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ABSTRACT
Double patterning lithography (DPL) is considered as a most
likely solution for 32nm/22nm technology. In DPL, the lay-
out patterns are decomposed into two masks (colors). Two
features (polygons) have to be assigned opposite colors if
their spacing is less than certain minimum coloring distance.
However, a proper coloring is not always feasible because two
neighboring patterns within the minimum distance may be
in the same mask due to complex pattern configurations. In
that case, a feature may be split into two parts to resolve
the conflict but the resulting stitch causes yield loss due to
overlay error and increases manufacturing cost. While pre-
vious layout decomposition approaches perform coloring and
splitting separately, in this paper, we propose an algorithm
to minimize the number of conflicts and stitches simulta-
neously. Our algorithm is based on grid layout model and
integer linear programming. Two techniques, independent
component computation and layout partition, are proposed
to reduce runtime of the algorithm. The experimental re-
sults show that, compared with the two phase decomposition
flow, the proposed algorithm reduces the conflicts signifi-
cantly using less stitches under reasonable runtime.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit]: Design Aids

General Terms
Algorithms, Design

Keywords
Layout Decomposition, Double Patterning Lithography, In-
teger Linear Programming

1. INTRODUCTION
As the minimum feature size decreases, semiconductor in-

dustry is facing the limitation of patterning sub-32nm due
to the delay of the next generation lithography equipment
such as Extreme Ultra Violet (EUV) [1]. Double patterning
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Figure 1: One single design is decomposed into two

masks and the pitch size is increased effectively in DPL.

lithography (DPL) [2, 3] emerges almost the only alterna-
tive for 32nm/22nm nodes and it is already used for mem-
ory products. In DPL, a single layout is decomposed into
two masks and manufactured through two exposure/etching
steps. As a benefit, the pitch size is doubled, which enhances
the resolution as illustrated in Fig. 1.

Decomposition [2, 4, 5] is a process that assigns opposite
colors if the distance between two features is less than the
minimum coloring spacing. A layout in modern design may
contain patterns which is unable to color. In this case, a
feature may be split into two parts and colored differently
to resolve the conflicts, which generates stitches. Stitches
cause yield loss due to overlay error and they also increase
manufacturing cost. After splitting, a few unresolved or even
unresolvable conflicts may remain and will be corrected by
time consuming layout redesign. Therefore, it is important
to produce high quality decomposition solution with less un-
resolved conflicts and stitches to save design and manufac-
turing effort.

There are a few layout decomposition works for DPL tech-
nology. A heuristic approach is suggested in [5] to cut trou-
blesome patterns after finding the coloring conflicts. The
patterns are pre-fragmented into smaller pieces in [6] to per-
form coloring. All these works do not have a systematical
way to minimize the number of conflicts and stitches. Color-
ing and splitting are considered in separate steps while they
are highly correlated tasks. Recently, a practical layout de-
composition flow is proposed in [7] to address design needs
for double patterning. They first detect the features asso-
ciated with unresolvable conflict cycles for layout modifica-
tion. The remaining design is then decomposed to minimize
the number of stitches based on ILP formulation. However,
in their work, the number of unresolvable conflict cycles and
splitting stitches are not optimized together.

In this paper, we propose an algorithm to decompose lay-
out for minimizing conflicts and stitches simultaneously. A
good coloring solution would help reduce the number of re-
quired stitches, and considering potential stitch locations
during coloring also enables better coloring scheme. This
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co-optimization can help improve the coloring assignment
greatly. Our optimization is based on grid layout model and
integer linear programming. Compared to a conventional
two phase decomposition flow, the proposed algorithm re-
duces the conflicts by 8.1x with 33% less stitches. Although
our approach is comparatively much slower, we can obtain
coloring solutions for all the test cases within a few min-
utes. The runtime shows linear complexity with respect to
problem size.

Our main contribution is as follows:

1. We propose a new grid model to enable bigger solution
space than previous works [5, 6] and perform simulta-
neous conflict and stitch optimization.

2. We develop an integer linear programming algorithm
to minimize the number of conflicts and stitches for
high quality solution.

3. We propose two speed-up techniques (independent com-
ponent computing and layout partition) to improve the
runtime and scalability of our algorithm. For layout
partition, we identify and solve a coloring flip optimiza-
tion problem to minimize the conflicts and stitches
across the boundary of different partitions.

