
Double Patterning Lithography Friendly Detailed Routing

with Redundant Via Consideration∗

Kun Yuan, Katrina Lu†, David Z. Pan
ECE Dept. Univ. of Texas at Austin, Austin, TX 78712

{kyuan, yiotse}@cerc.utexas.edu, dpan@ece.utexas.edu

ABSTRACT
In double patterning lithography (DPL), coloring conflict and
stitch minimization are the two main challenges. Post layout de-
composition algorithm [1] [2]may not be enough to achieve high
quality solution for DPL-unfriendly designs, due to complex 2D
patterns in lower metal layers. Therefore, DPL-friendliness is
needed at routing stage [3]. Another key yield improvement tech-
nique is redundant via insertion [4] [5]. However, this would in-
crease the complexity in DPL-compliance. To make designs man-
ufacturable in DPL, we should not insert a redundant via if it
results in coloring conflict. This paper is the first work to con-
sider DPL and redundant via together. We have developed two
algorithms, post-routing DPL-aware insertion and DPL-friendly
routing with redundant via consideration to take into account re-
dundant via DPL-compliance. Experimental results show that,
compared to a DPL-aware optimization flow without redundant
via consideration, we can improve insertion rate by 43% while
still achieving zero coloring conflicts. Moreover, we can reduce
the number of vias and stitches by 9% and 17% respectively.
Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit]: Design Aids

General Terms
Algorithms, Design

Keywords
Detailed Routing, Double Patterning, Redundant Via

1. INTRODUCTION
Double patterning lithography [6] is considered as a most likely

solution for 32nm/22nm technology. In DPL, the original layout
is decomposed into two masks (colors), e.g., BLACK and GRAY.
However, this introduces the challenges of minimizing conflict and
stitch. Most researches [1] [2] focus on post layout decomposition
but it may be not enough for poor designs, especially due to
complex 2D patterns in lower metal layers. DPL-friendliness is
needed from design side. Recently, Cho et al [3] proposed the first
DPL-friendly detailed routing for highly decomposable routing.

Another key yield improvement technique is the redundant via
insertion [4, 5]. This could introduce complexity in DPL compli-
ance. The challenge comes from the metal which is used to cover
the via and the redundant via in both layers. It is commonly re-
ferred as extra metal. Besides not violating the minimum spacing
minsp rule, minimum coloring spacing mindp needs to be satis-
fied as well to avoid conflicts. Fig. 1 (a) shows a motivational
example, where the top figures are metal2 and the bottoms are
for metal1. As Fig. 1 (a) indicates, E1 and E2 are the extra
metals. To minimize the number of stitches, we prefer assigning
them the same color as the metal the via touches in corresponding
layer, which is referred as stitch-free extension. However, this may
cause conflicts due to the coloring assignment of existing layout.

∗
This work is supported in part by NSF, SRC, Sun, Qualcomm and

equipment donations from Intel.
†
Katrina Lu is now affiliated with Intel Corporation, Hillsboro OR.

In Fig. 1 (b), the stitch-free extension will introduce a conflict
in both metal1 and metal2. To resolve this issue, as Fig. 1 (c)
illustrates, we can flip the coloring of the extra metal E2 by in-
troducing an additional stitch. However, it is not always possible
to remove the conflict, such as the one in metal1. In such case,
we need to modify the layout and move one of the three features.

DPL-friendly
extension

Extra Metal

Metal2

Metal1

E1

E2

(a)

mindp

conflict

Metal2

Metal1
conflict

minsp

E2

E1

(b)

stitch

Metal1

Metal2

Move

mindp

E2

E1

(c)
Figure 1: This figure illustrates redundant via DPL-

compliance problem. A via or redundant via goes through

the corresponding triangles in metal1 and metal2. The star

denotes the feasible redundant via candidate without violat-

ing minsp. E1 and E2 are the extra metals, enclosed by solid

rectangles.

