in recent papers [11-13]. In [11], the authors
propose a framework that is able to identify and mitigate fault attack
vulnerability in the finite state machine (FSM). By extracting the state
transition and identifying the don’t-care states, the vulnerability of FSM
against fault attacks can be analyzed. In [13], the authors analyze the
system vulnerability against attacks that cause timing violation in the
circuits. By considering the fault generation and propagation, accurate
fault impact can be modeled for combinational logic. In [6, 14,15], fault
attack analysis is proposed for cryptographic modules including RC4,
AES, DES and so on, based on the mathematical abstraction of these
modules. The analysis regards error injection as a deterministic process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DAC 17, June 18-22, 2017, Austin, TX, USA
(© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3061639.3062220

and models the injected fault as a single-bit or single-byte error, based
on which both attack strategies and countermeasures are proposed.

Despite the extensive researches on fault attack analysis, there are still
fundamental problems that have not been solved. The first question is
how to model the fault injection and propagation process accurately. The
fault attack process is in nature probabilistic due to the following two
reasons. First, a wide range of fault injection attack techniques have
been developed, which have different capability to inject faults at tar-
geted time, denoted as temporal accuracy, and cycle-to-cycle technique
parameter variation. Secondly, the attack strategies can also be deter-
ministic or probabilistic. Capturing the uncertainty in attack process is
important but is usually ignored in existing works.

Besides the requirement on fault modeling, the second problem is how
to evaluate the system vulnerability efficiently. Because the system state
space grows exponentially with the increase of system size, construction
of the system FSM or calculation of state transition probability quickly
become intractable even for small circuits. To avoid the exploration of
FSM, different simulation-based [16] and analytical methods [17] have
been proposed. Simulation-based methods provide a general approach to
deal with different attack scenarios with high granularity, but may suffer
from slow convergence due to large sample variance. Analytical meth-
ods [17] provide fast evaluation speed but have relatively low accuracy
and granularity. How to increase the efficiency without sacrificing the
accuracy is thus another critical question.

In this paper, we propose a cross-level framework that directly tar-
gets at the two problems in fault attack evaluation. A holistic model is
first proposed to capture the probabilistic nature of attack process by re-
garding the attack parameters as samples of random variables following
different distributions. Based on the model, a security metric, defined
as System Security Factor (SSF), is proposed to measure the vulnerabil-
ity of the system and provide guidance for further design optimization.
SSF is defined as the probability of a successful attack, which incorpo-
rates the uncertainty of attack process to allow for a much more accurate
evaluation of different attack techniques and strategies. A cross-level
evaluation framework is developed to evaluate SSF in general systems
and further enhanced with a novel system pre-characterization proce-
dure. Based on the pre-characterization, registers in the system are clas-
sified to enable a hybrid evaluation with both analytical analysis and
importance Monte Carlo sampling. We summarize our contributions as
follows:

e A holistic model is proposed to capture the intrinsic uncertainty of
attack techniques in a probabilistic manner, based on which SSF
is defined to measure the system vulnerability.

o A Monte Carlo framework is developed for SSF evaluation and
further enhanced with a novel system pre-characterization proce-
dure for better efficiency.

e Our framework is verified on a commercial processor and demon-
strates good efficiency and accuracy.

The rest of the paper is organized as follows. In Section 2, we describe
the motivation of our work. Section 3 formally defines the attack model,
the holistic model for fault injection process and the proposed metric on

http://dx.doi.org/10.1145/3061639.3062220

system vulnerability. In Section 4, we present our pre-characterization
procedure, based on which an importance sampling strategy is proposed.
Section 5 describes our cross-level fault modeling strategy. We demon-
strate the performance of the framework in Section 6 and conclude our
work in Section 7.

2. MOTIVATION

Security mechanisms in modern systems are usually built in a hierar-
chical manner. To guarantee certain security policy, cross-level mech-
anisms, including hardware security primitives in circuit level, instruc-
tion set architecture support in architecture level, firmware in application
level and so on, are combined together. Higher-level security protections
rely on the correct functionality of lower-level primitives. With the se-
curity hierarchy, an end-to-end protection can be realized under cost and
performance constraints.

Processor

Main Memory

Check | [Check

Peripherals

Figure 1: Diagram for MPU execution.

