
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011 877

Robust Chip-Level Clock Tree Synthesis
Anand Rajaram, Member, IEEE, and David Z. Pan, Senior Member, IEEE

Abstract—Chip-level clock tree synthesis (CCTS) is a key
problem that arises in complex system-on-a-chip designs. A key
requirement of CCTS is to balance the clock-trees belonging
to different IPs such that the entire tree has a small skew
across all process corners. Achieving this is difficult because the
clock trees in different IPs might be vastly different in terms of
their clock structures and cell/interconnect delays. The chip-level
clock tree is expected to compensate for these differences and
achieve good skews across all corners. Also, CCTS is expected to
reduce clock divergence between IPs that have critical timing
paths between them. Reducing clock divergence reduces the
maximum possible clock skew in the critical paths between the
IPs and thus improves yield. This paper proposes effective CCTS
algorithms to simultaneously reduce multicorner skew and clock
divergence. Experimental results on several test-cases indicate
that our methods achieve 30% reduction in the clock divergence
with significantly improved multicorner skew variance, at the cost
of 2% increase in buffer area and 1% increase in wirelength.

Index Terms—Chip-level clock tree synthesis (CCTS), multi-
corner CTS, robust clock tree synthesis.

I. Introduction

ASYSTEM-ON-A-CHIP (SoC) design can be defined as
“an IC, designed by stitching together multiple stand-

alone VLSI designs to provide full functionality for an appli-
cation” [1]. SoC designs have become increasingly common
and the trend is expected to continue in the future [2]. An
attractive feature of SoC designs is the ability to reuse a given
sub-component in multiple chips. The level of reuse can be
different from IP to IP. This paper uses the word IP to denote
the individual sub-blocks used in SoC designs. They are also
referred to as core in some literature [1]. At one extreme of
the reuse spectrum are hard-IPs where the exact transistor-level
layout is reused in several designs. At the other end are the
soft-IPs which go through the physical design/timing closure
process from scratch so as to integrate the IP with the rest
of the chip. This paper defines a soft-IP as the one for which
netlist is available but physical information is not present as a
part of the IP.

Most SoC physical design closure is done in a hierarchical
fashion [1]. In such a methodology, different IPs should be
integrated along with the glue logic to complete the chip-level

Manuscript received March 10, 2010; revised June 30, 2010 and October 8,
2010; accepted December 20, 2010. Date of current version May 18, 2011.
This work was supported in part by NSF, SRC, and the IBM Faculty Award.
This paper was recommended by Associate Editor Y.-W. Chang.

A. Rajaram is with Magma Design Automation, Austin, TX 78731 USA
(e-mail: anandrajaram@ieee.org).

D. Z. Pan is with the Department of Electrical and Computer Engineering,
University of Texas, Austin, TX 78712 USA (e-mail: dpan@ece.utexas.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2106852

timing closure. Timing closure in most practical chips involve
verifying timing across several corners (referred to as design
corners) that represent several global variation effects such as
fab-to-fab, wafer-to-wafer, die-to-die variation, global voltage
and temperature variations [1], [3], [4]. This chip-level timing
closure includes the chip-level CTS (CCTS) step in which a
chip-level clock tree is synthesized to drive all the IP-level
clock trees. The primary objective of CCTS is that the full
clock tree, which includes the chip-level and all the IP-level
clock trees should be balanced and have less skew across all
the corners. Skew in a given corner is defined as the maximum
difference in the insertion delays of any two clock sinks in
that corner. Reducing the skew across all corners prevents data
mismatch as well as avoids the use of data lock-up latches [1].
Minimizing skew is relatively easy when considering only the
nominal delay corner. However, the different IPs of an SoC are
timing-closed independently by different individuals/teams,
possibly using different methodologies, tools, and library
cells. In such cases, achieving good skews for the entire
clock tree of the chip across all the design corners is a very
challenging task. This is primarily because of the possible
difference in the way the delays and skews of the different
clock-trees of the IPs scale, either because of difference in the
clock structures or the difference in the relative significance
of cell and interconnect delays between the IPs.

Another important objective for chip-level CTS is to min-
imize the clock divergence (see Section II-A for detailed
explanation). This helps to minimize the maximum possible
skew variation between the critical timing paths between the
IPs and thus improves the overall yield. This also helps in
faster timing closure in real designs as most clock tree analysis
algorithms [5] consider the fact that process variations in
common part of the clock tree do not affect the skew between a
given register pair. Clock divergence reduction is a trivial prob-
lem when either the number of IPs are very small or when they
do not interact significantly. Both these conditions do not apply
to the SoC designs of today which have a significant number
of IPs which interact in a complex way, with critical paths
present between multiple overlapping pairs of IPs [1], [2].

In many complex chips, CCTS work is often cus-
tom/manual [3], [4] so as to achieve the precise skew and
divergence objectives, but this is often very time consuming.
Also, as the complexity and size of SoC designs increase, cus-
tom/manual chip-level CTS will become increasingly difficult.
Thus, fully automated methods to address the CCTS problem
are needed. Though there are a few works related to global
clock distribution [6]–[9], they make the assumption that a H-
tree topology is sufficient and focus on improving the quality
(skew, power, and so on) of the H-tree. Similarly, works like

0278-0070/$26.00 c© 2011 IEEE

878 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

[10] and [11] focus on variation reduction on general clock
trees but do not directly address the issues of divergence and
multicorner skew reduction that are very important for CCTS
problem. For rest of the paper, multicorner skew is defined
as the maximum of skew among all the different corners.
This paper attempts to address the CCTS problem. The key
contributions of this paper are as follows:

1) a 0–1 quadratic programming (QP)-based clock pin
relocation scheme for soft-IPs to reduce chip-level clock
divergence;

2) an effective method to reduce the chip-level clock tree
skews simultaneously across different PVT corners;

3) a dynamic programming based CCTS algorithm that si-
multaneously reduces clock divergence and multicorner
skew.

To our best knowledge, the above contributions make the
first comprehensive solution to the CCTS problem for complex
SoC designs. A preliminary version of our research was
published in [12]. Compared to [12], this paper has detailed
explanations, experimental results with more test-cases and
also a faster CCTS algorithm. It may be noted here that
CCTS problem is significantly different from the IP-level CTS
problem discussed in well known CTS works like [13]–[16].
In these works, the main problem is to reduce the overall delay
and skew at the IP level, where there are no pre-existing clock
trees. There is no consideration given to issues like divergence,
multicorner skew balancing and clock pin assignment. Another
key difference is their place in the overall design flow. IP-level
CTS is done much before top-level chip integration and also
before timing closure of the individual IPs. On the other hand,
our pin-assignment algorithm will be done before IP-level CTS
and our main CCTS algorithm will be used only during the
top-level chip integration. The readers are referred to the work
of [17] for a detailed survey of IP-level CTS algorithms.

II. Motivation and Problem Formulation

In this section, we will first discuss the significance of
clock divergence, the effect of clock pin assignment on clock
divergence and multicorner skew reduction using a few simple
examples after which we will formulate the chip-level CTS
problem. Fig. 1 shows a simple example of a chip-level CTS
problem. The IPs shown might be either hard-IPs or soft-IPs.
In the case of hard IPs, the clock pin location and the clock
tree itself will be fixed. For soft-IPs, CTS will be done as
a separate step along with IP-level timing closure and then
integrated at the chip-level.

A. Significance of Clock Divergence Reduction

The significance of reducing clock divergence between
registers in timing-critical paths is well known [17]. For a
given overall delay, the lesser the divergent delay between the
such register pairs, the lesser is the value of maximum skew
that can be seen between them. This is because any variation
in the common clock path will not impact the skew between
the register pair. This is illustrated in Fig. 2. In this example,
assuming all other conditions are same, Case A is better for
timing yield in the presence of variation because skew varia-
tion in Case A is limited only to the variations in last clock

Fig. 1. Simple chip-level CTS example. The black circles represent the clock
root for each IP.

Fig. 2. Even for identical nominal skews, Case A is better than Case B
because of lesser clock divergence and hence lesser skew variation.

net. However, in Case B, since the last buffer is not shared,
the magnitude of possible skew variations increases, thereby
impacting the timing yield in the presence of variations.

1) Significance of Clock Divergence Reduction in CCTS:
The same principle of clock divergence reduction discussed
above is also applicable at the chip-level where different IPs
interact with each other instead of register pairs. In some
cases, clock divergence reduction between specific IPs might
be extremely important to ensure good timing yield. For
example, when the clock tree divergence between two heavily
interacting IPs is high, it might result in significant skew
variation between all the register pairs between the IPs. If
some of these register pairs were already timing-critical, the
increased skew variation will only exacerbate the situation,
thereby affecting the timing yield.

B. Impact of IP Clock Pin Location on Clock Divergence

Unlike hard IPs, the clock pins of the soft-IPs can be
changed specific to a given chip and floorplan. This additional
flexibility for the soft-IPs can be effectively used toward clock
divergence reduction between critical IPs. Fig. 3 shows a
simple example where the clock pin assignment might make a
difference in clock divergence reducing. In this example, IPs A
and B are assumed to have critical paths between them. Thus,
the pin assignment in Case B is better since it reduces the
clock divergence (and hence the maximum clock skew under
variation) between the flip–flops in the critical path.