The rest of the paper is organized as follows. Section 2
provides the preliminaries on double patterning decomposi-
tion and motivation of simultaneous coloring and splitting
optimization. In Section 3, we discuss the problem formu-
lation with related model and definitions. The basic ILP
formulation is described in Section 4 with two speed-up tech-
niques. Section 5 presents the experiment results and Sec-
tion 6 concludes this paper.

2. PRELIMINARIES AND MOTIVATION

mincs

(a) A DPL
decomposition
example.

conflict

mincs

(b) A coloring as-
signment with a
conflict.

mincs

stitch

(c) One feature
can be split to re-
solve the conflict
at a cost of a
stitch.

(d) Another lay-
out with smaller
distance than (a)
between the fea-
tures.

conflict

mincs

(e) Any coloring
with splitting can
not resolve the
conflicts in (d).

Overlay

(f) The weak
printability due
to overlay error.

Figure 2: This example explains the concept of conflict

and stitch.

2.1 Double Patterning Lithography
The lithography technology has been facing its limit in

printing smaller feature size 32nm/22nm. In single expo-
sure infrastructure, as Rayleigh criterion describes, hp =
k1 ∗ λ/NA, the minimum printable half pitch hp depends
on three parameters. k1 is the process difficulty factor, NA
is numerical aperture and λ is the light wavelength. Cur-
rently, keeping pitch scaled becomes extremely difficult. k1
has been pushed into its lower bound, and the immaturity
of EUV makes the 193nm wavelength remaining the main
stream lithography in the product line. The high NA (1.35)
is also challenged by the practical processing. One emerging
feasible solution is double patterning lithography. The basic
idea is to decompose the original layout into two masks as
shown in Fig. 1 and print the design by two exposure/etching
steps. The pitch size for each mask is effectively increased
without changing the minimum feature size of the original
design.

2.2 Layout Decomposition Considerations
There are two critical issues with DPL layout decomposi-

tion: coloring conflict and splitting stitch.
Coloring Conflict: If the distance between two separate

features in the same mask is less than minimum coloring
spacing mincs, they should be assigned to different masks
(colors). Otherwise, there will be a coloring conflict. This
is common in complex design patterns. Fig. 2 (a) shows a
layout with three features, and any two of them are required
to have different colors because of the insufficient spacing. A

(a) A layout for DPL de-
composition.

conflict

(b) An initial coloring as-
signment with a conflict.

conflict

(c) Splitting U feature re-
sults in another conflict.

(d) One possible solution
with one more stitch.

(e) The coloring of some
features can be modified
for better quality than
(d).

(f) Another coloring al-
teration to achieve opti-
mal solution.

Figure 3: This example shows the shortcoming of two

phase layout decomposition flow in previous works [5,6].

An unplanned coloring will need much extra effort during

splitting.
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coloring conflict will be unavoidable as in Fig. 2 (b). Some-
time, violations can be eliminated by appropriately splitting
the features like Fig. 2 (c). There are also unresolvable con-
flicts, as Fig. 2 (d) and (e) indicate, which require modifying
the design.

Splitting Stitch: The stitch exists when two touched
features are assigned to different masks. The stitch can be
inserted to split some features to resolve the conflict as indi-
cated in Fig 2 (c). However, stitch can have negative effects
such as yield loss due to overlay between the two masks
Fig. 2 (f) and increase of manufacturing cost.

Without altering layout in the scope, the general objec-
tive of layout decomposition can be stated as minimizing
the unresolved conflicts by introducing as few as possible
stitches, because the main goal of DPL is to separate the
features within mincs to enable the printability despite the
side effects of the stitches.

2.3 Simultaneous Optimization
The existing works insert stitches after coloring to resolve

conflicts. Without planning possible splitting during color-
ing, it is not an easy task to eliminate the conflict. Consid-
ering a layout in Fig. 3 (a), we have a coloring solution in
Fig. 3 (b). During the splitting, the U feature should be cut
into two parts to remove the conflict but we have to further
check whether the splitting will result in another conflict like
Fig. 3 (c). In such case, the coloring of the neighborhood fea-
tures need to be reconsidered to avoid unnecessary stitches
like Fig. 3 (d) and enable optimal solution in Fig. 3 (e) or (f).
This is a simple example, but as we can see, it takes much
extra effort to eliminate the conflict after coloring and has
potential risk producing non optimal result. Given the com-
plexity of modern design, the two phase approach will have
extreme difficulty handling the exploding consideration. If
the initial coloring configuration is poor, it may hardly pro-
duce high quality solution even after tremendous effort. This
motivates us simultaneous conflict and stitch minimization
during layout decomposition.