Fault attack, however, directly targets at the lower level hardware. By
injecting errors into key security primitives, the functionality of the hard-
ware can be altered temporally, which fundamentally changes the as-
sumption on the hardware that the entire system security mechanisms
rely on. For example, in a processor, memory protection unit (MPU), as
shown in Figure 1, provides memory isolation features. After the data
and instruction access patterns are defined, all memory access from the
core and peripherals will be checked by MPU to determine whether the
operations are legitimate or not. Once illegal memory operations are
detected, higher-level security mechanisms will execute to isolate the
process, and thus, prevent malwares from affecting other processes ma-
liciously. If the correct behavior of an MPU is altered, it is possible for
the malware to bypass the MPU and then, the entire security mechanism.

Because fault attack threatens the system security seriously, we pro-
pose our security metric and framework towards an accurate and efficient
evaluation, target at helping the designers from the following aspects:

e Quantitatively characterize and compare the system vulnerability
against different fault attack techniques.

o Identify security critical system components for protection under
cost and overhead constraints.

e Evaluate and compare the effectiveness of different countermea-
sures and guide further design optimization.

In the following sections, we will formally define our security metric and
describe the proposed framework.

3. PROBLEM FORMULATION

In this section, we formally define the proposed metric on the system
vulnerability against fault attack. We first define the attack model by
specifying the knowledge and target of the attackers as well as the attack
flow. Then, a holistic model that captures the uncertainty in the fault
injection process is proposed. The security metric is then defined based
on the holistic model.

3.1 Attack Model

We define the attack model from the following three aspects: 1) the
knowledge of the attackers; 2) the target of the attackers; 3) the attack
flow. The attacker’s knowledge is stated as below:

e The attacker knows the system and its physical implementation.
e The attacker has physical access to the system and can inject faults
into the system.

e The attacker can choose the workload program.
e The attacker does not know the system configuration.
The target of the attacker can be roughly classified into two categories:
1) bypassing the existing security mechanisms to enable malicious op-
erations on the system [10], e.g. illegal memory access; and 2) causing
leakage of important system information [11], e.g. cryptographic keys.

f t {
O @ - —O O

O Cycle Boundary

Fault Injection Cycle T, ® Target Cycle T}

Figure 2: Fault attack flow.

To enable a successful attack, we consider the following unified attack
flow as shown in Figure 2, which is capable of representing both of the
two different scenarios. We distinguish two important timing in the at-
tack, including target cycle 7; and error injection cycle 7%, and define
t = T; — T.. Depending on the attack scenarios, the three parameters
can have different meanings. For the first scenario, 7} represents the time
in the workload program when the operations that violate system secu-
rity policies are carried out while 7, represents the time when errors are
injected into the system to help the malicious operations from being de-
tected. For the second scenario, T, still represents the time when errors
are injected while 7} denotes the time when system information can be
observed illegally, as stated in [14]. How to choose T}, Te and t highly
depends on the target and attack strategies of the attackers. In our paper,
we focus on the first scenario but the proposed metric and framework are
flexible for different attack categories. We assume the attackers want to
access and modify certain memory locations without permission. Then,
illegal memory access and modification is carried out in 7; while errors
are injected in 7. to help with the illegal memory access.

3.2 Holistic Fault Injection Modeling

To inject faults into the hardware, different techniques have been pro-
posed, including modification in power supply voltage or clock, chip
overheating, Focused Ion Beam (FIB), and so on [2]. In order to provide
a generic model, we consider timing distance ¢ and technique parameters
P to characterize attack process. p is a vector of characterization param-
eters that may vary depending on the attack techniques. For example,
for attacks based on clock modification, p consists of the amplitude and
duration of injected clock glitches, region impacted by the injection and
so on, while for radiation-based attacks, p includes the number of im-
pacted cycles, location and area of the radiated spot, and so on. Because
intrinsic uncertainty exists in fault injection process, we regard both ¢
and p as samples from random variable 7" and P that follow the distri-
bution fr p. fr, p is determined by considering the uncertainty of both
different attack techniques and attack strategies.

In this paper, we consider fault injection with radiation-based tech-
niques. Because the physical mechanism of radiation-based techniques
is similar to that of soft error induced by partial strike [2], we leverage
the physical model following [16]. To characterize the fault injection
process, we consider p = [g, 7], where g denotes the center of the radia-
tion and 7 denotes the radius of the radiated region. We assume that only
one cycle is impacted by each fault injection, but our framework can eas-
ily incorporate multi-cycle impact into the evaluation. We assume one
radiation can cause voltage transients at all the gates that are in the radi-
ated region and leverage the method in [18] to determine all the impacted
gates based on g and 7. Due to the temporal accuracy and parameter
variation of the attack techniques, we assume the corresponding random
variable 7" and P follow a uniform distribution with the range centered
at the targeted time and expected parameter. We will investigate how
the change of distribution will impact the overall system vulnerability in
experimental results.

