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ABSTRACT
In this paper, we present a fast and accurate lithographic
hotspot detection flow with a novel MLK (Machine Learn-
ing Kernel), based on critical feature extraction and clas-
sification. In our flow, layout binary image patterns are
decomposed/analyzed and critical lithographic hotspot re-
lated features are defined and employed for low noise MLK
supervised training. Combining novel critical feature ex-
traction and MLK supervised training procedure, our pro-
posed hotspot detection flow achieves over 90% detection
accuracy on average and much smaller false alarms (10% of
actual hotspots) compared with some previous work [9, 13],
without CPU time overhead.

1. INTRODUCTION AND PREVIOUS WORK
With the rapid advances of semiconductor process tech-

nology [4, 5, 16], the minimum feature size of modern IC is
becoming smaller and smaller than the actual lithographic
wavelength. In order to bridge such a wide gap between de-
sign demands and manufacturing limitations, various pop-
ular manufacturability aware design techniques have been
proposed and applied towards high fabrication yield and re-
silience for designs with scaling-down feature sizes [3,6,7,12,
14,19]. Successful design for manufacturability (DFM) tech-
niques ensure high fabrication yield by incorporating manu-
facturability aware models into design stage to avoid poten-
tially problematic patterns (usually referred to as process
hotspots).

A typical DFM flow follows an incremental procedure,
with an embedded simulator for hotspot detection. On one
hand, approaches that employ lithographic simulations [10,
14] are precise yet costly to run due to the complex cal-
culations involved; on the other hand, approaches that uti-
lize pattern/graph matching techniques [9,17,18] suffer from
high false alarms (upto over 60 times false alarms than ac-
tual hotspots [9]) or other issues since hotspot patterns are
hard to apply - too many patterns lead to high over-estimate
rate and too few patterns result in low accuracy rate.

In the meantime, there are works that start incorporat-
ing modern data mining methods towards fast and accurate
hotspot detection tasks. A neural network judgment based
detection flow was proposed in [13], where hotspot image
patterns were used for training an artificial neural network
(ANN) kernel. Also in [11], data mining algorithms are de-
veloped for hotspot pattern clustering. While these early
attempts have shown promising potentials for data mining
applications, there are still limitations to overcome, such as
high ANN training noise and low hotspot detection accu-
racy, etc.

To better address issues above, we first introduce the con-
cept of critical hotspot feature as a compact representation
of the original pixel based design layouts. Compared with
2D pixel images used in [11,13], critical-feature reduces the
dimension of the original samples and filters out detection

noise data. With an embedded Machine Learning Kernel
(MLK) [8,15] trained with the extracted critical feature, our
flow demonstrates high speed with good detection accuracy
and small false alarm rate (10% of actual hotspots).

Key novelties of our proposed flow includes,

• Novel critical feature extractions are proposed for MLK
training noise reduction, detection speed-up and accu-
racy enhancement.

• Supervised training / learning procedures are employed
for MLK establishment and special algorithm is pro-
posed for further accuracy improvement.

• Fast kernel re-training ensures scalability to new tech-
nology process, design rules and Optical Proximity
Correction / Double Patterning set-ups.

The rest of the paper is organized as follows. Section 2
introduces preliminaries and describes each step of our pro-
posed detection flow in detail. Testing benchmarks and sim-
ulation results are shown and discussed in Section 3, followed
by conclusion in Section 4.

2. PROPOSED FLOW AND ALGORITHMS

2.1 A Motivational Example
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Figure 1: a,b,c and d are 4 local samples from a certain

45nm design [2]; A,B,C and D are the corresponding litho-

simulated print-images of a,b,c and d, after OPC.

The rationale of our proposed hotspot detection flow can
be illustrated from Fig. 1, where a, b, c, and d are metal1 lay-
out patterns for a certain 45nm logic cell design; correspond-
ingly, A, B, C, and D are the litho-simulated print-image of
a, b, c, and d after OPC, representing post fabrication lay-
outs of the 4 local patterns in the original design. From A,
B, C and D, CALIBRE [1] shows that a and d are highly
susceptible design patterns to the fabrication process, pat-
tern c is slightly better and pattern b contributes the least
towards generating hotspots in post fabrication stage. With
A-D, we can re-design a, c and d area in the original layout to
avoid post fabrication circuit defects, such as shorts, opens
or other issues that high variability brings. However, in or-
der to get A-D, there are complex integrals and convolutions
involved in lithographic simulation, which is very expensive



in terms of both run-time and computational resources, es-
pecially when invoked repeatedly for DFM closure.