C. Measuring Divergence

In this section, we explain briefly as to how clock divergence
can be measured for a given clock tree. Consider Fig. 4 in
which a simple four sink clock tree is shown. Points A–D
represent the four sinks and points P1 and P2 are the internal
nodes of the clock tree. If we consider only a single pair
of sinks, measuring divergence is trivial as we only need to

RAJARAM AND PAN: ROBUST CHIP-LEVEL CLOCK TREE SYNTHESIS 879

Fig. 3. Importance of clock pin assignment for IPs. Case A and Case B
differ in the clock pin location for IP B, which affects CTS. If IPs A and B
have critical paths between them, Case B will result in better yield because
of reduced clock divergence between A and B.

Fig. 4. Example for measuring divergence.

know the sum of clock delays that is not shared by the given
sink pairs. However, when considering more than one sink
pair, such a direct measurement of divergence is not correct
because not all sink pairs are equally critical from timing
perspective. For example, while considering all the four sinks
of Fig. 4, there are six potential sink pairs and thus we need to
consider the relative importance of each pair while calculating
the divergence for the entire clock tree.

The relative importance of the different sink pairs can
be represented by a pairwise weights proportional to the
timing criticality of the path between the sink pair. If there
is no valid timing path between a pair of sinks, then the
corresponding weight is zero. This concept can be easily
extended as more clock sinks and timing paths are added.
Similarly, clock divergence at the chip-level can be measured
as the weighted sum of clock divergence between the clock
trees of the different IPs. The weight used for a pair of IPs will
be proportional to the timing criticality of all the paths between
the pair. Please note that the timing criticality information can
be obtained directly from the timing analysis usually done
with ideal clocks just before CTS. The actual weights might
be made proportional to either the worst negative slack or the
total negative slack of all paths between the given pair of IPs.
Thus, for a given chip-level clock tree with N IPs, the value
of divergence can be expressed as

divergence =
∑

∀i,j

Wi,j ∗ (
Di

F + Dj
F − 2 ∗ Di,j

C
)
. (1)

In the above equation:

1) 1 ≤ i, j ≤ N, i �= j; i and j denote the IP numbers;

Fig. 5. Simple example illustrating difficulty of balancing two different IPs.
The clock tree delays of the two IPs will scale differently across different
corners due to different buffer sizes and interconnect lengths.

2) Di
F is the average insertion delay for all registers in IP

i from the root of the chip-level clock tree;
3) Di,j

C is the insertion delay of common clock path
between IP i and IP j;

4) Wi,j is weight that is proportional to the timing criticality
of timing paths between the IPs i and j, obtained from
the timing analysis done before CTS.

D. Multicorner Skew Reduction Problem

In the chip-level CTS problem, each of the sub-trees shown
in Fig. 1 are assumed to have full clock trees in them with fixed
clock input pins. In addition, we also know the delay/skew
of each of the clock trees across all the PVT corners. This
information will be necessary for balancing the chip-level
clock tree across all PVT corners. To understand the difficulty
in reducing the skews at the chip-level across multiple design
corners, consider Fig. 5 where only two IPs are present. The
squares in the IPs represent clock sinks. The left-side IP has
bigger buffers with longer interconnects and the right-side IP
has smaller buffers with shorter interconnect. Let us assume
that clock trees of both the IPs have identical delays in the
nominal corner. However, their delays across different design
corners will be different, mainly because of the difference in
the interconnect lengths and buffer sizes. To balance these two
clock trees across all corners, the chip-level clock tree should
be built such that the differences in the delays, across all
corners, between the two clock trees gets exactly (or nearly)
compensated at the chip-level. In our example, we can attempt
to do this by driving the left-side IP with small buffers and
short interconnect and the right-side IP with bigger buffer
and longer interconnect as shown in Fig. 5. In most SoC
designs, there will be several IPs having clock trees with
significant differences in their size, structure, buffer sizes used
and interconnect lengths. Thus, synthesizing a chip-level clock
tree that can simultaneously reduce the skew across all corners
by accounting for these differences while not significantly
increasing the overall delay is a challenging problem.

1) Problem Formulation: We formulate the overall CCTS
problem into the following two sub-problems.

a) Given: chip-level floorplan and criticality of clock di-
vergence between all IP pairs.
Problem: select the clock pin locations of all soft-IPs to
reduce clock divergence between critical IP pairs.

880 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

b) Given: all information from the previous step and also
information on clock tree delays/skews across all corners
for each IP.
Problem: obtain a chip-level clock tree such that the
skews and delays across all corners are reduced, while
simultaneously reducing the weighted sum of clock
divergence between all the IP pairs. The value of weight
for a given IP pair is directly obtained from the number
and timing criticality of paths between them. In general,
the more paths a given IP pair and the higher the timing
criticality of those paths, the higher the value of the
weight for that pair.

2) Tradeoff Between Divergence Reduction and Delay
Reduction: In some cases, we might be able to achieve lesser
clock divergence by increasing the overall delay of the clock
tree and vice-versa. One simple way to quantify this tradeoff
is to use a scaling factor that will determine the percentage of
delay increase that can be tolerated for a given reduction in
clock divergence. Using this scaling factor, we can define the
overall cost as follows:

Cost = x ∗ Max Delay + (1 − x) ∗ DIV COST (2)

where DIV COST =
∑

∀i,j
Wi,j ∗ (

Di
F + Dj

F − 2 ∗ Di,j
C
)

.

In the above equations:
1) x: variable with value between 0 and 1 to quantify delay

and divergence tradeoff;
2) Max Delay: maximum delay to any sink in the entire

clock tree;
3) DIV COST : clock divergence cost between all IPs

pairs;
4) i,j: the IP numbers, with 1 ≤ i, j ≤ N, i �= j;
5) Wi,j: criticality of clock divergence between IPs i; j;
6) Di

F : average delay from clock root to the flip–flops in
IP i;

7) Di,j
C: the maximum shared or common delay between

any two IPs i, j;
8) all the delay information are with respect to the nominal

corner values.
Thus, the objective of the CCTS problem is to get a chip-

level clock tree that can minimize the above cost function
while simultaneously reducing the skews across all corners. It
may be noted here that the above formulation assumes that all
the logic in the complete chip is divided into IPs on which
CTS has been completed. In many practical situations, glue
logic to integrate the different IPs will also be present at the
chip level. However, such situations can also be handled by
the above formulation by dividing up the glue-logic itself into
one or more virtual IPs and doing separate CTS on them from
a common set of clock source points. At this point, we can
apply the above formulation.

III. Clock Pin Assignment Algorithm for Clock

Divergence Reduction

Given a floorplan and criticality of clock divergence be-
tween all IP pairs, the clock pin assignment aims to identify
the location of all the clock pins of each soft-IP even before

any CTS is done on them. For example, this step may be done
after the floor-planning stage of the chip design and before
the timing closure of the individual IPs starts. We restrict the
possible clock pin locations to the mid points of one of the
four sides of each IP. This minimizes the distance between the
clock pin and the farthest register and can result in reduced
clock tree delay. When the flop distribution is not uniform
within a given IP or when there are multiple clocks present in
a given IP, we locate each clock pin such that it divides the
sink distribution it drives into roughly two equal halves, either
in the horizontal or vertical direction. Under this assumption,
clock pin assignment problem can be formulated as follows:

Minimize
∑

xi
p ∗ xj

q ∗ Wi,j ∗ Top Level Dist(Bi
p, Bj

q)

s.t.
∑

xi
p = 1, xi

p ∈ {0, 1} (3)

where 1 ≤ i, j ≤ N, i �= j; 1 ≤ p ≤ 4; 1 ≤ q ≤ 4.

In the above equations:

1) i and j denote IP numbers;
2) p and q denote one of the four pin locations on a given

IP;
3) binary variable xi

p represents if a given pin location p

is selected for IP i;
4) Bi

p denotes the IP i with pin location at p;
5) Wi,j denote the criticality of the paths between IPs i and

j;
6) Top Level Dist(Bi

p, Bj
q) represents the Manhattan

distance between pin location p of Bi and q of Bj .

The conditions that each of the variables xi
p should be either

0 or 1 and that the sum of all the variables for a given IP
should exactly be 1 makes sure that exactly one pin location
is selected for each IP. The cost function being minimized is
the weighted sum of distances between all the clock pins of all
IP pairs where the weight is the criticality of the paths between
a given IP pair. Minimizing the distance between two pins will
directly increase the chances of clock delay sharing between
the two IPs. The only variables in the above optimization
problem are xi

p and since they can only take values of either
0 or 1, the above problem is a 0–1 quadratic programming
problem. Though this problem is NP-hard, efficient heuristics
are available to solve this problem [18]. It may be noted
here that, though prior work [19] solves a similar problem,
the formulation is not suitable when different IP pairs have
different criticality values.