3.3 System Security Factor

In this section, we define the security metric that measures the system

vulnerability. The execution of the system can be formally abstracted
as an FSM F = (Q7,Q0, 85,0, p, s0), where Q7, Qo, Qs, so denote
the set of possible primary inputs (PI), outputs (PO), internal states and
initial states, respectively [16]. § : Qs x Q; — Qg is the state-transition
function while p : Qs x Q1 — Qo is the output function.

Due to the fault injection attack with ¢ and p, the original FSM is
extended to a faulty FSM with a new set of states (%, state transition
function ¢ and output function p’, which has an additional dependence
on attack time and parameters:

8 Qs x Qr x Qr x Qp — O,
pIZQ{gXQ[XQTXQPHQ(j.

where Q7 and Qp denotes the set of possible values for 7" and P, re-
spectively.

For an error-free system, malicious operations or observations may
subject to existing security mechanisms and cause security violations.
Fault attack can help change the original system state transitions so that
security mechanisms are not triggered. Therefore, how easy are the at-
tackers able to create such illegal transition to bypass existing mecha-
nisms becomes the key question to answer for system vulnerability eval-
uation. We define SSF as the criterion to measure the probability for
such illegal transition considering the uncertainty in fault attack process.
More formally, let e be an indicator variable representing whether the
illegal transition is created. For a given benchmark, e is a function of
attack parameters ¢ and p. Therefore, we are able to define SSF as

SSF = Er p(E).

where E represents the corresponding random variable of e.

To evaluate SSF, we propose to use Monte Carlo based method. Let
N denote the total number of fault attacks at timing distance ¢1,...,tnN.
Then, an empirical finite-sample estimate of SSF becomes

. 1
SSF:N Z

ti,pi~fr p

e(ti, pi)-

To analyze the convergence of the Monte Carlo framework, we rely
on the weak Law of Large Number (LLN). After /V samples, we have
S elti i) ok

N Ne?’

where 0% represents the sample variance and e denotes the empirical
risk. As we can see, for fixed ¢, the convergence rate of the Monte Carlo
framework is determined by the 0%. To reduce the sample variance and
increase the convergence rate, we propose an importance sampling strat-
egy. The basic intuition of importance sampling is to increase the proba-
bility to sample from the cycles and the attack parameters that are more
likely to result in a successful attack. Let g7 p denote the actual sam-
pling distribution, then, after /N samples, the SSF can be estimated by
gep = L fr.p(t:, pi)
N gr.p(ti, pi)

tisPi~9T, P

Pr| —ErplE]| > ¢ <

e(ti, pi)-

gr,p is critical for importance sampling. In Section 4, we will propose
our pre-characterization strategy to determine gr, p.

4. IMPORTANCE SAMPLING VIA SYSTEM
PRE-CHARACTERIZATION

In this section, we describe our novel system pre-characterization pro-
cedure and derive the sampling distribution g7, p. The system pre-charac-
terization is carried out based on the following observations.

Observation 1: In a system, only a few modules are related to certain
security mechanism. These modules communicate with the core by a
few signals and determine the related transitions of FSM.

We denote these modules as security-critical modules and these sig-
nals as responding signals. When malicious operations are conducted

and detected by these critical modules, responding signals are set to
control the transition of circuit FSM to handle the security violation.
To create illegitimate transitions at the presence of malicious operation
to bypass the security policy, the attackers need to either prevent the
security-critical modules from setting the responding signals or prevent
the responding signals notifying the processor. Because only the circuits
in the fanin and fanout cones of the responding signals can potentially
impact them, we just consider attacks on these parts of the circuit.
Therefore, the first step of our system pre-characterization is identify
responding signals based on the system specification. Then, to get the
circuit components in the fanin and fanout cones of the responding sig-
nals, we unroll the circuit netlist and traverse the unrolled netlist in a
breadth-first order starting from the identified signals. Because the num-
ber of responding signals is usually small, the circuits in the fanin and
fanout cones are only of a small portion of the entire netlist, which helps
to reduce the overall sample space and the sample variance significantly.