In this paper, a machine learning kernel is established
through mining the correlations between a small set (a few
hundred) of design layouts such as a to d and their corre-
sponding lithographic simulated images as in A to D. After-
wards, the kernel is used to predict post fabrication hotspot
patterns without invoking lithographic simulations, leading
to very fast detection speed. Unlike some previous work [11,
13] which focus on pixel based layouts, we propose a set of
critical features as a compact representation of the original
images. Algorithms for extracting these features are fast and
hotspot capture rate is proven high (plus 90% on average)
by a large set of simulation benchmarks.

2.2 Machine Learning based Detection Flow

OPC Recipe / Double Patterning Set-ups, etc

I. A small set of 
design layouts

for MLK training

II. Hotspot 
pattern extraction 

(2D binary pixel images)

IV. Critical Feature
Analysis and Extraction

V. Machine Learning Kernel
training through 

supervised learning process

VI. MLK testing for
large set of new design layouts

III. CALIBRE®

Technology Process

Design Rules, EPE threshold, etc.

Figure 2: Overall proposed flow with stages I-VI

The overall flow is shown in Fig. 2, consisting of 6 stages.
In Stage I, a small set Ω of design layouts are established

as initial raw data set of MLK training, followed by Stage II,
where a collection set ∆ of typical binary pattern images are
sampled from the design layout set Ω. In Stage III, CALI-
BRE simulation set-ups (such as technology process, design
rules, OPC, EPE, etc) are loaded and lithographic simula-
tions are performed on set ∆ at a one-time cost, identified
post-OPC hotspot patterns are stored in set Θ according to
EPE threshold. Stage IV performs critical feature analy-
sis and generates the critical metrics vector, as training and
classification input vector to the MLK, which is an essen-
tial step for low noise data-training/classification and high
hotspot detection accuracy. Stage V imports the critical
metrics vector from Stage IV and performs supervised MLK
training and validation based on set Θ from Stage III, result-
ing in an optimized highly non-linear MLK. The established
MLK is tested on large sets of new design layouts in Stage
VI with the same setups as in Stage III.

2.3 Critical Feature Analysis and Extraction
In this paper, critical hotspot feature is a metric extracted

from the original design layout pattern as a representation
mapping of a set of parameters most critical and sensitive
to the presence of hotspot patterns. An effective critical
feature should remain the same under arbitrary 2D trans-
formations such as shifting, rotation and mirroring, etc. A
generalized set of critical feature includes all pixel based im-
age analysis transforms and representations, such as discrete
fourier transform, Hough transform, distance transform and
representations of particular patterns of interest.

In this paper, we proposed 3 major features, namely Bounded
Rectangle, T-shape metal and L-shape metal features. As a
compact representation of the original pixel image pattern,
these features capture the relative geometry relations in be-

tween metal tracks effectively and lead to satisfactory detec-
tion accuracy. Unlike other 2D pixel based transforms, the
proposed features are computationally easy to extract, thus
contribute to a fast detection flow. Although more features
can be added to enrich the existing critical feature metric,
they can also slow down the detection process. Thorough
simulations demonstrate that the proposed 3 critical fea-
tures are generic enough to cover up to over 90% of hotspots
with small false alarms (less than 10%).
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Figure 3: (a) certain 45nm cell layout; (b)(c) Two sampled

pattern examples for critical-feature extraction procedure.

2.3.1 Bounded Rectangle Feature
The first critical feature we propose is the Bounded Rect-

angle feature, as illustrated by the rectangles in between
of metal wires in Fig. 3(b)(c), BR1 to BR6. Fig. 3(a) is
a certain design layout, with two sampled patterns (b)(c),
from which critical features are to be extracted. BR fea-
ture records the relative geometrical positioning between
adjacent metal tracks through metal interval representation.
Each BR is expressed with a 5 parameter vector (W, L, X,
Y, D), where L denotes the length of BR along the metal
edges confining itself; W denotes the width of BR along the
direction perpendicular to L; (X, Y) is the coordinates of
the upper-left corner of BR; D is set to 0 if W is along X
direction, to 1 if W is along Y direction. For example in
Fig. 3(b), BR1.D = BR2.D = 1; BR3.D = BR4.D = 0., in
Fig. 3(c), BR5.D = 0; BR6.D = 1.