A. Impact of Pin Assignment on Delay at the IP-Level

The above formulation ignores the impact of clock pin
assignment on the IP-level clock tree delays, which might
end up increasing the overall delay or even clock divergence.
However, the formulation can be made to account for IP-level
clock tree delays by introducing an additional weighting term
of the form Ki

p that denotes the criticality of assigning the
pin location p for IP i with regards to the IP-level clock tree.
For example, if all four sides are equally acceptable for the
IP-level CTS of IP i, then the value of Ki

p will be identical
for all four values of p. If on the other hand, we want to
make a particular pin location more likely, we can increase
the corresponding scaling factor. The relative values for these

RAJARAM AND PAN: ROBUST CHIP-LEVEL CLOCK TREE SYNTHESIS 881

factors may be obtained by a weighted sum of distances of
all the registers from each of the four pin locations. Thus, the
objective function for equation 3 can be modified as

Min
∑ xi

p ∗ xj
q ∗ Wi,j ∗ Top Level Dist(Bi

p, Bj
q)

(Ki
p + Kj

q)
(4)

where the new term Ki
p can be increased to give more

weightage to a particular location p for any IP i. In practice,
Ki

p for a given IP i can be obtained by estimating the insertion
delay in the IPs can be modeled as a function of the pin
placement. For example, we can assume that the maximum
delay in the IP is roughly proportional to the distance of the
farthest clock sink from the clock pin location. The precise
details of such modeling schemes will depend on the CTS
algorithm used for the IP-level CTS. Since our objective is
to consider the chip-level clock balancing requirements even
before CTS on any of the IPs is completed, even a rough
modeling of IP-level delays will be sufficient for our purpose.

IV. Multicorner Skew Reduction Algorithm

In this section, we will address the problem of merging
any two clock trees such that their combined skews across
all the corners are reduced. This problem can be divided into
two categories. In the first, the clock pins are located very
close to each other and their delays across all corners are
very similar. In this case, the multicorner skew balancing is
trivial since it is possible to merge the clock pins with just
interconnect without adding an extra buffer level. In the second
case, the clock pins are far apart and/or they have significantly
different delays across the corners. In such situations, we need
to add one or more 1-fanout buffer stages (with appropriate
buffer sizes/interconnect lengths) to the root of the sub-tree
with lesser delay to reduce the multicorner skew between the
two sub-trees. Thus, to reduce the multicorner skew between
any two sub-trees for the non-trivial situation, we need a
method to select the appropriate number of buffer stages and
the size/lengths of the buffers/interconnects to be used to
merge the clock pins of the two IPs. In future discussions,
we call the selection of appropriate buffer size/interconnect
length as selection of a buffer configuration.1 Fig. 6 shows
examples of buffer configuration for both 1-fanout and 2-
fanout situations. Please note that adding a buffer configuration
implies adding only BUF1 on top of existing sub-tree(s) at
appropriate distances from the current root(s) of the sub-
tree(s). For example, if we add a buffer configuration to a given
sub-tree, it means adding BUF1 in Fig. 6(a) at a distance of
L 0 from the current root of the sub-tree, which is denoted by
BUF2. The Cap 1 in the figure is the effective capacitance
of the sub-tree driven by BUF2. Similarly, if we merge two
sub-trees using a fanout-of-2 buffer, it means adding BUF1
in Fig. 6(b) at a distance of L 0 from the merge point of
the two sub-trees. The distance of the two sub-trees from the
merge point are denoted in Fig. 6(b) by L 1 and L 2. To
summarize, the problem of multicorner skew balancing of a
given pair of IPs can be translated to the problem of picking
the right buffer configurations to be added on top of the slower

1Please note that interconnects of different widths and spacings can also be
considered in the same framework, similar to different buffer sizes.

Fig. 6. Buffer configurations used for multicorner delay characterization.
(a) Single fanout case. (b) Double fanout case.

sub-tree to bring the multicorner skews between the sub-trees
to desired levels.

A. Special Properties of CCTS Problem

To solve the problem of picking the right buffer config-
urations for multicorner skew reduction, following special
properties of CCTS problem can be exploited.

1) Unlike CTS on a flat design, the CCTS problem will
have just a hand full of end points (clock pins of IPs)
that are much more spread apart in distance than typical
registers. This is because the number of IPs in a typical
SoC will be orders of magnitude lesser than the number
of flip–flops in the whole design.

2) Since the clock pins of the IPs are far away from each
other, the typical fanout for a buffers in the chip-level
clock tree will be considerably less compared to the IP-
level clock trees. In most practical cases, this can be as
low as 1 or 2.

B. Steps to Choose Buffer Configurations for Multicorner
Skew Reduction

In order to distinguish between the different buffer config-
urations and select the right set of configurations to achieve
multicorner skew reduction, we can follow the following steps.

1) Restrict the maximum fanout for any chip-level clock
buffer to just 1 or 2. Thus, the buffer configurations
that will be added on top of sub-trees while merging
them will be as shown in Fig. 6(a) or (b). The clock
power/area penalty due to this restriction will be negli-
gible because the fanout of most buffers is expected to
be small anyway. Also, the number of chip-level clock
buffers will be small compared to the total number of
buffers of all the IPs combined.

2) The fanout restriction drastically reduces the number
of possible buffer configurations, enabling us to do the
multicorner delay characterization for each configuration
quite easily. For example, in Fig. 6(a), the input slew
(in 5 ps increments), buffer type of the driver (BUF1),
interconnect lengths (L 0) (in 25 μm increments) and
the load buffer type (BUF2) are the variables. Since
this is a simple circuit, the complete multicorner delay
characterization of all possible configurations and across
all corners typically takes just a few minutes. This is
similar to the typical cell delay characterizations used in
ASIC designs, with the added explicit variables of inter-
connect length and load cell being driven. Similarly, we

882 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

characterize all possible 2-fanout configurations using
the template in Fig. 6(b).

3) The next step is to get what we define as cross-corner
delay ratios (CCDR) for every buffer configuration. For
each buffer configuration, we first get the SPICE delays
across different corners obtained from characterization.
Then, we normalize (divide) the delays across all K

corners with the nominal-corner delay of that configura-
tion. After the normalization, each buffer configuration
will have a vector of K numbers, corresponding to K

corners, called its CCDR. Obviously, the ratio number
corresponding to the nominal corner will always be 1.
This normalization helps us to compare the relative
cross-corner scaling of different buffer configurations
and choose the appropriate one for merging any given
sub-tree pair. For example, if a buffer driving a 500 μm
interconnect has delays of 50, 100 and 200 ps in the fast,
nominal and slow corners respectively, then the delay
vector for this configuration will be (50, 100, 200). To
obtain the CCDR vector, we divide each element in this
vector by the nominal corner delay of 100. Thus, the
CCDR for this case will be (0.5, 1.0, 2.0). If another
buffer driving a 300 μm load has a CCDR vector of
(0.4, 1.0, 1.8), then we can conclude that the second
configuration relatively speeds up the fast and slow
corners than the first configuration. Thus, the CCDR
vector for a given sink of tree can be defined as

CCDR = [D1/Dnominal, ...Di/Dnominal, ...DK/Dnominal]
(5)

where Di represents the ith corner and Dnominal is the
arbitrarily chosen nominal corner among the available K

corners. Please note that CCDR for a given sub-tree can
be defined in the same way using either the maximum
delays in different corners or using the average delays
in different corners.

The concept of CCDR described above is used in our
multicorner sub-tree merging heuristic shown in Fig. 7.
The basic idea behind this heuristic can be explained by
a simple example. Let A and B be two sub-trees that we
want to balance across three corners—fast, nominal, and
slow. Let the delays for the two IPs in the three corners
be A(50, 100, 200) and B(40, 100, 220), respectively. Such
differences in delay scaling across corners can happen when
different clock buffer types, CTS tools/methodologies are
used in the two IPs. If the two clock trees are merged using
a zero-nominal-skew chip-level clock tree, then the merged
tree will have zero skew at nominal corner, but higher skews
at the fast and slow corners. In order to achieve good skews
across all three corners, we should build the chip-level tree
such that del to(A, nominal) � del to(B, nominal) and
del to(A, fast) < del to(B, fast) and del to(A, slow) >

del to(B, slow), where del to(A, nomi − nal), and so on
represent the chip-level clock-tree delay to the clock pin of A

in the nominal corner. Chip-level clock trees with such precise
cross-corner delay scaling requirements can be constructed by
selecting the buffer configurations with appropriate CCDR.

Fig. 7. Multicorner skew balancing heuristic.

This is the key idea behind our multicorner sub-tree balancing
heuristic shown in Fig. 7.

In the above procedure, the sub-tree with lesser nominal
corner delay is denoted by SP and the other is denoted by
SQ. We evaluate the impact of adding each of the potential
buffer configurations to SP on its CCDR and finally select
the configuration that results in bringing the CCDR vectors
of SP and SQ closest in terms of the least-squares distance
between them. This process is repeated till the delays of both
the sub-trees are fairly close to each other across all corners.
At this point, the exact configurations to be added at the roots
of both sub-trees A and B to minimize their multicorner skew
are available. However, the location of the merging point of
the two sub-trees is still not yet fixed. For the sub-tree SP ,
the total lengths of all the interconnects added with buffer
configuration gives the radius of the Manhattan ring within
which its root pin is to be located. If the Manhattan ring of
sub-tree SP intersects with the root pin of SQ, then the current
root of SQ can be selected as the merged root with appropriate
wire-snaking to preserve the skews. If the Manhattan rings do
not overlap, it means that though the two sub-trees have similar
delays, we need to add more buffer levels to both of them to
physically merge them. To achieve this, we identify the closest
point/segment on the Manhattan ring of SP to the root of SQ

and merge them with a perfectly symmetric tree. This will
ensure that the multicorner skew balancing already completed
between the two sub-trees is not affected. It may be added
here that exact location of the root of the merged sub-tree can
be deferred in the same manner as in the DME algorithm.