Observation 2: Bit flips at different circuit nodes can have different cor-
relation with the flips at responding signals.

The observation enables us to further distinguish the gates or regis-
ters in the fanin and fanout cones of the responding signals. As we have
described, because the machine state transitions are controlled by these
responding signals, to create illegitimate transitions, the attackers need
to inject faults to either change the value of responding signals or block
their propagation to the core. Circuit nodes that have a high bit flip cor-
relation with responding signals are more likely to accomplish the target
and thus, should have a higher probability in the sampling distribution.

To evaluate the bit flip correlation, we define the switching signature
for each circuit node in the fanin and fanout cones. The switching signa-
ture is a sequence of binary values that indicate whether the logic value
for the circuit node switches or not at each cycle. Let a binary vector
ss(g) denotes the switching signature for circuit node g. For the ith cy-
cle, ss;(g) = 1 if the logic value switches between the (i — 1)th cycle
and the ith cycle and ss;(g) = 0 otherwise. Consider circuit node g
in the ¢th unrolled circuit, then, the bit flip correlation between g and
responding signal rs is computed by

Corri (g, rs) = [ss(g)&e(ss(rs) <)l
lss(g)l
where & represents the bitwise and operation and | - | denotes the /1
norm, which calculates the hamming weight of the binary vector. ss(rs)
is shifted to the left by 7 bits because it takes ¢ cycles for the bit flips in
the ith unrolled circuit to reach the responding signal. Note that ¢ > 0 if
g is in the fanin cone of 7s and ¢ < 0 if g is in the fanout cone of 7s.

To evaluate the bit flip correlation, in the second step of our system
pre-characterization, we first do a RTL-level simulation with synthetic
benchmarks and keep a record of the logic value for each register. Then,
gate-level logic simulation is carried out to derive the logic value as well
as switching signature for each circuit node, i.e. combinational gates.
Because we are able to use fast bit-parallel calculation, the overall calcu-
lation can be very efficient. Then, starting from the responding signals,
we traverse their fanin and fanout cones and calculate the bit flip corre-
lation for each circuit node. We use the following example to illustrate
the calculation of bit flip correlation in a responding signal’s fanin cone.

EXAMPLE As shown in Figure 3, after the logic-level simulation with
synthetic benchmark, the logic value for each circuit node is recorded.
The switching signature for each node is derived accordingly. Then, the
switching correlation for gate g1, g2, g3 and responding signal rs can be
computed as

Corro(gn, rs) = 00101101&(01001101 < 0)| _ 3
’ |00101101] 4
Corro(ga, 7s) = |01100111&(01001101 < 0)| _ 3
’ [017100111] 5
Corr (gs, rs) = [01001111&(01001101 < 1)[_ 2
’ |01001111] 5

0th Unrolled
Logic

“16gic: 01000101
$$:.01100111
e T

. "~ logic: 10001001

logic: 10001010 “<_ ss: 01001101
ss: 01001111 g1k AN

// 4o

logic: 11007001

|-~ 8s700101101

1st Unrolled
Logic

CLK

Figure 3: Example of calculating the bit flip correlation between internal gates,
i.e. g1, 92, g3, and responding signals rs.

Observation 3: Bit errors can stay in some registers without propagat-
ing to other registers or getting masked.

For these registers, sampling based method can be inefficient. This is
because for bit errors injected into these registers even with a large timing
distance t, it is still possible for them to cause illegitimate machine state
transitions. Therefore, to enable an accurate evaluation, 27 has to be
enlarged to cover a large range of values for 7', which may lead to large
sample space and large sample variance.

We denote these registers as memory-type registers and the other reg-
isters as computation-type registers. To characterize the registers, we
propose two parameters: error lifetime and error contamination number.
Error lifetime captures the number of cycles one bit error stays in the
system before gets masked, while error contamination number captures
the propagation of bit errors originating from one register to other reg-
isters. For the memory-type registers, since the bit errors tend to stay
locally without further propagation or getting masked, they usually have
a long error lifetime and close-to-0 error contamination number.

Because of the different characteristics of the memory-type and comp-
utation-type registers, we choose to use different strategies to evaluate
the system vulnerability originated from these registers. For memory-
type register, though long error lifetime makes sampling method inef-
ficient, it actually enables us to analyze the error outcome analytically.
This is because the outcome of fault attack on these registers is not de-
termined by the timing distance between fault injection cycle and target
cycle but mainly by the functionality of the memory-type registers in
the system. Therefore, we choose to evaluate these registers analytically
considering the system configuration, faulty registers, and benchmarks,
which avoids error injection simulation without compromising the over-
all accuracy.