2.3.2 T-shape and L-shape Features
The other two critical features we propose are the T-shape

metal feature and L-shape metal feature, as illustrated in
Fig. 3(b)(c), region A to F. T-shape and L-shape features
signify the number of T-shape and L-shape metal wires ex-
tending along both sides of BRs, together with correspond-
ing wire width and jog width information. For example in
Fig. 3(b), area A is T-shaped metal for BR1/BR4, area B is
L-shaped metal for BR1/BR2/BR3/BR4, area C is neither
T-shape nor L-shape for BR2/BR3. In Fig. 3(c), area D
is T-shape metal track for BR5, area E and F are L-shape
metal tracks for the right side of BR5 and both sides of BR6.

Combining these features, we obtain the critical infor-
mation of both adjacent metal tracks and the intervals in-
between them for a certain pixel based layout. These fea-
tures proposed are proven to have high detection efficiency
meanwhile maintaining a low noise figure compared with [13].
Through executing proposed critical feature extraction, a
feature metric vector is derived for each bounded metal track
region in every image from set ∆, in the form of (W, L, X,
Y, D, Tf, Lf). A sorted collection of these vectors forms a
metric for each layout image sample, such metric is the final
input for MLK supervised training in the following Stage
V. The purpose of the training is to iteratively establish
a knowledge kernel, which can be applied later to predict
hotspot patterns for new design layouts.



2.4 MLK Supervised Training
As an important classification technique in data mining,

Artificial Neural Network (ANN) originated from imitating
human brain neuron networks and human learning activi-
ties [15]. A small size ANN with 5 to 10 hidden layer neurons
can be trained to establish highly nonlinear models with the
highly interconnected manner of neurons in the network.

In our flow, we take the extracted critical features as in-
puts and feed into the ANN network for supervised training,
which is essentially parameter optimizations for all the neu-
rons in the network, through iterative coefficient updating.
After the training procedure, in Section 3 the established
ANN kernel will be directly applied onto various benchmarks
in 45nm technology for hotsot detection tasks.
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Figure 4: An illustration of the MLK (Machine Learning

Kernel) supervised training

As shown in Fig. 4, supervised training for ANN results in
a weight vector on all the links of the neuron network (circles
in the MLK box) to minimize the MSE (mean square error)
between network prediction results (binary decision) and the
given supervising target (CALIBRE simulation result for the
same layout from which critical features are extracted). As
an iterative process, it employs various kernel functions for
weight update towards MSE minimization.

The objective of the iterative training process can be writ-
ten as follow,

Minimize
1

M

M∑
p=1

(Ap
output − T p

calibre)
2

where M is the total number of samples in the supervised
training set, Ap is the ANN prediction output for pth sample
pattern at certain iteration and Tp is the training target of
the sample, which is pre-set by lithographic simulations. For
each iteration, all training samples are employed and pre-
diction is made based on the most updated set of weights.
Minimization stoping criteria is the satisfaction of certain
pre-defined training error target. For effective weight up-
date, various network architectures and update functions
have been proposed, a general form of the update is as fol-
lows,

xk+1 = xk − αkgk

where xk is the weight vector for the network links and xk+1

is the updated vector after 1 iteration and αk is the learning
rate vector for xk. gk is the update function which we can
choose from a wide range of packages in MATLAB, such as
resilient backpropagation and conjugal gradient, etc.

2.5 Detection Enhancement for Large Layout
For large area design layouts, we propose an algorithm

to further increase detection accuracy, which we refer to

Algorithm 1 PDA (Proximity Detection Algorithm)

1: //Generate locations for Sampled-Pattern-for-Testings
2: Generate SPT seed (detection effort, distribution)
3: Populate each seed locally (proximity effort)
4: //Invoke ANN kernel with multi-threaded technique
5: for each SPT(i) do
6: MLK(SPT(i).feature)
7: end for
8: hotspot voting process within each local proximity

as proximity detection. detection effort in Algorithm 1 is
defined as follows,

e =

∑i
effective area SPT (i)

whole design area

SPT#1 SPT#2 SPT#9

*SPT#5*SPT#4 SPT#7 *SPT#8

*SPT#6

SPT#3

Figure 5: An example for cell level hotspot detection using

Algorithm 1. (e set to < 0.1 for observation convenience)

where e is the ratio of total effective areas covered by
SPTs (sampled patterns for testings) in Algorithm 1 ver-
sus original design layout area. Fig. 5 shows an illustration
of Algorithm 1, where we examine a 45nm cell design lay-
out. With Algorithm 1, false detection on SPT3 and SPT8
are detected and discarded through a voting process among
their respective proximity SPT s before final hotspot deci-
sions are made for the particular region. Advantages of
combining our proposed flow with Algorithm 1 is that it
further improves detection accuracy using proximate pat-
tern correlations. Since our ANN (artificial neural network)
kernel is already established, extra prediction time caused by
the SPT area overhead is very little, especially with multi-
thread techniques.