It shall be noted that the above multicorner sub-tree balanc-
ing procedure inherently assumes the following procedure.

RAJARAM AND PAN: ROBUST CHIP-LEVEL CLOCK TREE SYNTHESIS 883

Fig. 8. Buffer configuration for a 3-fanout case.

1) The skew target in each corners is bigger than at least
the delay of the smallest buffer in that corner. Otherwise,
the skew condition in line 5-(iii) of the algorithm will
never be met and the loop will go on indefinitely.

2) All the buffer sizes used at the IP level CTS are available
for use at the chip-level CTS. Otherwise, there might
be some buffer sizes that scale differently from others
across corners which can not be compensated at the chip
level.

The above procedure is suitable only in the limited context
of chip-level CTS and is inefficient in terms of buffer resources
for CTS on a flat design. Since the number of IPs will be
several orders of magnitude less than the number of flip–
flops in the design, the chip-level CTS can afford to adopt
the above approach. It may be noted here that the restriction
of the number of fanouts to 1 or 2 can be relaxed by increasing
the number of buffer configurations that are characterized. For
example, Fig. 8 shows how the concept can be extended to a
3-fanout case. Compared to a 2-fanout case, the 3-fanout case
has more variables to be changed during characterization. This
results in a significant increase in the number of buffer con-
figurations to be evaluated. These new buffer configurations
can be used in situations where there are multiple sub-trees
with similar delays located very close to each other such that
a single buffer can drive them. Also, the procedure in Fig. 7
needs to be modified to account for the fact that more than
two sub-trees can be merged simultaneously. One way to do
this merger is as follows. Given k sub-trees to merge, find
the best k-fanout buffer configuration to bring their CCDRs
closer to each other and merge them. If we cannot merge the
k sub-trees with any available buffer configuration, then we
can add more single fanout buffer configurations on top of the
sub-trees to bring them closer to each other—-both in terms of
physical distance and also in terms of their multicorner delays.
However, with successive relaxation to the fanout limit, the
gain in terms of reduced buffer area will diminish while the
runtime will increase since a much larger number of buffer
configurations should be evaluated.

Example: Finally in this section, we would like to give a
simple example that illustrates the algorithm in Fig. 7. Let
us assume, for the sake of simplicity, that there are only two
corners, nominal and slow. We denote the delay in these two
corners of a given tree or a sink in a tree as an ordered pair
of numbers like (10, 20), all numbers in picoseconds (ps).
Let there be exactly three different buffer configurations, each
with the same buffers but with different interconnect lengths.
We denote them by BCA, BCB, BCC. Let the delays of these

three buffer configurations be (4.9, 8), (5, 10), and (5.3, 12),
respectively. This means, for very similar delays in the nominal
corner, these three buffer configurations have significantly
different delays in the slow corner. This can happen since they
are driving different interconnect lengths. Now, let SP sub-tree
of Fig. 7 have delays of (19.7, 38) and SQ sub-tree have delays
of (25, 50). Now, SQ has higher delay than SP , so we will have
to recursively add buffer configurations on top of SP till the
delays of the two sub-trees are very close. Let us here assume
that the skew requirement for the algorithm to stop is 0 ps.
Since the skew between SP and SQ is not zero, the algorithm
will enter the while loop of Fig. 7. Now, we have to select the
best buffer configuration from the three available configura-
tions to add to SP . We iteratively go through each of the buffer
configurations and find the best configuration to be added to SP

to bring its CCDR closest to that of SQ. From among the three
configurations, we can see that adding the buffer configuration
BCC not only brings the CCDR of SP to the same values as
SQ, but also brings down the skew to 0ps. Thus, after adding
the buffer configuration BCC to SP , its delay is identical to
that of SQ. At this point, the algorithm will exit the while loop
in Fig. 7 and proceed to physically merge the two sub-trees.

V. Chip-Level CTS Algorithms

In this section, we discuss four different chip-level CTS
algorithms with varying degrees of complexity. Please note
that only the dynamic programming based algorithm is newly
proposed in this paper. The other three algorithms are simple
modifications of existing CTS works used for comparison.

A. Single-Corner Approach

This algorithm is a direct application of existing CTS
algorithms to the CCTS problem in which only one corner
delays are used. The algorithm recursively merges sub-tree
nodes which are the nearest neighbors in a manner similar
to that of well known CTS algorithms [13]–[16]. If a given
sub-tree cannot be merged with any other sub-tree without
violating the slew limits, a buffer is added on top of the sub-
tree to extend the possible merging region for the sub-tree.
The buffer sizes for merging two sub-trees are chosen in such
a manner to reduce the total amount of buffer area added. The
results from this approach will be used as the baseline for rest
of the algorithms.

B. MultiCorner Approach

This approach is identical to the single-corner approach with
one key difference: the consideration of multicorner skews.
During the process of merging two sub-trees, the method
described in Fig. 7 is used instead of using only one corner
delay. At each step, the sub-trees that are closest to each other
are merged recursively till only one sub-tree remains. The
results from this approach will be used to do the cost versus
benefit analysis of multicorner skew reduction.

C. Greedy CCTS Algorithm

This algorithm is a simple modification of the work
of [20] in which every sub-tree merger is done to minimize
the cost (wirelength or buffer area) of that merger. In our

884 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

modification, the merging cost as defined by (2) instead of
wirelength. During each iteration, the merging cost of all
possible pairs are evaluated and only the best pair is selected
for the actual merger. The selected pair is then merged using
the multicorner skew reduction method of Fig. 7. This is
done repeatedly till all the different sub-trees are merged.
Since [20] is one of the best algorithms for prescribed-skew
CTS, the results from this approach will help us determine if
existing prescribed skew (useful skew) CTS algorithms can
be modified for solving the CCTS problem.

D. Dynamic Programming Based CCTS Algorithm

First, we would like to briefly describe why the CCTS
problem is amenable to dynamic programming approach. A
key requirement for a problem to be solvable by dynamic
programming is that it exhibits optimal substructure [21]. That
is, the optimal solution to a problem should contain the optimal
solutions to the sub-problems also. This is clearly satisfied in
the CCTS problem. For example, without loss of generality, let
the final optimal [in terms of (2)] chip-level tree have a fanout
of two at the root. The final cost of the full tree itself can be
re-written as a sum of the costs of the two sub-trees and the
cost of their merger. Since the whole cost is optimal, it follows
that the cost of merging the given two sub-trees should also be
optimal. This, in turn, implies that the cost of each the two sub-
trees are optimal as well. Another feature of CCTS problem
that makes dynamic programming suitable is the presence of
overlapping sub-problems. For example, if two IPs are very
close to each other with identical delays, then the cost of
merging them to form a sub-tree will be very small. This
might allow this sub-tree to be a part of many bigger sub-trees
considered simultaneously. Thus, our dynamic programming
based CCTS algorithm, shown in Fig. 9, follows the same
general outline of typical dynamic programming solutions.

For subsequent discussions, we use the following termino-
logies. An active sub-tree is one that has not yet been
eliminated/pruned from subsequent merging operations. The
list of active sub-trees directly correspond to the current list
of sub-trees considered as a solution to the CCTS problem.
A new sub-tree in the list of active sub-trees is one that has
not gone through even a single round of mergers with other
active sub-trees.

1) Overall Algorithm: In our top-level algorithm given in
Fig. 9, the basic idea is to start with individual IPs with zero
cost as partial solutions to the CCTS problem. Each of the
partial solutions to our CCTS problem is characterized by
two metrics: the IPs covered by each solution and the cost
of building that sub-tree according to step 2.2 These partial
solutions are recursively merged to form bigger solutions
until one or more solutions contain all the IPs in the CCTS
problem. When many viable solutions containing all the IPs
are available, the one that costs the least to build will be
chosen as the final solution.

A naive recursive merger of sub-trees will result in an
exhaustive enumeration of all possible solutions and will

2We ignore the impact of input pin capacitance since in the chip-level CTS
context, the wire capacitance dominates pin capacitance. So impact of input
pin capacitance on delay is small.

Fig. 9. Dynamic programming based approach to chip-level CTS. The sub-
steps are highlighted and explained separately in Figs. 10 and 11.

result in exponential runtime with respect to the number
of IPs in the design. To prevent this, our algorithm uses
two effective pruning methods, Pre Eliminate (Fig. 10) and
Post Eliminate (Fig. 11), that drastically reduce the number
of solutions considered without sacrificing the quality of the
final results. Now, let us discuss the details of Fig. 9. In step
1, all the clock pins of IPs are marked as new and active sub-
trees. Each of these solutions will have a zero cost since we
have not done any mergers yet. Step 2 of Fig. 9 is the core part
of our algorithm in which we iteratively combine existing sub-
trees to progressively get bigger sub-trees, eventually getting
one or more solutions that drive all the IPs. In each iteration
of step 2, we use the Pre Eliminate procedure to get the new
set of valid sub-tree pairs that are considered for merger in
the next iteration. The valid sub-tree pairs are merged using
the multicorner sub-tree balancing algorithm of Fig. 7 at the
end of which, each merged sub-tree will have a specific cost
as defined by (2). Each of these merged sub-trees represent a
new bigger sub-tree formed by combining existing sub-trees.