For computation-type registers, though we still use sampling based
method for the evaluation, we can also increase the convergence rate due
to the following two reasons. On one hand, since the error lifetime for
these registers is usually small, only a small range of 7" need to be con-
sidered. On the other hand, after we finish sampling the timing distance
t, we only need to consider those registers with error lifetime larger than
t, while for the rest, we know the attack will fail because the injected
errors will get masked before the target cycle.

Therefore, the third step of our system pre-characterization would be
to determine the error lifetime and contamination number for each reg-
ister. We leverage fast RTL-level simulation with synthetic benchmarks.
Bit errors are injected into each register that is in the fanin and fanout
cones of the responding signals and the two characterization parameters
are then collected. We show the collected statistics from the commer-
cial processor we use in Figure 4 (a) and (b). As we can see, more than
half of the total registers have long lifetime and O contamination number,
which are classified as memory-type registers.

Therefore, based on the observations and the pre-characterization pro-
cedure above, we propose the following sampling strategy:

e First, we decompose the overall sampling distribution g7 p as
gr.p = g1 ' gP|T-

e Then, we sample the timing distance ¢ following the distribution

0.9 0.9
0.85| 0.85|

> >

£0.80) £0.80}

3 3

© ©

Q Q

£0.10 £0.10}

a a
0.05) 0.05|
0.005 50 06 150 200 0.005 5 10 15 26

Error Lifetime Error Contamination Number

(a) (b)
Figure 4: Distribution of characterization parameters of different registers in the
commercial processor: (a) error lifetime and (b) error contamination number.

gr. Here, for certain timing distance ¢ = ¢, we have

w;

gT(t:i) = Z-wi’

where w; = 37 o (1 + aCorri(g, rs)d(L(g) > Bi)), i de-
notes the set of gates in the fanin and fanout cones of responding
signals in the ith unrolled circuit and L(g) represents the error life-
time of g. If g is aregister, L(g) is the error lifetime of itself. If g is
a combinational gate, L(g) equals to the maximum error lifetime
of the registers in the fanout cone of ¢ in the ¢th unrolled circuit.
« and [are configurable parameters that control the calculation of
the distribution.

e Third, we sample the technique related parameters p = [g, r] for
cycle t = i following the conditional distribution gp|7 where

(1+aCorr; (g,7s)8(L(g)>f34)) Unif (r) ;
- - if g € Q;
gpir(plt = i) = > heq, 1HaCorr;(h,rs)5(L(h)>p1) .
0 otherwise

where Unif(r) denotes the uniform distribution for the radius of
the radiated area.

Following the procedure above, we can get one sample of ¢ and p from
gr,p. To determine g7, p, only logic level simulation is required for the
three steps in our pre-characterization, which can be finished efficiently.
Meanwhile, since the pre-characterization only needs to be conducted
once, its introduced overhead on the overall evaluation is negligible.

5. CROSS-LEVEL FAULT PROPAGATION
SIMULATION

In this section, we describe the proposed cross-level simulation frame-
work. The overall flow is illustrated in Figure 5. In the first step, we run
the RTL-level simulation without any fault attack, denoted as golden run.
During the golden run, golden checkpoints that contain the logic values
of all registers are dumped. Then, we follow the importance sampling
strategy to generate the sample of fault injection cycle and attack pa-
rameters. In the third step, we restart the RTL-level simulation from the
nearest golden checkpoint and run the simulation to the fault injection
cycle. The simulation then switches to gate level in the fourth step to
evaluate the gate-level mechanisms and calculate the errors latched by
registers at the end of fault injection cycle. Depending on the type of the
faulty registers, we may use analytical evaluation or restore RTL level
simulation. One fault propagation simulation is terminated when the er-
ror outcome can be determined.