In this paper, we consider DPL and redundant via insertion
together. We develop two algorithms, post-routing DPL-aware
insertion and DPL-friendly routing with redundant via consider-
ation, to take into account redundant via DPL-compliance. The
experimental results are very promising and show the effective-
ness of our proposed algorithms.

2. PRELIMINARIES AND PREVIOUS WORK

2.1 Preliminaries
Our algorithm works on routing grids. The minsp and mindp

for metals and via cuts are taken as one-grid and two-grid size re-
spectively, but they can be easily extended to other values. Only
metal1 and metal2 are in our discussion, because the detailed
routing and DPL are mainly for low metal layers.

We explain some key concepts in Fig 2. If a redundant via can-
didate for a via does not violate minsp in the existing layout, we
refer it as feasible. If a via does not have any feasible candidate, it
is dead, otherwise alive. If two feasible candidates of different vias
can not be inserted at the same time due to minsp constraints,
there is an external conflict between them. As Fig. 2 (a) shows,
there are three vias A, B, and C. Via C is a dead via. A and B
are alive, and their feasible candidates are A1 and B1-B3 respec-
tively. There is an external conflict between A1 and B1. Instead,
we can select A1 and B2 as redundant via solutions without vio-
lating minsp. However, under DPL, when mindp is additionally
considered, the feasible candidates may result in conflicts or extra
stitches. We refer to a feasible candidate as DPL-feasible, if its
stitch-free extension configuration will not cause conflicts under
the pre determined layout and coloring. Basically, a DPL-feasible
candidate has a DPL-friendly, conflict and stitch free, redundant
via solution. If a via does not have any DPL-feasible candidate, it
is DPL-dead, otherwise DPL-alive. With the coloring assignment
in Fig. 2 (b), if the same solutions A1 and B2 are selected, it
will produce two coloring conflicts as Fig. 2 (c) illustrates when
stitch-free extension is applied. A is a DPL-dead via because its
only feasible candidate A1 is not DPL-feasible.

2.2 Previous work on DPL-friendly routing
To improve layout decomposability in metal layers, Cho [3] et

al. proposed a DPL-friendly simultaneous routing and decompo-
sition using coloring path and color shadow techniques. A two
bit-variable is introduced for each grid to keep track of the col-
orability information, which is one of the four states {BG, BG,

5.3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07.....5.00

63

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

A A1

C

B2
B

B1

B3

A A1

C

B2
B

B1

B3

Metal2

Metal1

(a)

A

C

B

A1

B2

B1

B3

A

C

B

A1

B2

B1

B3

Metal2

Metal1

(b)

A

C

B
B2

M2 conflict

A1

A

C

B
B2

M1 conflict
A1

Metal2

Metal1

(c)

Figure 2: These figures illustrate the basic concepts of fea-

sible redundant via candidate, dead and alive via. DPL-feasible

candidate, DPL-dead and DPL-alive via are also explained.

BG, BG}. As a preprocessing, all the routing blockages will be
colored by a layout decomposition algorithm and color shadow
will be performed to generate the starting grid state map for all
the routing grids. In color shadow, the state of surrounding grids
within mindp distance from the colored layout will be assigned.

For example, grids near a GRAY grid will have either BG or BG
states.

When each net is to be routed, other than the traditional costs,
they also apply DPL awareness penalty, based on current routing
solution and grid states. As an example, Fig. 3 (a) shows the ex-
isting configuration, and DPL-friendly routing will be performed
for net S-T. Assuming the path in Fig. 3 (b) is picked due to pos-
sible conflict and stitch free wiring, the grids along the path will
be colored through coloring path according to its grid states. In
coloring path, a grid with BG and BG will be deterministically
colored as BLACK and GRAY, and there will be a grid of conflict
if the state is BG. For a grid in BG state, which has the free-
dom to be in either BLACK or GRAY, it will be assigned to the
nearest color along the path to minimize the number of stitches.
After coloring a path, we will apply coloring shadow for it as
well. Fig. 3 (c) shows the colored new route with updated state
map. These three steps, DPL-friendly routing, coloring path, and
coloring shadow, repeat for all the nets.