3. PROBLEM FORMULATION

3.1 Grid Layout Model

A D
B

C

E

conflict

(a) A DPL layout
example for conflict
elimination.

B

C
A D

E

(b) A possible
splitting on A with
one more cut on E.

A D
B

C

E

(c) An alternative
cut on A with no
other stitches.

Figure 4: This example shows that different stitch can-

didates can lead to different solution qualities.

Considering splitting during coloring is a challenging prob-
lem. First of all, the stitch configurations are highly corre-
lated and all the potential locations need be considered for
global optimality. Fig. 4 (a) is a case with two conflicts.
As we can see, two possible splitting choices on A lead to
two different solutions, Fig. 4 (b) and (c). The first one has
two stitches, where the latter one associates with only one.

A D
B

C

(a) A DPL lay-
out example and D
is not expected to
have stitches.

A D
B

C

conflict

(b) A coloring
assignment with a
conflict between A
and B.

A D
B

C

(c) A is split to
solve the coloring
conflict.

A D
B

C

(d) under the case
of (c), D is forced to
be divided into two
pieces.

Figure 5: This example shows the difficulty of predicting

where the splitting is needed.

Moreover, we can even hardly predict where we could have
a splitting due to some chain effect. For example, the right
most feature D is not expected to be cut in Fig. 5 (a) be-
cause it is only adjacent to one single feature A. However,
given a coloring assignment as shown in Fig. 5 (b), A will be
split to resolve the conflict between A and B like Fig. 5 (c).
As a result, D also needs to be broken into two segments as
shown in Fig. 5 (d). From these examples, we can see that
it is necessary to consider but difficult to determine all the
stitch candidates.

In order to overcome these issues, we will map the whole
layout into grids with its size to be half the pitch of the
original design. Each grid is either empty or fully occupied
by the patten, and each occupied grid will be assigned one
color. Therefore, any boundary between grids is a potential
splitting location. This is shown in the Fig. 6. Essentially,
we provide fine resolution for splitting options. This model
is able to offer sufficient stitch candidates for all the features
across the design in practice and the solution space is much
bigger than previous works [5, 6]. The discretization is rea-
sonable because a design follows underlying regular pitches
in modern layout. Minimum coloring spacing mincs is taken
as two-grid size to double the spacing for each mask in this
paper and also subject to change according to given mincs.

mincs mincs

Figure 6: The proposed grid layout model.
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A
B

C D

(a) C-D is a block-
ing path

A
B

C D E
F

(b) C-F is not a
blocking path.

Figure 7: The examples illustrate the blocking path for

A and B, and the solid rectangle marks the bounding

box.

3.2 Terms and Problem Formulation
Before formulating our problem, we will first define the

terms in the grid layout model.

Definition 1 occupied grid OG: The grid filled by the lay-
out.

The OG must be assigned one of the two colors: GRAY and
BLACK.

Definition 2 blocking path BP: Given two occupied grids
OG1 and OG2, a blocking path is a path when

1. It is fully composed of the OGs and connects OG1 and
OG2.

2. OG1 and OG2 are touching its two ending grids, re-
spectively.

3. This path is within the bounding box of OG1 and OG2.

As shown in Fig. 7 (a), C-D is a blocking path for A and
B. In another example Fig. 7 (b), C-F is not a BP because
a part of it is beyond the bounding box.

Definition 3 potential conflict grid pair PCGP and poten-
tial stitch grid pair PSGP: Given two occupied grids OG1
and OG2,

1. If the distance between OG1 and OG2 is less than
mincs and the two grids are not touching, they form a
potential conflict grid pair.

2. If OG1 and OG2 are touching, they form a potential
stitch grid pair.

The distance between a pair of OGs is the minimum dis-
tance between any two points from the OGs. Take Fig. 7 (b)
as an example, the distance for untouched B and C is

√
2

grid size due to two closest corners, which is smaller than
mincs. Therefore, they form a PCGP.

Definition 4 stitch grid pair SGP: If the grids of a PSGP
are assigned different colors, it is a stitch grid pair.

Definition 5 conflict grid pair CGP: If a PCGP is in the
identical color, and there is no blocking path connecting
them in the same mask, it is a conflict grid pair.