5.1 RTL-level Golden Simulation

Before the fault attack run, a complete run of the benchmark is per-
formed, termed as the golden run. During the golden run, golden check-
points are dumped at intermediate points. The golden run is only per-
formed in RTL level. Because the golden checkpoints contain the logic
values of all registers in the system, they permit the following advan-
tages:

e Golden checkpoints help reduce the warm-up simulation before
the fault injection cycle in fault attack runs since the simulation
can be restarted directly at the nearest golden checkpoints.

| 1. Golden run to dump checkpoints |

Pre-characterization: 12

1. Error lifetime

2. Error cont. num. ->| 2. Two step importance sampling |
3. Bitflip corr. v

3. Start RTL-level simulation from nearest
checkpoints

(7

| 4. Gate-level fault injection |

— ——

5. Restore RTL- 6. Analytical
level simulation evaluation

|—'—l

¥

7. Injection run terminate

Figure 5: Overall cross-level evaluation framework.

e By comparison with golden checkpoints, the outcome of fault at-
tack run can be determined.

For one benchmark, the RTL-level golden run only needs to be con-
ducted once.

5.2 RTL-level Fault Attack Simulation

After the golden run, we first sample the timing distance ¢ and attack
parameter vector p following the importance sampling strategy. Then,
the RTL-level simulation is restarted from the nearest golden check-
points and runs to the fault injection cycle. The simulation is then switched
to gate level to determine the bit errors latched by registers by the end
of fault injection cycle. Depending on the type of faulty registers, we
choose different strategies for the downstream evaluation. When errors
only exist in memory-type registers, we only need analytical evaluation
to determine the error impact. Otherwise, we will inject the bit error
back to RTL level to restart the RTL-level simulation. Once the RTL-
level simulation resumes, the logic value of each register is dumped at
different checkpoints and compared with the golden run to determine
whether the target illegitimate transitions are created or not. One fault
attack run is completed thereby. The whole process is continued until
the empirical estimate converges.

5.3 Gate-level Fault Attack Modeling

Gate-level simulation only runs for the fault injection cycle. From the
sampled attack parameter vector p, we can get the radiated region and
determine all the voltage transients at the output of the impacted gates
as described in Section 3.2. Then, as shown in Figure 6 (a), we traverse
the whole circuit netlist in a topological order to propagate the voltage
transients to the registers. A voltage transient can get latched if it arrives
at the register and satisfies the setup and hold time requirements as in
Figure 6 (b). Because the generated voltage transients can get latched by
more than one registers, by the end of fault injection cycle, we determine
a set of faulty registers.

setup hold
time time
|\
|
CLK \ H
T 1
Voltage i :

Transient

i/

Figure 6: Gate-level modeling: (a) propagation of voltage transients; (b) latching
condition.

To demonstrate the necessity of including the gate-level modeling into
the overall framework, we collect the bit error patterns by the end of fault
injection cycle. As shown in Figure 7 (a), around 14.5% errors exist in
multiple bytes while for the errors within a single byte, none of the errors
exists in all the bits. This proves the inaccuracy of current assumption
on either single-bit or single-byte error. We also compare the number of
error patterns captured by considering the attack on combinational gates
and registers. As shown in Figure 7 (b), the number of error patterns
induced by the attack on combinational gates is much larger than that of

registers, which proves that simply considering fault attack on sequential
elements, i.e. registers, is not accurate enough.

Single Bit

Comb.

26.9%‘“"“'“ Byte

Single Byte

NS 22%_] Seq.
Common

(@ (b)
Figure 7: Bit error patterns generated by gate-level simulation: (a) error distribu-
tion; (b) comparison between error patterns induced by attack on combinational
gates and sequential elements.

6. EXPERIMENTAL RESULTS

In this section, we report on the extensive experiments to demonstrate
the effectiveness of the proposed Monte Carlo evaluation framework.
All the experimental results are carried out on a commercial processor.
We evaluate the security policy related to the memory access pattern for
both core and peripherals and study the fault attack vulnerability associ-
ated with MPU. We follow the attack flow as discussed in Section 3 and
evaluate SSF as the probability for the attacker to bypass the memory
access policy. The benchmark we use is written in C++ which includes
illegal memory write and read operations. We use Synopsys VCS as the
RTL-level simulator and implement our own gate-level simulator with
C++ following the algorithm shown in [16].