However, the work [3] did not handle redundant via DPL com-
pliance. As an example, Fig. 4(a) shows the routing result for new
net S-T in Fig. 3(c) plus detailed metal2 information. Suppose
via C has a single feasible redundant candidate C1, and A1-A2
and B1-B2 are the feasible ones for A and B respectively. Under
the existing coloring assignment, as Fig. 4(b) illustrates, A2/B2

is not DPL-feasible because of the BG grid locations in metal1.
A1 and C1 will also be in trouble as Fig. 4(b) shows. C1 is not
DPL-feasible due to the coloring of M2 in the new S-T path. On
the other side, A1 will have conflict with the existing layout in
metal2 if its configuration is stitch-free extension. In this case,
both A and C are DPL-dead. If we simply flip the coloring of
the entire M2 in the S-T routing path to save DPL-feasible can-

BG T

S

BG
BG
BG
BG
BG

BGBG

BG

BG
BG
BG
BG BGBGBGBGBG

BG
BG
BG
BG

BGBGBG BG BG BGBG

BG
BG

BG

BG
BGBG

BG BG

BG
BG
BG

BGBG
BG
BG
BG

(a)

S

Metal2 T

(b)

T

S

BGBGBGBGBG
BG

BG BGBG
BG

BG

BG

BG
BG
BG
BG
BG

BG
BG
BGBG

Metal2

BGBG
BG

BG

(c)

Figure 3: This example shows the main idea of [3]. The

objects are layering in metal1 by default if not specially no-

tated. The checked boxes are the blockages due to minsp.

Except BG, the state is shown in the grid.

didates A1 and C1, it will make B DPL-dead in turn. As another
solution, M2 might be split to make all vias DPL-alive but at
a cost of an extra stitch. This example illustrates the fact that,
their algorithm has difficulty producing high quality solution for
both redundant via insertion and DPL.

S

T

S

T

A1

C1

C

A

B1BA2/B2

Metal 2

Metal 1

A1

C

A

BA2/B2

C1

B1

M2

(a)

S

T

S

T

A1

C1

C

A

B1B

BG

conflict

conflict

M2

Metal 2

Metal 1

A1

C1

C

A

B1B

(b)
Figure 4: This example shows the limitation of the previ-

ous work [3] for handling redundant via DPL-compliance.

3. POSTROUTINGDPL-AWAREREDUNDANTVIA
INSERTION

In our post routing redundant via insertion, the existing layout
and coloring will not be modified to honor the optimization result
from routing. We do not allow any coloring conflict resulting from
insertion because it is not manufacturable.

Problem Formulation 1 post-routing DPL-aware redundant via
insertion: Without modifying the existing layout and coloring
assignment, maximize the redundant via insertion rate while in-
troducing as few as possible stitches and zero coloring conflicts.

Inspired by the work [5], we formulate an integer linear pro-
gramming algorithm to perform insertion and coloring at the
same time. To enable simultaneous optimization, for each fea-
sible redundant via candidate of the via shown in Fig. 5 (a), we
first define four types of potential configurations depending on the
coloring of the extra metal. Fig. 5 (b)-(e) show the examples for
the feasible candidate on the right side, where (b) is the stitch-
free extension case while the other three all result in stitches by
flipping extra metal colors in one or both layers. We disable the
configuration that flips the coloring of existing routing wires to
honor pre determined solution. That is to say, the configuration
similar to Fig. 5 (f) will be forbidden because the coloring of ex-
isting metal2 is flipped. In our redundant via solutions, only the
above four potential configurations are included for maintaining
the uniformity of extra metal coloring. Other configurations with
some stitches inserted in the middle of the extra metal can be
easily extended.