Next, we use the Post Eliminate procedure to eliminate
any sub-optimal solution from the list of all the current active
sub-trees and the newly generated sub-trees. Then, we mark
the status of all the original sub-trees as old since we have
completed one round of mergers among them. All the newly
created sub-trees have not yet been merged with the other sub-
trees. So we mark their status as new. The status values of the
active sub-trees are used in the next round of Pre Eliminate
procedure. This procedure continues till there are no more
newly created sub-trees from existing solutions, at which point
we choose the minimum cost complete solution as the final
solution to the CCTS problem. Interested readers may also
refer to [22] that gives a simple animated example of how the
overall dynamic programming based algorithm works together
with the elimination steps.

RAJARAM AND PAN: ROBUST CHIP-LEVEL CLOCK TREE SYNTHESIS 885

Fig. 10. Procedure to pick valid pairs for merger from a given set of sub-
trees.

2) Pre Eliminate Procedure: In the Pre Eliminate pro-
cedure shown in Fig. 10, the objective is to return only the
smallest number of valid pairs for next round of merger
without impacting the quality of result. This is done by taking
advantage of three key properties of the CCTS problem listed
below.

a) First, any merger between two old sub-trees can be
eliminated. This is because their merger would have
been already considered when at least one of them was
a new sub-tree. In other words, considering a merger of
two old sub-trees simply means we are doing the same
work again. This property is used in the first If condition
in line 3 of Fig. 10.

b) Second, we can eliminate any sub-tree pair that have
even one common IP between them. This is because the
presence of an IP in a sub-tree means a given IP has been
physically merged with another IP in the solution. This
means, any other sub-tree with that same IP cannot be
physically merged with the given sub-tree. This property
is used in the second If condition in line 3 of Fig. 10.

c) Third, any merger between sub-trees that are too far
away either in terms of delay or distance between their
roots is likely to be sub-optimal when other alternatives
with better delay or distance matching is available.
This property is made use of in the calculation of
PreElim Cost in Fig. 10. This cost measures the de-
sirability of merger between any given two sub-trees
that do not overlap. This cost is proportional to the
physical distance between the roots of the sub-trees
(dist(Si, Sj)) and the delay difference between the sub-
trees (del dist(Si, Sj)). It is also inversely proportional
to the number of critical timing interactions between the
IPs in the two sub-trees. This last effect is captured by

C(Si, Sj) =
∑

∀p,q

W(p, q) (6)

where p = all the IPs in Si, q = all the IPs in Sj

and W(p, q) denote the timing criticality between IPs p

and q.

Fig. 11. Post-eliminate procedure used to eliminate dominated sub-trees.

The Pre Eliminate procedure uses two user defined param-
eters that are explained next. The α parameter is used as a
weighing factor between the delay difference and the physical
distance between the roots of the sub-trees. It is set to be the
average length of interconnect that may be driven per unit of
delay using a given set of buffers and a given technology under
the maximum slew constraint. It is measured in terms of dis-
tance per unit delay. The other parameter used in Fig. 10, β, is
an integer and is used to control how many potential pairs are
to be allowed per sub-tree. β can be any integer with values of
at least 1. In our experiments, β was set to a value of 2. It may
be noted that in the preliminary version of this paper [12], we
used two other comparable parameters with similar motivation
that directly controlled the actual value of maximum allowed
delay difference and distance difference between the sub-trees.
However, based on our experiments on a large number of test-
cases, we find the new parameters are a lot easier to set without
any need to tune the parameters for individual test-cases. Thus,
using the above mentioned three properties of CCTS, the
Pre Eliminate procedure selects only a few best sub-tree pairs
for consideration during the next round of mergers.

3) Post Eliminate Procedure: The objective of the post-
elimination procedure of Fig. 11 is to compare all the existing
sub-trees and weed out any inferior solutions. A sub-tree P is
inferior if there exist another sub-tree Q that covers the same
set (or a super-set) of clock pins covered by sub-tree P , but has
same or lower merging cost. Two sub-trees that drive different
sets of IPs will never be directly compared for elimination as

886 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

one cannot fully replace the other. Once the inferior solutions
are identified, they are removed from the list of active sub-
trees that will be considered for the next round of sub-tree
mergers. This is shown in the steps 2 to 4 of Fig. 11.

In addition to the above straight forward pruning, the
procedure of Fig. 11 executes another pruning that is a bit
more subtle. This is shown in the steps 5 to 7 of Fig. 11.
This procedure uses a user-defined integer parameter, γ , that
represents the maximum number of independent and complete
solutions that can be present in the current set of sub-trees.
We first sort all the current sub-trees in descending order of
number of IPs in them. When two sub-trees have the same
number of IPs in them, we sort them on the ascending value
of the cost. The final sorted list of valid sub-trees represent
how close each sub-tree is to the final complete solution to be
chosen. For example, the top-most sub-tree has the maximum
number of IPs below it with the least cost. Given this sorted
list of sub-trees, we move down the list from top to bottom to
select a list of sub-trees that can be used to get one complete
and independent solution to the CCTS problem. This step
gets repeated until the total number of independent solutions
reaches γ or the list of potential full solutions runs out. Any
sub-tree that is not present in any of the top γ complete
solutions is added to the list of eliminated sub-trees. The list
of sub-trees eliminated by the Post Eliminate procedure are
dropped from subsequent iterations of the algorithm in Fig. 9.

The second pruning procedure drastically reduces the over-
all runtime with little impact on the final results. This is
because a sub-tree that is not a part of the top γ final solutions
can be eliminated with little risk as long as γ is sufficiently
large. For example, in our experiments, we set γ to 200.
However, keeping that sub-tree in the solution pool takes up
exponentially higher runtime since it may add quite a few new
solutions in the subsequent iterations without actually adding
to any better results. It may be noted that in the preliminary
version of this paper [12], this last pruning method was not
employed. As a result, the runtime of the original algorithm
does not scale as well as the new algorithm with respect to
the number of IPs in the CCTS problem.

VI. Practical Considerations in CCTS

A. Generalization of Pin Assignment Algorithm

In Section III, the 0–1 quadratic programming problem was
formulated assuming that the clock pins can be located in only
the mid-points of the four sides. In the most generic case, a
given IP can have multiple candidate clock-pin locations on
each of the four sides and also candidate locations on the top
of IP. This situation can be easily handled by introducing two
constant weight factors for each candidate location. One new
factor should account for the estimated IP clock delay for each
candidate location. This factor should increase proportionally
with respect to the estimated delay of IP clock tree for the
candidate pin location. The second factor should consider the
potential routing layer difference that might arise when clock-
pin locations on top of the IP are considered. Also, another
straightforward modification that can be made to the method
proposed in 3 is that the variables p and q that represent
the number of candidate pin locations should be changed to

TABLE I

Key Test-Case Generation Parameters

Parameter Value

Chip size 0.25 cm2 to 6.25 cm2

No. of IPs 10–130
Aspect ratio 0.7–1.3

Hard-IP probability 0.2
Slew limit range 90–110 ps

Technology 65 nm

account for the new candidate pin locations. Thus, the original
formulation in Section III is applicable generally.

B. Consideration of Blockages

A key requirement of any chip-level CTS algorithm is that
it works in the presence of blockages. All the algorithms
presented in our approach to the CCTS problem can be applied
even for chips with blockages. For example, the clock pin as-
signment algorithm can be made blockage aware by measuring
the distance between any two candidate pin locations using a
blockage aware global router instead of a Manhattan estimate.
Similarly, the multicorner sub-tree balancing heuristic of Fig. 7
can be modified by using the global router based distance in-
stead of Manhattan distance. Since the dynamic programming
algorithm internally uses the multicorner heuristic, that can
also be used in the presence of blockages.

VII. Experimental Results

A. Test-Case Generation

To test the effectiveness of our algorithms, we need several
chip-level SoC test-cases. Since obtaining test-cases from
actual SoC chips is not feasible for us and since there are
no known CCTS work in the literature, we generate random
test-cases using the data available on SoC chips in the
literature [1]–[4].

1) Defining SoC Chip’s Physical Attributes: First, we
define reasonable ranges for the following variables: chip size,
number of IPs, size range of the IPs, aspect ratio range for IPs,
and chip density. Using these, we generate random chip-level
floorplans such that the chip size, number of IPs, and so on are
all within the selected ranges. We also make sure that the chip
density (the ratio of the chip covered by the all IPs) is within
limits and that there are no overlaps between the IPs. Each IP
is marked as a hard or soft IP randomly with probabilities of
0.2 and 0.8 respectively. We would like to note here that the
relative probabilities of hard and soft IPs were chosen based
on our prior experience with SoC chips. We are unable to find
any previous work from which we can choose this number.