We first demonstrate the effectiveness of the importance sampling
strategy. The sampling distribution for the timing distance ¢ is shown
in Figure 8 (a). In Figure 8 (b), we demonstrate the reduction of sam-
ple space. As we can see, with the importance sampling strategy, the
sample space is reduced significantly. To demonstrate the increase of the
convergence rate, we compare random sampling, importance sampling
from fanin/fanout cones, and our mixed strategy that combines impor-
tance sampling with analytical analysis for memory-type registers. The
range of ¢ is 50 cycles and the range for P includes a sub-block of gates
of around 1/8 of MPU identified following [18]. As shown in Figure 9
(b), our importance sampling strategy permits much faster convergence
rate compared to the other two methods. We list the detailed statistics in
Table 9. As we can see, the sample variance of our importance sampling
strategy is 9.70 x 107°°. Compared to 0.0261 of random sampling, it
permits more than 2500X increase. Although the speedup is related to
the systems, benchmarks and uncertainty of attack process, the increase
of convergence rate significantly increases the potential of our frame-
work to deal with large practical systems.

From the SSF evaluation, we are able to recognize that there are around
3% registers that contribute to more than 95% SSF. Since we consider
radiation-based attacks, the physical mechanisms of which are similar
to that of soft error induced by particle strike [2], we are able to lever-
age similar protection techniques as proposed in [19,20]. Suppose we
use error resilient designs for the identified 3% registers, which permits
around 10X better resilience with 3X area overhead [19, 20], then the
overall SSF can be reduced by up to 6.5X with less than 2% increase of
MPU area. Though the results depend on the attack and mitigation tech-
niques, they can demonstrate the capability of our framework to identify
key circuit components that are critical to the overall system security,
which can be used to guide design optimization.

Then, we show the statistics of fault attacks on combinational gates.
In Figure 10 (a), as we can see, 68.4% of the fault attacks are masked.
28.6% of the attacks only cause bit errors at memory-type registers,
which only requires analytical analysis. Only 3.1% of the total fault
attack runs require further RTL-level simulation. This further proves
the effectiveness to distinguish between memory- and computation-type
registers. We also compare the SSF induced by attacks on combinational
gates and registers. As shown in Figure 10 (b), SSF due to fault attacks

e

I}
£
> =)
= ﬂ Z0.75
H =
SO'U 2 =—a Total Reg
I3 20.50 A—aFanin Cone Reg
I e :
o - e—e Fanin Cone Comp. Reg
004 N 2o
o 5 U2
5 M :
3 S
) 10 > P 0 5 i 15 30
Cycle Unrolled Cycles
(@) (b)

Figure 8: Effectiveness of importance sampling strategy: (a) sampling distribu-
tion for different value in Q7 ; (b) reduction of sample space with our importance
sampling strategy.

on combinational gates is around 25.8% of the SSF induced by attacks
on registers. We also notice that all these successful attacks are from the
fault injection into the fanin cone of the 3% registers as we have identi-
fied above. Therefore, to protect the MPU against fault attack, both the
registers themselves and gates in their fanin cone need to be protected.

0.100

— . Random Sampling
—— Fanin Cone Sampling

s
007 — Importance Sampling

o Strategy s
B 0.05(Random 0.0261
Fanin Cone 0.0210
002 NN Our 9.70 x 10~ °°
.025

0.000% 2000 40006000 8000 10000

Fault Injection Run
Figure 9: Convergence comparison of different sampling strategies: (a) conver-
gence plot; (b) detailed statistics for different strategies, including the number of
successful attacks out of 2000 attacks and sample variance.

We also evaluate the impact of the temporal accuracy and parameter
variation of the attack techniques on the overall SSF. For fixed attack pa-
rameter variation, we assume the temporal accuracy follows a uniform
distribution within a specific range. As shown in Figure 11(a), with the
overall range decreasing, the normalized SSF increases significantly for
both benchmarks on illegal memory write and read. To evaluate the im-
pact of parameter variation, we fix the temporal accuracy. As shown in
Figure 11 (b), as the variation of radiated gates changes from the largest,
i.e. uniform distribution over all the gates, to the smallest, i.e. delta
function centered at target gates, the normalized SSF also increases sig-
nificantly. As indicated by the results, different attack techniques can
have very different impact on the overall system security. The capability
to capture the intrinsic uncertainty in attack process is thus important to
enable a practical evaluation for different attack techniques and a feasible
guidance for different systems.

Masked

68.3%

Strategy # Succ. Attack | SSF
Both Registers 271 0.027
Comb. Gates 70 0.007

Mem. Only

Figure 10: Comparison between SSF induced by attack on combinational gates
and registers: (a) error statistics induced by attacking combinational gates; (b)
SSF comparison.