Our ILP formulation is as follows and the notations can be
found in Table 1.

maximize : X

∀rij∈R

rij − λ
X

∀pk
ij

∈P

s
k
ij · o

k
ij (1)

where X

fijofvi

rij ≤ 1 ∀vi ∈ V (2)

rij + rmn ≤ 1 ∀(fij , fmn) ∈ EF (3)X

pk
ij

offij

o
k
ij = rij ∀fij ∈ F (4)

o
k
ij = 0 ∀p

k
ij ∈ CP (5)

o
k
ij + o

l
mn ≤ 1 ∀(p

k
ij , p

l
mn) ∈ ECP (6)

o
k
ij = 0 ∀p

k
ij �∈ Bij ∪ CP, ∀fij ∈ NFP (7)

The objective function (1) is to maximize the insertion rate
while minimizing the number of stitches the potentical configura-
tion introduces. λ is used to tune the relative importance between
stitches with respect to insertion rate.

Constraint (2) implies that at most one feasible candidate will
be picked for each via. The external conflict is avoided by apply-
ing Constraint (3). Constraint (4) guarantees only one potential

64

metal2

metal1

(a)

metal2

metal1

(b)

metal2

metal1

(c)

metal2

metal1

(d)

metal2

metal1

(e)

metal2

metal1

(f)

Figure 5: This example illustrates the potential configurations

for redundant via insertion in DPL.

Table 1: Notation

vi the ith via with at least one feasible redundant via
locations

V the set of all vi

fij the jth feasible redundant via location of vi

F the set of all fij

rij binary variable. rij = 1 if fij is chosen
R the set of all rij

(fij , fmn) fij , fmn are a pair of feasible redundant candidates
for different vias vi and vm (i �= m), which can not be

inserted simultaneously due to external conflict

EF the set of all (fij , fmn)

pk
ij the kth potential configuration of fij

P the set of all pk
ij

sk
ij number of stitches pk

ij will introduce

ok
ij binary variable. ok

ij = 1 if pk
ij is chosen

(pk
ij , pl

mn) a pair of pk
ij , pl

mn for different vias vi and vm

(i �= m) will cause coloring conflicts to each other

ECP the set of all (pk
ij , pl

mn)

CP the set of all pk
ij , which will cause coloring

conflict with existing layout and coloring assignment
Bij the set of best potential configurations for fij

which have minimum number of stitches and do not cause
coloring conflict with existing layout and

coloring assignment

NFP the set of all fij whose pk
ij is NOT involved in any ECP

configuration will be selected for each inserted redundant via lo-
cation. Constraint (5) and (6) are used to prevent the coloring
conflict due to insertion. Constraint (5) disables the potential
configuration which will cause coloring conflict with the existing
layout, and Constraints (6) is used to avoid the situation when a
pair of redundant vias cause coloring conflict between each other.
Constraint (7) prunes the sub optimal potential configurations of
certain feasible candidates. If a candidate can not have conflict
with existing layout or other redundant vias, we will not pick
its potential configurations which do not have minimum number
of stitches. We also adopt speed-up techniques similar to the
work [5].

4. DPL-FRIENDLYDETAILEDROUTINGWITHRE-
DUNDANT VIA CONSIDERATION

The post-routing DPL-aware redundant via insertion may not
be enough for DPL-unfriendly designs. If we only do DPL-friendly
routing as [3], we might end up with a lot of DPL-dead vias,
which do not have conflict and stitch free redundant via solutions.
Therefore, it is in high demand to consider redundant via and
DPL together during routing. Our formal problem statement is
as follows.

Problem Formulation 2 DPL-friendly Detailed Routing with
Redundant Via Consideration: Given an input netlist, perform si-
multaneous routing and coloring to minimize the number of DPL-
dead vias while maintaining highly decomposable wiring path and
other design objectives.

In our algorithm, we will first present via color shadow in Sec-
tion 4.1 to penalize DPL-dead vias during routing. Moreover, for
larger optimization space and better solution quality, we propose
equivalent transformation in Section 4.2.