3. SIMULATION AND TESTING
Benchmarks are taken and built based on NANGATE

45nm cell library [2]. Testing and simulation are performed
on Intel Xeon 2.4GHz Linux with 4G RAM.

70 CALIBRE identified hotspot patterns and 64 non-hotspot
patterns participated in the ANN supervised training, with
window size less than 1.5 micron by 1.5 micron. ANN hid-
den layer neuron is set to 5, learning rate to 0.05, epochs to
30, training error target to 0.01, kernel function is finalized
to Resilient Backward Propagation with sigmoid function.
Entire training process took less than 200 seconds to finish.

Upon completion of the supervised training, we apply the
ANN kernel to following benchmarks for cross-validation
and testing:

• B1: Small Area Patterns. B1 consists of 35 small area
design patterns from [2], which the ANN kernel has
never seen during training and validation. As a com-
parison baseline, CALIBRE litho-simulation was car-
ried out and 17 hotspot patterns are identified, to-
gether with 18 non-hotspot patterns.



Table 1: Performance of the proposed critical-feature based hotspot detection with Machine Learning Kernel.
Benchmarks Testing target HotSpot Non-HotSpot HotSpot Detection HotSpot Detection

Detection Rate Detection Rate -False-positive Rate -False-negative Rate
B1 a Best Perf 100% 98% 2% 0%

(MLK kernel; Average Perf 94% 85% 15% 6%
without PDAb) Worst Perf 80% 54% 56% 20%

XNOR2 X2 100% 100% 0% 0%
B2 a DFF X2 100% 100% 0% 0%

(using PDAb) SDFFRS X2 100% 100% 0% 0%
SDFF X2 100% 100% 0% 0%

B3 a(with PDAb): Accuracy Rate 90% — 10% false alarms 10%
a

Hotspot detection EPE threshold is set to 15nm in 45nm technology process.
b PDA: Proximity Detection Algorithm

• B2: 45nm Cell Level Layout Patterns. B2 consists of
5 large area cell level design layouts from [2], which
did not participate in the supervised training step of
the ANN kernel.

• B3: Chip Level Design Layout. B3 is taken from a
fully placed and routed 45nm FFT kernel, with 644
modules and 48027 cell instances placed on 380 by 350
micron die.
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Figure 6: (a) Histogram of B1 hotspot detection accuracies

with 50 independent experiments; (b) False positive rate versus

false negative rate

From Fig. 6(a)(b), we fully evaluate the established ANN
kernel with 50 independent cross-validations on B1. As a
result, our flow demonstrates above 90% of accuracy with
over 85% confidence, with the best detection accuracy 100%
and worst 80% (only one occurrence every 50 testings). In
Fig. 6(b), we plotted another two crucial parameters for
performance evaluation, namely false positive rate and false
negative rate. False positive rate is the percentage of actual
non-hotspots detected as hotspots (hotspot false alarms);
False negative rate refers to the percentage of actual hotspots
detected as non-hotspots, which is to be kept minimal.

For B1, our average false positive rate is 15%, and false
negative rate is 6%, as shown in Fig. 6(b). Detailed summary
is in Table 1. Since B2/B3 are large area design layouts,
we employ the proposed proximity detection algorithm for
accuracy enhancement. e is set to <1.0 for B2 and between
1 to 3 for B3. e larger than 3 is considered as high effort,
meaning the total SPTs area in Algorithm 1 is more than
3 times of original layout area. e should be set higher for
denser design layouts.

As a result, hotspot detection accuracy for B2 reached
100%, with false positive rate 0%. B3 is evaluated with the
same manner and results show plus 90% of hotspot detec-
tion accuracy with very small (10% of total hotspots) false
positive rate (detection false alarms). Details can be found
in Table 1.

4. CONCLUSION
As crucial assistance for lithographic simulation, fast and

accurate non-lithographic detection flows start playing more
and more important roles in modern DFM, where litho-
graphic simulations are costly to run. In this paper, we
presented a critical feature extraction/classification based
hotspot detection flow utilizing modern machine learning
(artificial neural network) technique. With critical feature
representation, learning/detection noise for the training pro-
cedure is effectively reduced without run-time overhead when
compared with [13]. Experimental results demonstrate small
detection false alarm rate (10% of actual hotspots) and an
average of plus 90% detection accuracy, with best achieved
accuracy 100%.
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