The definition of SGP is straightforward as in Fig. 8 (a).
Fig. 8 (b) shows the normal CGP cases, where a PCGP is
colored identically and unconnected. B-F and A are within
the minimum coloring spacing and not connected in the
same mask, so any of them and A is a CGP. There are also
some special CGP cases that we need to further consider

blocking path in order to avoid false recognition of lithogra-
phy friendly pattern. If two untouched grids are electrically
connected through a blocking path, we should not consider
it as a coloring conflict. As in Fig. 8 (c), A and B has a BP
in the same mask between them, and it is indeed a normal
jog. In contrast, although there is a path (not BP) connect-
ing A and B in Fig. 8 (d), they are in fact isolated locally
within the bounding box and would have weak printability.

A B

(a) A and B is
a SGP. They are
touching and in dif-
ferent colors.

C
A

B

D
E
F

(b) A and any of
B-F is a CGP be-
cause they are in
the same mask and
unconnected within
minimum coloring
spacing.

A
B

(c) A and B is not a
CGP because there
is a blocking path
connecting them in
the same mask.

A
B

(d) A and B is a
CGP since the con-
nection is not a
blocking path.

Figure 8: The examples illustrate stitch grid pair and

conflict grid pair for PSGP/PCGP A and B. The solid

rectangle in (b) encloses all the grids whose distance to

A is less than the minimum coloring distance, and the

dash box in (c) and (d) is the bounding box of A and B.

In our work, we use the number of SGPs and CGPs as the
cost, which assigns higher weight to the grids that are asso-
ciated with more conflicts/stitches. Formally, we formulate
the layout decomposition optimization problem as follows:

Problem Formulation: Given a grid layout, color it
into two parts (GRAY and BLACK). The primary objective
is to minimize the number of CGPs and the second objective
is to minimize the number of SGPs.

We prefer a solution with less CGPs than one with smaller
number of SGPs but more CGPs, because a layout with non
zero CGPs is essentially not manufacturable and a solution
with less CGPs reduces expensive redesign effort.

4. ALGORITHM
In this section, we will present our integer linear program-

ming based layout decomposition algorithm. The entire flow
is shown in Figure 9. After mapping the design to grid
model, we will process the grids and formulate the basic
ILP formulation. Since the timing complexity for ILP is
very high, two speed up techniques, independent component
computation and layout partition, are applied to divide the
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Layout Mapping
(Grid  Model)

ILP Formulation
(Independent Component Computation)

(Layout Partition)

ILP Solving

Solution Merging
(Coloring Flip Optimization)

Figure 9: The overall layout decomposition flow.

Table 1: Notation for basic ILP formulation

ogi,j occupied grid which i and j are its coordinates.
xi,j binary variable that denotes the color of ogi,j .

xi,j = 1 if the color is GRAY, otherwise, it is BLACK.
sij,mn binary variable sij,mn = 1 if ogi,j and

ogm,n is a SGP.
cpq,uv binary variable cpq,uv = 1 if ogp,q and ogu,v

is a CGP.
SP the set of PSGPs.
CP the set of PCGPs.

Ppq,uv the set of BPs connecting ogp,q and ogu,v.

pk
pq,uv the kth BP connecting ogp,q and ogu,v.

nk
pq,uv the number of grids in pk

pq,uv.

gk
pq,uv binary variable gpq,uv = 1 if pk

pq,uv

is a GRAY BP.

bk
pq,uv binary variable bpq,uv = 1 if pk

pq,uv

is a BLACK BP.

whole problem into several smaller problems. Finally, the
layout decomposition for the entire design can be obtained
by merging the subproblem solutions. For better solution
reunion, we formulate a problem of coloring flipping opti-
mization through ILP.

4.1 Basic ILP Formulation
In this subsection, we will show how to formulate double

pattern layout decomposition into ILP. To better present
our method, we first describe the notation in Table 1.