2) Generating Timing Criticality Data: To generate a
realistic timing criticality information between IP pairs, we
consider how the chip-level floorplan is done. A key objective
of floorplanning step is to ensure IPs that interact heavily are
located close to each other. However, when the interaction
between the IPs become complex, placing all the IPs that
interact right next to each other becomes impossible. Also,
IPs that are very far away from each other rarely have a
significant number of critical paths between them. To closely

RAJARAM AND PAN: ROBUST CHIP-LEVEL CLOCK TREE SYNTHESIS 887

TABLE II

Clock Divergence, Delay, Skew, Buffer Area (BA), and Wire Length (WL) Results for the Test-Cases in Table IV

Divergence (μs) Max. Delay (ns) Skew (% of Delay) BA (nm2) WL (μm) CPU
TC PAM CCTS Alg. NN SS FF NN SS FF NN SS FF Worst X 1e6 X 1e6 (s)

1CA 0.13 0.16 0.10 2.44 3.00 1.98 3.95 0.91 6.16 6.16 32.32 163.27 1
MCA 0.13 0.16 0.10 2.41 2.99 1.96 2.17 2.64 2.42 2.64 32.34 163.33 1

RND MC-GRD 0.11 0.12 0.10 2.41 2.99 1.96 2.25 2.38 2.63 2.63 32.45 163.66 8
TC1 MC-DyP 0.12 0.14 0.09 2.41 2.99 1.96 2.45 2.94 2.38 2.94 32.43 163.62 10

1CA 0.12 0.15 0.09 2.44 2.99 1.97 4.22 1.08 6.18 6.18 32.25 163.06 1
MCA 0.12 0.15 0.09 2.41 2.99 1.96 2.43 2.48 2.49 2.49 32.30 163.15 2

QP MC-GRD 0.11 0.12 0.10 2.41 2.99 1.97 1.99 2.57 3.24 3.24 32.35 163.39 7
MC-DyP 0.11 0.13 0.09 2.42 3.00 1.97 2.11 2.88 2.23 2.88 32.35 163.36 10

1CA 0.50 0.63 0.40 1.79 2.22 1.42 6.46 3.07 8.72 8.72 10.99 55.83 2
MCA 0.52 0.65 0.42 1.83 2.29 1.48 3.36 4.39 4.71 4.71 11.07 55.98 3

RND MC-GRD 0.48 0.55 0.43 1.78 2.23 1.43 3.55 4.47 4.76 4.76 11.21 56.47 28
TC2 MC-DyP 0.38 0.47 0.30 1.77 2.22 1.43 3.79 4.11 4.23 4.23 11.21 56.40 54

1CA 0.52 0.66 0.41 1.79 2.22 1.42 6.13 2.36 8.72 8.72 10.97 55.76 1
MCA 0.53 0.67 0.43 1.93 2.42 1.56 4.67 5.03 6.39 6.39 11.04 55.88 2

QP MC-GRD 0.45 0.51 0.41 1.77 2.22 1.42 3.06 5.49 4.79 5.49 11.15 56.25 23
MC-DyP 0.35 0.44 0.29 1.78 2.24 1.44 3.09 4.02 3.64 4.02 11.15 56.19 50

1CA 0.67 0.83 0.53 0.65 0.80 0.52 8.77 5.29 11.58 11.58 2.89 14.28 2
MCA 0.70 0.86 0.57 0.65 0.80 0.53 11.83 10.75 11.69 11.83 2.93 14.36 2

RND MC-GRD 0.57 0.65 0.51 0.65 0.82 0.54 11.45 12.00 13.93 13.93 3.12 14.98 39
TC3 MC-DyP 0.50 0.63 0.41 0.66 0.83 0.54 12.36 14.20 13.39 14.20 3.03 14.65 48

1CA 0.66 0.83 0.54 0.65 0.80 0.53 12.47 8.23 17.07 17.07 2.90 14.27 1
MCA 0.60 0.75 0.49 0.63 0.79 0.51 10.36 13.22 11.61 13.22 2.93 14.31 2

QP MC-GRD 0.56 0.63 0.50 0.63 0.79 0.51 13.33 15.27 13.58 15.27 3.07 14.80 33
MC-DyP 0.49 0.60 0.39 0.66 0.82 0.54 10.75 11.05 12.74 12.74 3.03 14.64 51

1CA 1.36 1.71 1.10 0.81 1.00 0.65 10.62 6.14 12.61 12.61 6.42 32.63 3
MCA 1.43 1.77 1.16 0.91 1.13 0.76 7.53 7.46 11.73 11.73 6.48 32.75 5

RND MC-GRD 1.19 1.35 1.06 0.81 1.01 0.66 9.27 9.26 10.28 10.28 6.86 34.04 61
TC4 MC-DyP 1.02 1.27 0.83 0.81 1.01 0.66 8.08 8.32 10.31 10.31 6.68 33.38 84

1CA 1.39 1.74 1.11 0.81 1.00 0.65 8.27 5.22 11.46 11.46 6.40 32.62 2
MCA 1.36 1.69 1.11 0.86 1.08 0.70 9.62 11.52 11.26 11.52 6.45 32.71 4

QP MC-GRD 1.20 1.37 1.07 0.80 1.01 0.65 7.11 9.75 8.96 9.75 6.78 33.79 57
MC-DyP 1.04 1.30 0.85 0.84 1.06 0.68 14.24 14.57 15.43 15.43 6.65 33.24 86

1CA 3.67 4.61 2.92 1.28 1.59 1.04 6.85 4.12 11.14 11.14 9.32 43.78 4
MCA 3.46 4.29 2.80 1.34 1.66 1.09 6.49 7.17 6.79 7.17 9.38 43.90 4

RND MC-GRD 3.18 3.60 2.84 1.37 1.71 1.12 6.46 7.17 7.18 7.18 10.08 46.13 139
TC5 MC-DyP 2.27 2.84 1.84 1.30 1.62 1.05 6.52 7.41 6.49 7.41 9.81 45.13 148

1CA 3.59 4.53 2.86 1.34 1.66 1.09 8.21 4.91 13.85 13.85 9.33 43.79 3
MCA 3.52 4.38 2.86 1.43 1.78 1.16 6.11 6.64 6.39 6.64 9.40 43.92 5

QP MC-GRD 3.20 3.63 2.87 1.28 1.60 1.05 8.20 9.62 9.04 9.62 10.01 45.94 116
MC-DyP 2.19 2.74 1.76 1.31 1.64 1.07 6.15 7.01 6.40 7.01 9.68 44.76 240

1CA 6.42 8.02 5.17 1.14 1.40 0.92 8.04 5.16 11.45 11.45 29.35 141.97 6
MCA 6.30 7.83 5.10 1.06 1.33 0.86 8.77 9.52 10.20 10.20 29.42 142.10 8

RND MC-GRD 4.94 5.63 4.40 1.05 1.32 0.85 9.88 10.81 9.98 10.81 31.14 147.73 254
TC6 MC-DyP 5.10 6.35 4.14 1.07 1.34 0.87 6.83 8.16 8.26 8.26 30.29 144.71 488

1CA 6.11 7.64 4.92 1.06 1.33 0.86 7.11 5.03 11.35 11.35 29.32 141.86 4
MCA 5.96 7.42 4.82 1.04 1.32 0.84 10.36 11.89 10.46 11.89 29.40 142.01 6

QP MC-GRD 5.59 6.45 4.93 1.04 1.30 0.84 9.73 11.23 10.35 11.23 31.03 147.34 218
MC-DyP 5.28 6.59 4.26 1.06 1.33 0.85 7.51 8.39 9.54 9.54 30.12 144.13 421

Skew in a given corner is given as a percentage of corresponding corner delay.

resemble this, we generate the criticality information randomly
such that the maximum value on the random number generated
remains constant until a certain distance, after which it reduces
gradually. Thus, the probability of having a critical path
between a IP pair close to each other is higher than having
them on the opposite ends of the chip.

3) Generating IP Pin Assignments: Clock pin assignment
is done in two ways to produce two flavors of the test-cases.
First, we use the pin assignment step of Section III to get
one set of test-cases. Next, we randomly pick the clock pin

location for all IPs to get a second set of test-cases with
identical floorplan as first set, the only difference being the
clock pin locations. Comparison of results between these two
sets will tell us the effectiveness of our clock pin assignment
algorithm.