7. CONCLUSION

In this paper, we propose an accurate and efficient framework to eval-
uate system vulnerability due to fault attack. A holistic model is pro-
posed to capture the uncertainty of fault injection process, based on
which a security metric named as SSF is defined. To evaluate SSF in

+— Memory Write 404 Memory Write
Lt :
=—a Memory Read 20 ®—® Memory Read
10
0.8 .\-\'\p_'_g__'

1 10 100 Uniform "~ Dela
Range of Temporal Accuracy Spatial Accuracy

() (b)

Figure 11: Impact of temporal accuracy and attack parameter variation on SSF.

Normalized SSF
Normalized SSF

—

practical systems, a Monte Carlo framework is proposed and further en-
hanced by an importance sampling strategy based on a novel system pre-
characterization. A cross-level fault propagation modeling strategy that
is fully compatible with the Monte Carlo simulation is also integrated.
Experimental results demonstrate that with importance sampling strat-
egy, the convergence rate is increased by up to 2500X. We also examine
the impact of temporal accuracy and attack parameter variation to prove
the necessity of considering the intrinsic uncertainty in attack process.

8. REFERENCES . ,

[1] Y. Liet al., “Fault sensitivity analysis,” in Proc. Int. Conf. on
Cryptographic Hardware and Embedded Systems, 2010.

[2] A. Barenghi et al., “Fault injection attacks on cryptographic devices:
Theory, practice, and countermeasures,” Proc. of the IEEE, 2012.

[3] B. Yuce et al., “Improving fault attacks on embedded software using risc
pipeline characterization,” in Proc. IEEE Workshop Fault Diagnosis and
Tolerance in Cryptography, 2015.

[4] D. Agrawal et al., “The EM side-channels,” in Proc. Int. Conf. on
Cryptographic Hardware and Embedded Systems, 2002.

[5] R.Hund et al., “Practical timing side channel attacks against kernel space
aslt,” in Proc. IEEE Symp. on Security and Privacy, 2013.

[6] M. Tunstall et al., “Differential fault analysis of the advanced encryption
standard using a single fault,” in Proc. Int. Workshop on Information
Security Theory and Practices, 2011.

[7] L. Hemme, “A differential fault attack against early rounds of (triple-) des,”
in Proc. Int. Conf. on Cryptographic Hardware and Embedded Systems,
2004.

[8] E.Biham et al., “Impossible fault analysis of rc4 and differential fault
analysis of rc4,” in Proc. Int. Workshop on Fast Software Encryption, 2005.

[9] J. G. Van Woudenberg et al., “Practical optical fault injection on secure
microcontrollers,” in Proc. IEEE Workshop Fault Diagnosis and Tolerance
in Cryptography, 2011.

[10] B. Yuce et al., “FAME: Fault-attack aware microprocessor extensions for
hardware fault detection and software fault response,” 2016.

[11] A. Nahiyan et al., “AVFSM: a framework for identifying and mitigating
vulnerabilities in FSMS,” in Proc. IEEE/ACM Design Automation Conf.,
2016.

[12] H. Salmani et al., “Analyzing circuit vulnerability to hardware trojan
insertion at the behavioral level,” in Proc. IEEE Int. Symp. on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems, 2013.

[13] B. Yuce et al., “TVVF: Estimating the vulnerability of hardware
cryptosystems against timing violation attacks,” in Proc. IEEE Int. Symp.
on Hardware Oriented Security and Trust, 2015.

[14] C.-N. Chen et al., “Differential fault analysis on aes key schedule and some
countermeasures,” in Proc. Australasian Conf. on Information Security and
Privacy, 2003.

[15] J. Fan et al., ““State-of-the-art of secure ecc implementations: A survey on
known side-channel attacks and countermeasures.,” in Proc. IEEE Int.
Symp. on Hardware Oriented Security and Trust, 2010.

[16] M. Li et al., “A monte carlo simulation flow for seu analysis of sequential
circuits,” in Proc. IEEE/ACM Design Automation Conf., 2016.

[17] S.S. Mukherjeeet al., “The soft error problem: An architectural
perspective,” in Proc. Int. Symp. on High-Performance Computer
Architecture, 2005.

[18] M. Fazeli et al., “Soft error rate estimation of digital circuits in the presence
of multiple event transients (METSs),” in Proc. Design, Automation and Test
in Europe, 2011.

[19] S. Mitra et al., “Robust system design with built-in soft-error resilience,” J.
of Computer, 2005.

[20] M. Zhang et al., “Sequential element design with built-in soft error
resilience,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
2006.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