The simultaneous coloring and splitting optimization can
be formulated as follows:

min(
X

sij,mn∈SP

sij,mn + α
X

cpq,uv∈CP

cpq,uv) (1)

subject to

xi,j + (1 − xm,n) ≤ 1 + sij,mn ∀sij,mn ∈ SP (2)

(1 − xi,j) + xm,n ≤ 1 + sij,mn ∀sij,mn ∈ SP (3)
X

xe,f∈pk
pq,uv

xe,f ≤ (nk
pq,uv − 1) + gk

pq,uv ∀pk
pq,uv ∈ Ppq,uv (4)

X

xe,f∈pk
pq,uv

(1−xe,f ) ≤ nk
pq,uv(1−gk

pq,uv) ∀pk
pq,uv ∈ Ppq,uv (5)

X

xe,f∈pk
pq,uv

(1 − xe,f ) ≤ (nk
pq,uv − 1) + bk

pq,uv ∀pk
pq,uv ∈ Ppq,uv

(6)
X

xe,f∈pk
pq,uv

xe,f ≤ nk
pq,uv(1 − bk

pq,uv) ∀pk
pq,uv ∈ Ppq,uv (7)

xp,q + xu,v ≤ 1 + cpq,uv +
X

k

gk
pq,uv ∀cpq,uv ∈ CP (8)

(1−xp,q)+(1−xu,v) ≤ 1+cpq,uv+
X

k

bk
pq,uv ∀cpq,uv ∈ CP (9)

The objective function (1) is to minimize the weighted sum-
mation of SGPs and CGPs. Parameter α is used to tune the
relative importance between SGP and CGP and can be set
to ensure the priority of CGP elimination. All the PCGPs
CP and PSGPs SP are pre determined by examining the
neighboring grids for each OG.

Constraints (2) and (3) are used to identify SGP from
PSGP. According to the definition of SGP, we need to know
whether the PSGP grids have opposite colors. Whenever
xi,j and xm,n have opposite values, the left hand side of one
of the constraints will be two. As a result, sij,mn must be
assigned one to satisfy the constraints, which detects a SGP.

The usage of Constraints (4)-(9) is to determine whether a
PCGP forms a CGP. Identifying CGP takes more effort. Be-
sides checking the colors of PCGP, we need to know whether
there is a blocking path in the same mask. All the possible
BPs Ppq,uv can be easily enumerated by depth first search
on the occupied grids within the bounding box. We can in-
vestigate their coloring using Constraints (4)-(7). The cor-
responding binary variable gk

pq,uv/bk
pq,uv will be true only

if the grids of some blocking path are in the same mask.
Constraints (8) and (9) evaluates the conditions for CGP. A
conflict will be reported only if a PCGP grids are assigned
same color and the possible BPs gk

pq,uv/bk
pq,uv do not exist.

The proposed integer linear formulation can minimize the
number of conflicts and stitches simultaneously. However,
because ILP is NP-complete, it is not affordable to directly
apply basic ILP formulation for large modern designs.

4.2 Speed-Up Techniques
In this section, we will discuss two techniques, indepen-

dent component computation and layout partition to accel-
erate the ILP formulation in Section. 4. The key idea is to
use divide and conquer heuristic to convert the problem into
smaller subproblems.

4.2.1 Independent Component Computation
We propose independent component computation for re-

ducing the ILP problem size without losing optimality. In
real layout, we observe many isolated occupied grid clusters,
i.e. there are no PSGPs or PCGPs formed between them.
Therefore, we can break down the whole design into several
independent components as shown in Fig. 10, and apply ba-
sic ILP formulation for each one. The overall solution can be
taken as the union of all the components without effecting

(a) (b)

Figure 10: An example of breaking big layout into two

independent components, which have no interacted PS-

GPs/PCGPs and are marked by the dash circle.

111



the global optimality. The runtime of ILP formulation scales
down dramatically with the reduction of the variables and
constraints, and the coloring assignment can be effectively
accelerated.

Our independent component finding algorithm is given in
Algorithm. 1. The timing complexity of this algorithm is
O(V + E), which V is the total number of the OGs and E
is the total number of PSGPs and PCGPs.

Algorithm 1 Independent Components Finding

Require: The grid layout
Ensure: The independent components, having no PS-

GPs/PCGPs between any pair of components
1: Build a graph G(V,E), V ∈ φ, E ∈ φ.
2: for each OG ogi,j do
3: Create one graph node vi,j .
4: end for
5: for each PSGP/PCGP (ogi,j , ogm,n) do
6: Create one edge between vi,j and vm,n.
7: end for
8: Perform the depth first search on the graph G to find the

independent components.
9: Map the graph nodes in each component back to OGs ogi,j

and return.

4.2.2 Layout Partition

(a) (b)

Figure 11: An example of layout partition. The dotted

line cuts the layout into two parts while the dash circle

marks PCGP and PSGP locations across the boundary

of the two partitions.