4) Generating IP CTS Data: The final step in test-case
generation is to mimic the IP-level CTS done on the different
IPs. This should be done in such a way as to account for
the potential differences in the clock trees in the IPs due
to the difference in the individuals/teams, methodology, cell

888 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

TABLE III

Average Values for Different Metrics for Six Test-Cases Shown in Table II Along With Average and Normalized Results of All

the 100 Test-Cases Used

Divergence (μs) Average Max Delay (ns) Skew (% of Delay) BA (nm2) WL (μm) CPU
TC PAM CCTS Algorithm NN SS FF NN SS FF NN SS FF Worst X 1e6 X 1e6 (s)

1CA 2.12 2.66 1.70 1.35 1.67 1.09 6.57 3.35 9.31 9.31 15.21 75.29 3
MCA 2.09 2.59 1.69 1.37 1.70 1.12 5.32 5.80 6.38 6.38 15.27 75.40 4

RND MC-GRD 1.74 1.98 1.56 1.35 1.68 1.10 5.65 6.18 6.47 6.47 15.81 77.17 88
Avg. MC-DyP 1.57 1.95 1.27 1.34 1.67 1.09 5.34 6.05 5.90 6.05 15.57 76.32 139

(6 TCs) 1CA 2.07 2.59 1.66 1.35 1.67 1.09 6.73 3.49 10.06 10.06 15.20 75.22 2
MCA 2.02 2.51 1.63 1.39 1.73 1.13 5.89 6.68 6.62 6.68 15.25 75.33 4

MC-GRD 1.85 2.12 1.64 1.33 1.66 1.08 5.61 7.17 6.80 7.17 15.73 76.92 76
QP MC-DyP 1.58 1.97 1.27 1.35 1.69 1.10 5.59 6.36 6.32 6.36 15.50 76.06 143

1CA 1.85 2.32 1.48 1.37 1.69 1.10 6.67 3.63 9.95 9.95 13.68 68.57 3
MCA 1.87 2.32 1.51 1.41 1.75 1.14 5.47 6.25 6.53 6.53 13.76 68.77 4

MC-GRD 1.57 1.79 1.40 1.36 1.70 1.10 5.45 6.44 6.53 6.53 14.16 70.03 121
RND MC-DyP 1.35 1.67 1.09 1.36 1.70 1.11 5.90 6.52 6.93 6.93 14.00 69.44 133

1CA 1.83 2.30 1.46 1.37 1.70 1.11 6.95 3.72 10.33 10.33 13.67 68.51 3
Avg. MCA 1.84 2.29 1.49 1.41 1.76 1.14 5.69 6.41 6.60 6.60 13.74 68.65 4

(100 TCs) MC-GRD 1.57 1.79 1.40 1.36 1.70 1.10 5.45 6.44 6.53 6.53 14.16 70.03 119
QP MC-DyP 1.30 1.62 1.06 1.37 1.71 1.11 6.37 7.16 7.28 7.28 13.95 69.28 121

% impr. w.r.t. RND MC-DyP 27.1 27.8 26.2 −0.19 1.15 −1.65 40.6 34.4 30.3 40.6 −2.33 −1.27 –
1CA RND QP MC-DyP 29.5 30.1 28.6 −0.46 0.90 −1.90 35.9 28.0 26.8 35.9 −1.97 −1.03 −

libraries, and so on. We accomplish this by randomly selecting
the clock sink density for each IP within a pre-selected
range, thereby selecting the number of sinks. This number
is rounded off to the nearest power of 2 and the number
of H-tree levels to drive these flip–flops is obtained. Next,
we select a random slew range from a tight range of valid
slew. Finally, we recursively choose a random buffer size and
use that to drive the H-Tree in a bottom-up fashion to meet
the slew limit. Because of the use of different buffer sizes
and different slew limits, the above procedure mimics the
situation that arises commonly in most SoC designs. Table I
shows some of the key parameters for our test-case generation
script.

B. Experimental Setup and Results

We use the 65 nm model cards from [23] for generation
of delays across corners. We use three device corners (NN,
FF, SS) to generate the nominal, fast, and slow corners.
For simplicity, we did not consider other global variations
like voltage, temperature, and interconnect. As more and
more corners are added, the single-corner CTS will be even
worse compared to our multicorner algorithms. In other words,
the skew reduction results that we are presenting here are
very conservative. Also, adding these variation effects will
not change the nature of results on clock divergence reduction
as it uses only the nominal corner delay as a guidance for
minimizing the divergence. Our buffer library consisted of 10
buffers with different sizes (transistor widths) ranging from 10
to 100 times the minimum feature size.

We generate 100 random test-cases with unique floorplans
and different sizes within the ranges given in Table I. Each
of these test-cases will have two flavors depending on the pin
assignment strategy used—either random pin placement or QP
pin placement. The four algorithms described in Section V are
run on both sets of test-cases generated. Since the two test-case

sets are identical in all manner other than the pin locations, a
direct comparison of the results from these two sets will indi-
cate the impact of clock pin placement method. Also, we run
each of the four CCTS algorithms on all test-cases irrespective
of their clock pin placement method. This will be used to com-
pare the relative effectiveness of the four CCTS algorithms.

Table II gives detailed results of six representative test-cases
out of the 100 test-cases we have generated. Table III gives
the average results for the six test-cases used in Table II along
with average results of all the 100 test-cases generated. The
last two rows of Table III give the percentage improvement
of the different parameters with respect to the baseline values
from the single-corner random pin assignment (1CA RND)
method. A positive number in these rows implies a reduction
in value. Please note that we have used the worst values of
the 1CA-RND skew to normalize all the other values in these
rows. Some of the acronyms used in Tables II and III are
explained next. TC denotes the Test Case for the results. PAM
denotes the pin assignment method used in the test-case. This
can either be the quadratic-programming (QP) based method
or random pin assignment method (RND). The four CCTS
algorithms described earlier are abbreviated as: singe-corner
approach (1CA), multicorner approach (MCA), multicorner
greedy algorithm (MC-GRD), and multicorner dynamic
programming based algorithm (MC-DyP). The divergence
values given are weighted sum of clock divergence between
all IP pairs. The weights are proportional to the timing
criticality of all the paths between the IP pairs. Please note
that in Table II, all metrics except skew are absolute values.
Skew in a given corner is given as a percentage of the delay
in the corresponding corner. Since the delay values between
the slowest corner (SS) and fastest corner (FF) can be quite
different, we believe normalizing the absolute skew in each
corner by the corresponding delay will tell us how significant
the skew is in a given corner. We call this skew value as

RAJARAM AND PAN: ROBUST CHIP-LEVEL CLOCK TREE SYNTHESIS 889

TABLE IV

Characteristics of the 100 Random Test-Cases Generated with a Representative Six

TC No. of IPs No. of Flops X Size Y Size Aspect Ratio Max IP Del Min IP Del
(cm) (cm) (ns) (ns)

TC1 14 589 824 2.02 2.66 0.76 2.41 1.08
TC2 30 184 320 1.63 1.76 0.93 1.77 0.27
TC3 48 48512 0.98 0.91 1.07 0.63 0.11
TC4 63 119 296 1.48 1.21 1.22 0.79 0.14
TC5 90 146 432 1.31 1.82 0.72 1.29 0.15
TC6 126 521 216 2.67 2.28 1.17 1.04 0.34

Avg(6) 62 268 267 1.68 1.77 0.98 1.32 0.35
Avg(100) 56 279 777 1.74 1.84 0.96 1.48 0.35

Fig. 12. Runtime of the dynamic programming based CCTS algorithm for
all 100 test-cases.

Fig. 13. Divergence and skew variation are directly correlated. (a) Absolute
values. (b) Normalized values.

normalized skew. Measuring normalized skew will also help
us determine the effectiveness of the multicorner approach
compared to the single corner approach.

1) Runtime: Fig. 12 shows how the runtime of the dynamic
programming based algorithm scales with respect to the num-
ber of IPs in different test-cases. The figure also shows the
trendline for the runtime data, which shows that the runtime
scales with complexity of O(n3) approximately.

2) Validation of Divergence: To demonstrate that reducing
divergence is identical to reducing skew variation, we did
Monte Carlo simulations on a few random test-cases. For each
test-case, we also have the random weights to give the pair
wise criticality of the timing paths between the IPs. Fig. 13(a)
shows the results of this experiment where we have plotted the
nominal corner divergence against the weighted sum of Monte
Carlo skew variation in the nominal corner. Skew variation is
defined as the extra skew in addition to nominal skew due to
variation effects. We have assumed that both buffer and inter-
connect delays can vary by 10% in this experiment. For each
run, we obtain the skew variation for each IP pair and use the
random weights to obtain a weighted sum of skew variation.

This will ensure that we measure the impact variation on skew
between all IP pairs instead of just measuring the worst case
skew. As we can see from Fig. 13(b), which is a normalized
version of Fig. 13(a), there is almost a one-to-one correlation
between divergence and skew variation since the slope of the
line in Fig. 13(b) is very close to 45°. In other words, reducing
divergence by x% implies a reduction in skew variation of x%.
This proves the validity of our divergence metric.

C. Discussions

Based on the results in Tables II and III, we can observe
the following observations.

1) From the last row of Table III, we see that the MC-DyP
algorithm with QP pin assignment reduces divergence
by an average of around 30% 3 compared to the single-
corner approach with random pin placement (1CA RND)
with small impact on delay, buffer area and wirelength.

2) From the last two rows of Table III, we see that using QP
pin assignment reduces the divergence by 2% on average
compared to the random pin assignment. Though the
nominal global skew increases very slightly (by 0.35%)
with the QP pin assignment (comparing RND MC-
DyP and QP MC-DyP), the overall impact of QP pin
placement is still beneficial. The reason is that the
nominal skew is just the global skew. So essentially, the
tradeoff is between reducing clock divergence by 2% for
all end point pairs and a very small increase in nominal
skew between one pair of end points.

3) Comparing the worst values of normalized skews in
the single corner approach with all three multicorner
approaches, the multicorner methods reduces the worst
case normalized skew across the three corners. For
example, the single corner method using QP pin assign-
ment results in the worst normalized skew of 10.33%
compared to 7.28% for the dynamic programming ap-
proach using QP pin assignment.

4) The above reductions in clock divergence and worst
normalized skew comes at an average cost of 2% buffer
area and 1% wire-length.

VIII. Conclusion

In this paper, we addressed the chip-level CTS problem for
complex SoC designs. Experimental results on several test-

3Average of divergence reduction in three corners.