4.1 Via Color Shadow
Eliminating DPL-dead vias during routing is more complicated

than dealing with dead vias as in [7]. Besides minsp, the coloring

of the layout has to be taken into account as well. In consequence,
we need to have different routing costs to predict and penalize
the DPL-dead vias, according to various coloring configurations.
These costs will be updated each time after we find a path and
assign its coloring.

Our algorithm is presented in Algorithm 1. First of all, we
should avoid hurting the DPL-alive vias in the existing layout
when routing and coloring the new nets. We propose a penalty
pair (g.V cost(B), g.V cost(G)) for each grid g in line 1-10. The
value of the pair reflects the cost of coloring the grid as BLACK
and GRAY respectively. The cost will be higher if more DPL-
feasible candidates of the existing vias will be killed due to the
grid state. Meanwhile in line 11-16 , we would like to avoid gen-
erating a DPL-dead via when routing a new net. To determine
whether a potential via v is DPL-dead, we need to know the col-
oring of the grids it links in both layers. Suppose the higher and
the lower grids which v links are v.h and v.l respectively, and their
colors are v.ch and v.cl, we introduce four costs v.V cost(v.ch, v.cl)
for each possible via v in the routing graph. These are to account
for the potential DPL-dead cases, when ch and cl can be either
BLACK(B) or GRAY(G).

The proposed DPL-dead via avoidance costs can be penalized
during rouging based on the associated grid states. It is straight-
forward for these grids with a state except BG. However, it is
tricky to deal with BG grid because of a chicken and egg problem.
BG can be assigned either BLACK or GRAY. If we do not con-
sider its exact coloring during routing as in [3], we have no idea
which one out of these proposed costs should be penalized. We
can certainly apply some estimated cost for BG grid but the so-
lution quality will be deteriorated. This motivates us to perform
simultaneous coloring and routing for BG grids.

4.2 Equivalent Transformation
In the previous work [3], when a grid is BG, its exact coloring

will not be considered during routing. It will be picked as either
BLACK or GRAY greedily after the path is determined. This
narrows the optimization space. Moreover, as discussed above, we
also need detailed coloring information for BG grid on the fly to
better eliminate DPL-dead vias. Therefore, we would like to have
certain look ahead capability to distinguish different situations,
when the BG grid is in BLACK or GRAY.

Our idea is to replace each BG grid with two equivalent grids,
as Fig. 6 illustrates, which are brothers to each other. These two
grids have the state of BG and BG, and are used to track the
different cases when this original BG is colored as BLACK and
GRAY respectively. During routing, we will apply penalty on the
equivalent grids rather than the original BG grid.

The underlying routing graph is changed accordingly as well,
as shown in Fig. 6 (b). Both the new grids link to the grids the
BG one connects. Because the two equivalent grids are physically
same, in any found path, only one of them should be there. To
ensure this, first of all, in the updated routing graph, there should
be no routing edge between the equivalent grids.

Algorithm 1 via color shadow

Require: a colored path p
Ensure: DPL-dead via avoidance cost assignment
1: for each DPL-alive via v in p do
2: for each DPL-feasible candidate rvc of v do
3: for each g ∈ Gt, which Gt denotes all the available routing

grids within mindp from rvc do
4: if when g is BLACK, it will have conflict with the stitch-

free extension of rvc then
5: g.V cost(B) += f1

6: end if
7: Similar when g is GRAY
8: end for
9: end for
10: end for
11: for each v ∈ V , which V denotes all the available via locations

within mindp from p do
12: if v will be DPL-dead when the coloring (v.ch, v.cl) of its up

and down grids is (BLACK, BLACK) then
13: v.V cost(B, B) += C2

14: end if
15: Similar when (v.ch, v.cl) has other coloring configurations
16: end for

65

BG

(a)

BG

BG

(b)

BG

BG

(c)
Figure 6: This example illustrates equivalent transforma-

tion. The solid line means there is a routing edge connecting

the two grids.