Some components may still have prohibitive problem size
even after independent component computation. Our heuris-
tic is to divide a big component into several small connected
partitions and perform ILP approach for each one, indicated
in Fig. 11. Different from the independent component com-
putation, there will be some PSGPs/PCGPs between dif-
ferent partitions. Although we solve each partition by ILP,
the united solution does not guarantee to be optimal for the
whole component in terms of ILP objective since the parti-
tion boundaries are not considered in the optimization.

In order to minimize the loss of global optimality, we need
to partition the circuit with as few as possible cuts while en-
suring that each partition can be efficiently solved by ILP.
Balanced min-cut partition method is applied in our work.
We first construct a graph G which is the same as in in-
dependent component computing. For each vertex (OG),
we assign a weight as its edge degree plus one, taking into
account the number of both variables and constraints it asso-
ciates with. A threshold Wt is pre defined for the maximum
node weight summation we allow for each partition. The
number of partitions can be calculated as ⌈ W

Wt
⌉, where W is

the total vertex weight of G. Suppose W is 10000 and Wt

is 3000, the component will be partitioned into 4 parts.

A

B

C

SGP

CGP

(a) one possible mer-
gence with one CGP
and one SGP.

A

B

C

(b) another union
with no CGPs/SGPs
by flipping partition
C coloring in (a).

Figure 12: Different coloring flips have distinct numbers

of SGPs/CGPs across the boundaries, marked by the dot

lines.

4.3 Solution Mergence
After solving the solution for each component/partition,

we need to merge the coloring assignment as a whole. While
it is trivial to combine the solutions for independent com-
ponents, it comes a coloring flip optimization problem when
we try to merge the solutions for all the partitions. After the
unitization, the possible SGPs and CGPs for each partition
can be divided into two disjoint subsets, the internal con-
flicts/stitches SGP i/CGP i which are inside the same par-
tition and external conflicts/stitches SGP e/CGP e crossing
the boundary of different partitions. Although we are not
able to change SGP i/CGP i in the mergence, it is possible to
reduce the number of SGP e/CGP e by flipping the coloring
of some partitions. This is illustrated in Fig. 12, which has
three partitions. The coloring mergence in Fig. 12(a) pro-
duces one SGP and one CGP across the boundaries. If we
flip the coloring of partition C from the BLACK to GRAY,
it becomes a SGP/CGP free assignment. To optimize the
flipping scheme, we define coloring flip optimization as fol-
lows.

Coloring Flip Optimization: Given a number of parti-
tions and their coloring solutions for one independent com-
ponent, choose the best flipping scheme to minimize total
cost of SGP e and CGP e, which cross the boundaries among
all the partitions.

Because the number of partitions are usually not large, we
also use ILP formulation to solve this problem. The relevant
notation can be found in Table 2.

Table 2: The notation for coloring flipping problem

fi binary variable fi = 1 if partition i flips its coloring.
f0

i,j binary variable f0

i,j = 1 if both partitions flip
or do not flip the coloring.

f1

i,j binary variable f1

i,j = 1 if only one partition

between i and j flips its coloring.
se0
i,j the number of stitches between partition i and j

if both flip or do not flip the coloring.
ce0
i,j the number of conflicts between partition i and j

if both flip or do not flip the coloring.
se1
i,j the number of stitches between partition i and j

if only one partition flips its coloring.
ce1
i,j the number of conflicts between partition i and j

if only one partition flips its coloring.

The formulation is as follows:

min
X

(f0

i,j(s
e0
i,j + αce0

i,j) + f1

i,j(s
e1
i,j + αce1

i,j)) ∀i, j (10)
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subject to

fi + fj ≤ 1 + f0

i,j (11)

(1 − fi) + (1 − fj) ≤ 1 + f0

i,j (12)

fi + (1 − fj) ≤ 1 + f1

i,j (13)

fj + (1 − fi) ≤ 1 + f1

i,j (14)

f0

i,j + f1

i,j = 1 (15)

Our objective function (10) is to minimize the number of
SGP e and CGP e. The same α as basic ILP formulation
in Section. 4.1 is used for balancing the cost. For each pair
of partitions, there are two cases: (1) only one of them is
flipped; (2) flipping both or none of them. We can easily
pre compute the cost for each case, stored as (se0

i,j + αce0
i,j)

or (se1
i,j + αce1

i,j).
Constraints (11) and (12) specify the case if both or nei-

ther of the partitions flip their coloring. Constraints (13)
and (14) specify the case if only one of two partitions flip the
coloring. Only one case can happen and this is formulated
as Constraint (15).