890 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

cases showed that our algorithms are effective in simultaneous
reduction of multicorner skew and clock divergence between
critical IP pairs. Overall, our algorithms can achieve 30%
average reduction in the clock path divergence and increased
multicorner skew robustness at the cost of 2% increase in
buffer area and 1% increase in wirelength.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their constructive comments and suggestions.

References

[1] R. Rajsuman, System-on-a-Chip: Design and Test. Boston, MA: Artech
House Publishers, 2000.

[2] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-
a-Chip Designs, 3rd ed. Dordrecht, The Netherlands: Kluwer, 2002, p.
292.

[3] S. Agarwala, P. Wiley, A. Rajagopal, A. Hill, R. Damodaran, L. Nardini,
T. Anderson, S. Mullinnix, J. Flores, H. Yue, A. Chachad, J. Apostol, K.
Castille, U. Narasimha, T. Wolf, N. S. Nagaraj, M. Krishnan, L. Nguyen,
T. Kroeger, M. Gill, P. Groves, B. Webster, J. Graber, and C. Karlovich,
“A 800 MHz system-on-chip for wireless infrastructure applications,” in
Proc. VLSI Des., 2004, pp. 381–389.

[4] S. Agarwala, A. Rajagopal, A. Hill, M. Joshi, S. Mullinnix, T. An-
derson, R. Damodaran, L. Nardini, P. Wiley, P. Groves, J. Apostol,
M. Gill, J. Flores, A. Chachad, A. Hales, K. Chirca, K. Panda, R.
Venkatasubramanian, P. Eyres, R. Veiamuri, A. Rajaram, M. Krishnan,
J. Nelson, J. Frade, M. Rahman, N. Mahmood, U. Narasimha, S. Sinha,
S. Krishnan, W. Webster, B. Due, S. Moharii, N. Common, R. Nair, R.
Ramanujam, and M. Ryan, “A 65 nm C64x+ multi-core DSP platform
for communications infrastructure,” in Proc. IEEE ISSCC, Feb. 2007,
pp. 262–264.

[5] V. Wason, R. Murgai, and W. W. Walker, “An efficient uncertainty and
skew-aware methodology for clock tree synthesis and analysis,” in Proc.
VLSI Design, 2007. pp. 271–277.

[6] J. Rosenfeld and E. G. Friedman, “Design methodology for global
resonant H-tree clock distribution networks,” IEEE Trans. Very Large
Scale Integr., vol. 15, no. 2, pp. 135–148, Feb. 2007.

[7] A. Kapoor, N. Jayakumar, and S. P. Khatri, “A novel clock distribution
and dynamic de-skewing methodology,” in Proc. ICCAD, 2004, pp. 626–
631.

[8] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng,
K. A. Jenkins, D. H. Allen, M. J. Rohn, M. P. Quaranta, D. W. Boerstler,
C. J. Alpert, C. A. Carter, R. N. Bailey, J. G. Petrovick, B. L. Krauter,
and B. D. McCredie, “A clock distribution network for microprocessors,”
J. Solid-State Circuits, vol. 36, no. 5, pp. 792–799, May 2001.

[9] S. A. Butt, S. Schmermbeck, J. Rosenthal, A. Pratsch, and E. Schmidt,
“System level clock tree synthesis for power optimization,” in Proc.
DATE, 2007, pp. 1677–1682.

[10] U. Padmanabhan, J. M. Wang, and J. Hu, “Robust clock tree routing in
the presence of process variations,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 27, no. 8, pp. 1385–1397, Aug. 2008.

[11] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing clock skew variability
via cross links,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 25, no. 6, pp. 1176–1182, Jun. 2006.

[12] A. Rajaram and D. Z. Pan, “Robust chip-level clock tree synthesis for
SOC designs,” in Proc. IEEE/ACM DAC, Jun. 2008, pp. 720–723.

[13] M. Edahiro, “A clustering-based optimization algorithm in zero-skew
routings,” in Proc. DAC, 1993, pp. 612–616.

[14] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese, and A. B. Kahng, “Zero
skew clock routing with minimum wire-length,” IEEE Trans. Circuits
Syst. II: Analog Digital Signal Process., vol. 39, no. 11, pp. 799–814,
Nov. 1992.

[15] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew
clock and Steiner routing,” ACM TODAES, vol. 3, no. 3, pp. 341–388,
Jul. 1998.

[16] R.-S. Tsay, “Exact zero skew,” in Proc. IEEE/ACM ICCAD, Nov. 1991,
pp. 336–339.

[17] E. G. Friedman, “Clock distribution networks in synchronous digital
integrated circuits,” Proc. IEEE, vol. 89, no. 5, pp. 665–692, May 2001.

[18] MATLAB. Available: http://www.mathworks.com/products/optimization
[19] J. Jiang, “Pin allocation for clock routing,” in Proc. 2nd Int. Conf. ASIC,

Oct. 1996, pp. 35–38.

[20] R. Chaturvedi and J. Hu, “An efficient merging scheme for prescribed
skew clock routing,” IEEE Trans. Very Large Scale Integr., vol. 13, no.
6, pp. 750–754, Jun. 2005.

[21] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA: MIT Press, 2009.

[22] A. K. Rajaram. Available: http://www.cerc.utexas.edu/\simanandr/
DAC08\ CCTS.ppt

[23] Arizona State University. Available: http://www.eas.asu.edu/∼ptm

Anand Rajaram (S’04–M’09) received the B.E.
degree in electrical and electronics engineering from
Anna University, Chennai, India, the M.S. degree in
computer engineering from Texas A&M University,
College Station, in 2004, and the Ph.D. degree in
computer engineering from the University of Texas,
Austin, in 2008.

From 2004 to 2008, he was with the Dallas DSP
Group, Texas Instruments, Dallas, where he worked
on high speed clock network synthesis and analysis
on high-performance DSP chips. Since 2008, he has

been with Magma Design Automation, Austin, working on various aspects of
physical design automation. He has published more than 18 refereed papers in
international conferences and journals. His current research interests include
variation-aware physical design and clock network synthesis and analysis.

Dr. Rajaram’s papers at the Design Automation Conference in 2004 and
the Asia and South Pacific Design Automation Conference in 2008 were
nominated for Best Paper Awards and his paper at the Design, Automation
and Test in Europe in 2009 received the Best IP Paper Award.

David Pan (S’97–M’00–SM’06) received the Ph.D.
degree in computer science from the University of
California, Los Angeles, in 2000.

From 2000 to 2003, he was a Research Staff
Member with the IBM T. J. Watson Research Center,
Yorktown Heights, NY. He is currently an Asso-
ciate Professor and the Director of the UT Design
Automation Laboratory, Department of Electrical
and Computer Engineering, University of Texas,
Austin. He has published over 120 refereed papers
in international conferences and journals, and is

the holder of seven U.S. patents. His current research interests include
nanometer very large scale integration (VLSI) physical design, design for
manufacturing, vertical integration of technology, design and architecture, and
design/computer-aided design (CAD) for emerging technologies.

Dr. Pan has served as an Associate Editor for the IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), IEEE Transactions on Very Large Sscale Integration

Systems, IEEE Transactions on Circuits and Systems-PART I, IEEE
Transactions on Circuits and Systems-PART II, IEEE CAS Society

Newsletter, and the Journal of Computer Science and Technology. He
was a Guest Editor of the TCAD Special Section on the International
Symposium on Physical Design in 2007 and 2008. He serves as the Chair
of the IEEE CANDE Committee and the ACM/SIGDA Physical Design
Technical Committee. He is on the Design Technology Working Group of
the International Technology Roadmap for Semiconductor. He has served on
the technical program committees of major VLSI/CAD conferences, including
ASPDAC (Topic Chair), DAC, DATE, ICCAD, ISPD (Program Chair),
ISLPED (Exhibits Chair), ISCAS (CAD Track Chair), ISQED (Topic Chair),
GLSVLSI (Publicity Chair), SLIP (Publication Chair), ACISC (Program Co-
Chair), ICICDT (Award Chair), and VLSI-DAT (EDA Track Chair). He was
the General Chair of ISPD 2008 and ACISC 2009. He is a member of the
Technical Advisory Board of Pyxis Technology, Inc. He has received a number
of awards for his research contributions and professional services, including
the ACM/SIGDA Outstanding New Faculty Award in 2005, the NSF CAREER
Award in 2007, the SRC Inventor Recognition Award thrice in 2000 and 2008,
the IBM Faculty Award thrice from 2004 to 2006, the UCLA Engineering
Distinguished Young Alumnus Award in 2009, the Best Paper Award from AS-
PDAC in 2010, the Best Interactive Presentation Award from DATE in 2010,
the Best Student Paper Award from ICICDT in 2009, the IBM Research Bravo
Award in 2003, the SRC Techcon Best Paper in Session Award in 1998 and
2007, the Dimitris Chorafas Foundation Research Award in 2000, the ISPD
Routing Contest Awards in 2007, the eASIC Placement Contest Grand Prize
in 2009, five Best Paper Award Nominations (from ASPDAC, DAC, ICCAD,
ISPD), and the ACM Recognition of Service Award in 2007 and 2008. He
was an IEEE CAS Society Distinguished Lecturer from 2008 to 2009.