However, there will still be an illegal loop problem coming from
above equivalent transformation. During the path propagation we
may still generate a route linking the equivalent grids through a
set of other grids as Fig. 6 (c). This configuration is illegal because

the selection of BG and BG is exclusive as we just discussed. Our
solution for this problem is simple but effective. Whenever we
would like to update a cost of an equivalent grid during routing,
we will trace back to see whether its ancestors contain the brother
grid. If so, it returns true and this updating request will not be
executed.

5. EXPERIMENTAL RESULT
We implement our algorithm in C++ and test four scaled

benchmarks on Intel Core 3.0GHz Linux machine with 32G RAM.
Glpk [8] is applied as the solver for integer linear programming.
Our post-routing DPL-aware insertion is denoted as POSTDPL,
and λ is set as 0.4. On the other side, our DPL-friendly routing
with redundant via consideration is referred as DPRRV. The pa-
rameters α, β and γ are set as the same as the previous work [3]:
α and γ are 9 and 6 respectively while β >>10. We set both C1

and C2 100.
For comparative reason, we also implement a DPL-aware op-

timization flow without considering redundant via compliance
DPR+POST. In DPR, DPL-friendly routing [3] is first per-
formed. For fair comparison, we also apply the techniques in [7]
to reduce the number of dead vias. The reason is that in our
routing algorithm DPRRV, via cost shadow can eliminate dead
vias as a side effect. The DPL-dead via it primarily removes is a
super set of dead via. In the following post-routing via insertion
POST, we first apply [5] to maximize the redundant via insertion
rate. For each inserted one, we will then try to select the best
potential configuration to eliminate the resulting coloring conflict
with minimum stitches introduced. After this, if there are still
coloring conflicts due to insertion, we will remove the correspond-
ing redundant vias.

Table 2-4 presents our experiment results. For all the ta-
bles, “WL” is the total wirelength of metal1 and metal2 with
the unit um. “CPU” is the total runtime by second. “via” and
“DPDV” are the number of vias and DPL-dead vias respectively,
and “DPDV%” is the ratio of “DPDV’ over “via”. “ST(v)” is the
number of additional stitches caused by post-routing via inser-
tion. “ST(t)” is the total number of stitches in the final layout,
including both routing wires and redundant vias. “rv” shows the
number of inserted redundant vias without causing any coloring
conflict. “rv%” is the insertion rate, which is the ratio of “rv”
over “via”. The “total” row shows the sum or average for all four
test cases. “ratio” row is calculated with respect to correspond-
ing “total” item in Table 2. All of our experiments achieve 100%
routability and zero coloring conflicts.

Table 2 shows the result of DPL-aware optimization flow with-
out considering redundant via compliance, DPR+POST. DPR
only focuses on obtaining zero coloring conflicts and minimizing
the number of stitches for routing wires. However, as we find out,
it produces many DPL-dead vias, i.e, there are a large portion of
vias, averagely 6.9%, which do not have conflict and stitch free
redundant via solutions. Therefore, if we simply apply POST to
insert redundant vias, our insertion rate is only 69.4% averagely
when no resulting coloring conflict is allowed. These experimental
results demonstrate the strong demand for considering redundant
via insertion and DPL together.

To find better DPL-friendly redundant via solution, we first re-
place POST by our approach POSTDPL in post-routing phase
after applying DPR. This is denoted as DPR+ POSTDPL
and the results are shown in Table 3. By performing simulta-
neous insertion and coloring, POSTDPL can increase the inser-
tion rate to 94.1% averagely without causing any coloring conflict.
Compared to DPR+POST, although we introduce a few more
stitches due to insertion, the number is relative small compared

Table 2: DPR+POST: The DPL flow without considering

redundant via

ckt WL CPU via DPDV DPDV% ST(v) ST(t) rv rv%
C1 0.67 12 313 26 8.3 4 41 209 66.8
C2 1.67 64 757 74 9.8 3 86 519 68.6
C3 4.06 184 1004 64 6.3 13 293 696 69.3
C4 8.95 680 2062 123 6.0 21 565 1447 70.2

total 15.35 940 4136 287 6.9 41 985 2871 69.4
ratio 1 1 1 1 1 1 1 1 1

to the total number of stitches in the final layout. Moreover,
the runtime overhead is very little. On the other side, because
we also apply DPR without redundant via DPL-compliance in
this experiment, a significant number of DPL-dead vias are still
there. This implies a noticeable improvement space. It is highly
desirable to eliminate these unfriendly vias from design side.