It should be noted that, in our implementation, we do not
explicitly impose Constraints (15). Instead, we substitute
f1

ij by (1−f0

ij) in (10)-(14) based on (15). This helps further
reduce the number of variables and constraints.

5. EXPERIMENTAL RESULT
In our benchmarks, eight 180nm technology designs are

scaled down to 32nm. The metal1 for each testcase is used
for the experiments, because it is one of the most trouble-
some layers in terms of double patterning lithography. The
detailed information is shown in Table 3. The first column
denotes the circuit name, “area” is the chip area in terms of
um2, “grid array size” shows the number of rows by the num-
ber of columns in our layout grid array. “#OG”, “#PCGP”
and “#PSGP” give the number of OGs, PCGPs and PSGPs
respectively.

We implement our algorithm in C++ and test on Intel
Core 3.0GHz Linux machine with 32G RAM. Moreover, we
use glpk [8] as our solver for integer linear programming and
hMetis [9] for min cut partition. The threshold Wg for each
partition is 1500. We study the different α settings in the
ILP objective function. As shown in Fig. 13, when we start
to increase α with higher penalty on conflict, the number
of CGPs/SGPs drops/climbs obviously. After certain value,
it has little effect. The reason is that the ILP formulation
has reached its best point to eliminate the conflicts. In our
work, we set α as 10 to ensure the priority of the conflict
elimination for all the benchmarks.

Table 3: The test cases.

circuit area grid array size #OG #PCGP #PSGP
C1 89 294x294 6670 21215 5926
C2 160 395x395 15710 48007 14143
C3 207 450x450 20496 63403 18461
C4 292 534x534 33497 105641 30314
C5 422 642x642 53998 172826 49167
C6 540 726x726 68820 214527 62387
C7 747 854x854 101431 323890 92493
C8 1028 1002x1002 142535 447441 129172

5.1 Comparison with Two Phase Approach
We implement a two-phase layout decomposition flow for

comparative study, which adopts construct-and-fix method-
ology as in the previous works [5, 6]. We first color all the
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Figure 13: The performance of our algorithm with dif-

ferent α values.

layout features sequentially. Each feature will be assigned a
color which can minimize the current number of conflicts. In
the second phase, the violations are detected and corrected
by inserting stitches. This is done by flipping the coloring
of conflict segments, which basically splits certain features.
Finally, the decomposition solution is mapped back to grids
for comparison. We are not able to compare with previous
work [7] directly because some of our main objectives are dif-
ferent. In their work, the unresolved conflict cycle is used for
judging the indecomposable patterns, while we apply much
finer metric, conflict grid pair.

The comparison between the two phase approach and our
algorithm is shown in Table. 4. Under “Two phase ap-
proach”, “1CGP” is the number of CGPs after the first step
coloring and “uCGP” is the number of unresolved CGPs af-
ter inserting stitches. “CGP” under “Our algorithm” shows
the final unresolved CGPs. For both approaches, “SGP” is
the number of stitch grid pairs and “CPU” is the runtime by
second. “total” is the total number of all the testcases, and
“avg ratio” is the average of their individual ratios. Although
“Two phase approach” is much faster, our algorithm signif-
icantly outperforms its results in terms of quality. “Two
phase approach” can indeed eliminate the number of CGPs
by averagely 52% after inserting stitches. However, lack of
the careful planning, their coloring in the first step produces
very poor starting solution, and there are a big amount of
unresolved conflicts left after possible splitting. In contrast,
our simultaneous method can averagely reduce the number
of unresolved conflict grid pairs by about 8.1x with 33% less
stitch grid pairs.