Table 3: DPR+POSTDPL: Result for post-routing DPL-

awareness insertion

ckt WL CPU via DPDV DPDV% ST(v) ST(t) rv rv%
C1 0.67 12 313 26 8.3 3 40 288 92.0
C2 1.67 66 757 74 9.8 9 92 691 91.3
C3 4.06 188 1004 64 6.3 19 299 950 94.6
C4 8.95 683 2062 123 6.0 29 573 1962 95.2

total 15.35 949 4136 287 6.9 60 1004 3891 94.1
ratio 1 1.01 1 1 1 1.46 1.02 1.36 1.36

To eliminate those vias which do not have DPL-feasible re-
dundant via solution during design, we will further replace DPR
by DPRRV before applying POSTDPL. This is referred as
DPRRV+POSTDPL. As expected, our approach achieves av-
eragely 89% less DPL-dead vias. The insertion rate is improved
to 99.3% averagely, with zero conflicts and 73% less stitches in-
troduced. Moreover, we are able to reduce the number of total
stitches in final layout by 17%, including both routing wires and
redundant vias. The reason is that by doing equivalent transfor-
mation, the coloring of BG grid is planned during our detailed
routing. It has higher possibility to conduct global optimization.
Because of the same reason, we are also able to reduce the num-
ber of vias by 9%, while DPR has to use more vias to resolve
potential coloring conflicts. As the last mention, all these im-
provements in our approach are obtained with little overhead on
wirelength and runtime.

Table 4: DPRRV+POSTDPL: Result for DPL-friendly

Post-Routing and detailed routing with redundant via con-

sideration

ckt WL CPU via DPDV DPDV% ST(v) ST(t) rv rv%
C1 0.67 17 283 6 2.1 2 34 279 98.6
C2 1.68 90 654 13 2.0 4 61 640 97.9
C3 4.10 277 930 3 0.3 2 240 928 99.8
C4 9.03 750 1915 9 0.5 3 482 1908 99.6

total 15.48 1134 3782 31 0.8 11 817 3755 99.3
ratio 1.008 1.21 0.91 0.11 0.12 0.27 0.83 NA 1.43

6. CONCLUSION
In this paper, we have developed two algorithms to take into ac-

count redundant via DPL-compliance in post-routing and during-
routing stages respectively. Experimental results are very promis-
ing.

7. REFERENCES
[1] Andrew B. Kahng et al. Layout decomposition for double

patterning lithography. In Proc. of ICCAD, November 2008.

[2] Kun Yuan et al. Double patterning layout decomposition for
simultaneous conflict and stitch minimization. In Proc. of ISPD,
March 2009.

[3] Minsik Cho et al. Double patterning technology friendly detailed
routing. In Proc. of ICCAD, November 2008.

[4] Huang-Yu Chen et al. Novel Full-Chip Gridless Routing
Considering Double-Via Insertion. In Proc. of DAC, Jul 2006.

[5] Kuang-Yao Lee et al. Optimal post-routing redundant via
insertion. In Proc. of ISPD, April 2008.

[6] Mircea Dusa et al. Pitch doubling through dual-patterning
lithography challenges in integration and litho budgets. In Proc.
of SPIE, March 2007.

[7] G. Xu et al. Redundant-Via Enhanced Maze Routing for Yield
Improvement. In Proc. Asia and South Pacific Design
Automation Conf., Jan 2005.

[8] http://www.gnu.org/software/glpk/glpk.html/.

66