Table 4: Result comparison

Two phase approach Our algorithm
circuit 1CGP uCGP SGP CPU(s) CGP SGP CPU(s)

C1 401 272 70 0.2 110 88 7
C2 1765 939 389 0.4 160 220 8
C3 1799 779 416 0.5 129 175 11
C4 4232 2084 620 0.6 171 452 16
C5 8125 4408 1325 1.0 367 1001 38
C6 9052 4625 1621 1.2 607 1112 43
C7 13607 5551 2753 1.8 606 1651 57
C8 18975 9223 3038 2.4 949 2271 70

total 57956 27881 10232 8.1 3099 6970 250
avg ratio 16.6 8.1 1.5 0.04 1 1 1

In double patterning lithography layout decomposition,
quality of results is much more important than computa-
tional time. Essentially, zero CGPs is desired in final tape
out but the high complexity of modern designs makes it
almost a must to go though tedious design-decomposition-
redesign iterations to clean the layout. Our simultaneous
flow with much higher quality solution can reduce expensive
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redesign effort as well as the number of iterations, which may
eventually converges to a clean design much more quickly.
Runtime for layout decomposition is not an issue as long as
it is affordable.

5.2 Efficiency
The naive implementation of basic ILP formulation has

prohibitive problem size, and it is not able to finish any
benchmark in one day. Comparatively, our algorithm effec-
tively reduces the runtime. In Table 4, the column “CPU”
under “Our algorithm” shows that we can obtain the solu-
tion in a few seconds. For the biggest benchmark, it takes a
little more than one minute. Fig. 14 also shows the scalabil-
ity of our algorithm, and the runtime grows linearly with the
number of occupied grids in the design. Moreover, our ac-
celeration techniques sacrifice little optimality. Table 5 lists
the statistics on the independent components. “#InComp”
is the total number of independent components. “#w/o par-
tition” and “%w/o partition” respectively show the number
and ratio of independent components, which are under par-
tition threshold value Wt. As we can see, most components
can be directly handled by ILP without performing layout
partition and losing any optimality.
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Figure 14: The runtime of our algorithm vs. number of

occupied grids.

Table 5: Statistics on the independent components

name #InComp #w/o partition %w/o partition
C1 181 178 98.3%
C2 362 357 98.6%
C3 688 681 99.0%
C4 838 824 98.3%
C5 1088 1070 98.3%
C6 1442 1420 98.5%
C7 1977 1951 98.7%
C8 3179 3147 99.0%

5.3 Coloring Flip Optimization
Table 6 shows the improvement when coloring flip opti-

mization is applied to merge solution. The CPU time differ-
ence between“Without coloring flip”and“With coloring flip”
is very tiny and not listed. “CGP” and “SGP” denote the

Table 6: Results on coloring flip optimization

Without coloring flip With coloring flip
circuit CGP SGP CGP e SGP e CGP SGP CGP e SGP e

C1 28 21 1 5 27 20 0 4
C2 18 22 9 4 12 20 3 2
C3 16 22 2 5 14 19 0 2
C4 37 70 10 11 31 66 4 7
C5 121 172 105 22 36 171 20 21
C6 65 98 13 20 55 90 3 12
C7 79 105 33 23 55 92 17 10
C8 108 142 79 28 88 127 59 13

total 472 652 252 118 318 605 106 71
avg ratio 1 1 1 1 0.75 0.92 0.30 0.60

total number of CGPs and SGPs for the independent com-
ponents requiring layout partition. “CGP e”and“SGP e”are
the number of corresponding external conflict and stitch grid
pairs. The results show that there are outstanding “CGP e”
and “SGP e” for further optimization. “with coloring flip”
can reduce CGP e and SGP e by 70% and 40%, about 25%
and 8% for total CGPs and SGPs. This experiment demon-
strates the necessary of coloring flip optimization and the
effectiveness of our ILP based approach.

Overall, our ILP based layout decomposition is a very
efficient and effective approach for double patterning lithog-
raphy. As we observe, a solution with non-zero CGPs can
hardly be achieved in one time and many conflicts are due to
lithography unfriendly design. It implies that earlier stage
cell layout and placement/routing can not be arbitrary and
have to be more aware of double patterning lithography. We
would like to pursue our research along this direction.

6. CONCLUSION
In this paper, we have developed a double patterning

aware layout decomposition flow for simultaneous conflict
and stitch minimization. Our approach is featured by grid
layout model and integer linear programming. We also pro-
pose two speed-up techniques: independent component com-
putation and layout partition. Experimental results show
that our approach can achieve significantly better conflict
reduction with less stitches within reasonable runtime.

For future work, we plan to keep improving the efficiency
of our approach, although the runtime complexity shows lin-
earity. The adjacent grids with similar neighboring condi-
tions can be possibly merged. Moreover, we would like to
explore more comprehensive metrics for helping double pat-
terning lithography, and study earlier stage placement/routing,
and standard cell designs to produce DPL-friendly layout.
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