
INTEGRATION, the VLSI journal 45 (2012) 365–375
Contents lists available at ScienceDirect
INTEGRATION, the VLSI journal
0167-92

doi:10.1

$A p

Internat
� Corr

E-m

aksingh

gnam@u

dpan@c
journal homepage: www.elsevier.com/locate/vlsi
An accurate sparse-matrix based framework for statistical static
timing analysis$
Anand Ramalingam a, Ashish Kumar Singh d,�, Sani R. Nassif c, Gi-Joon Nam c, Michael Orshansky b,
David Z. Pan b

a Magma Design Automation, Austin, TX 78759, United States
b Department of Electrical and Computer Engineering, The University of Texas, Austin, TX 78712, United States
c Austin Research Lab, IBM, Austin, TX 78758, United States
d Terra Technology, Schaumburg, IL, 60173, United States
a r t i c l e i n f o

Article history:

Received 1 July 2010

Received in revised form

17 November 2010

Accepted 1 March 2011
Available online 21 March 2011

Keywords:

Statistical timing

Sparse matrix

Path-based timing
60/$ - see front matter & 2011 Elsevier B.V. A

016/j.vlsi.2011.03.002

reliminary version of this paper appeared

ional Conference on Computer-Aided Design

esponding author. Tel.: þ1 5126892111.

ail addresses: anandr@magma-da.com (A. Ram

@cerc.utexas.edu (A.K. Singh), nassif@us.ibm.

s.ibm.com (G.-J. Nam), orshansky@cerc.utex

erc.utexas.edu (D.Z. Pan).
a b s t r a c t

Statistical static timing analysis has received wide attention recently and emerged as a viable technique

for manufacturability analysis. To be useful, however, it is important that the error introduced in SSTA

be significantly smaller than the manufacturing variations being modeled. Achieving such accuracy

requires careful attention to the delay models and to the algorithms applied. In this paper, we propose a

new sparse-matrix based framework for accurate path-based SSTA, motivated by the observation that

the number of timing paths in practice is sub-quadratic based on a study of industrial circuits and the

ISCAS89 benchmarks. Our sparse-matrix based formulation has the following advantages: (a) it places

no restrictions on process parameter distributions; (b) it can use an accurate polynomial-based delay

model which takes into account slope propagation naturally; (c) it takes advantage of the matrix

sparsity and high performance linear algebra for efficient implementation. Our experimental results are

very promising.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

As technology has scaled, manufacturing variations have
emerged as a major limiter of design performance. These varia-
tions exhibit themselves as systematic, spatial and random
changes in the parameters of active (transistor) and passive
(interconnect) components. Furthermore, these variations are
increasing with each new generation of technology. Statistical
static timing analysis (SSTA) has been proposed to perform full-
chip analysis of timing under such types of uncertainty, and has
been the subject of intense research recently [2–19]. The result of
SSTA is the prediction of parametric yield at a given target
performance for a design.

SSTA algorithms can be classified into two major groups:
(1)
 Block-based [2–7] approaches use a breadth-first traversal of
the circuit to compute circuit delay [2]. The delay pdf is
propagated from the primary inputs to the primary outputs.
The major difficulty in block-based approaches is the
ll rights reserved.

in the Proceedings of the

(ICCAD 2006) [1].

alingam),

com (S.R. Nassif),

as.edu (M. Orshansky),
introduction of the max operator at each block, and the need
to accurately estimate the maximum of two random variables
in the same form in which those two variables are defined.
(2)
 Path-based [8–12] approaches rely on an enumeration of all or
a large number of the most critical paths in the circuit [8].
Considering the case where all paths are enumerated, the max
operator is deferred to the end of the analysis (i.e. taking the
maximum of all the paths) and therefore does not introduce
any inaccuracy in the computation. A major problem with
path-based approaches is the perception that typical circuits
have an exponential number of paths, making the computa-
tional requirement for such approaches impractical.
While there has been much work on the algorithms for SSTA,
there has been somewhat less work on the accuracy issues. Some
of the sources of inaccuracy in SSTA are
�
 the basic assumptions underlying static timing analysis, such
as treating a gate as a node without considering the function-
ality which gives rise to false paths,

�
 the delay models used for gates and wires, and

�
 the model for process variations and their spatial and/or

temporal distributions.

The algorithmic error introduced by SSTA algorithms can be
traced back to the application of the max operator, which is an

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2011.03.002
mailto:anandr@magma-da.com
mailto:aksingh@cerc.utexas.edu
mailto:nassif@us.ibm.com
mailto:gnam@us.ibm.com
mailto:orshansky@cerc.utexas.edu
mailto:dpan@cerc.utexas.edu
dx.doi.org/10.1016/j.vlsi.2011.03.002

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375366
approximation to the behavior of true circuits, and which is
further approximated in SSTA algorithms [14–16]. While a direct
assessment of that error is difficult, we propose that eliminating
the max operation on parameterized form would aid in reducing
the error. The algorithm we propose in this work applies max on a
set of real numbers thus incurring no error.

The model error has been widely recognized and a number
of researchers have made important contributions. The para-

meterized delay form expressed delays and arrival times as
explicit linear functions of the process parameters [6]. It was
later expanded to handle quadratic delay models that are
able to improve the accuracy of delay estimates [13–16]. A related
source of error, namely the modeling and handling of the
slope of signals, has not received as much attention. In fact,
current published approaches typically make a worst-case
estimate of the slope or propagate the latest arriving slope [6]
which can lead to significant error [20]. The polynomial
models we propose in this work allow high accuracy by using
higher order models, and naturally handling the slope and its
propagation.

The distribution error, i.e. the error caused by lack of generality
in the modeling of the statistical properties of the process
variations has been the most difficult to deal with, due to the
lack of published realistic manufacturing variability data. Earlier
approaches assumed that process variables followed normal
distributions [8], but recent work has shown how more general
distributions can be handled, and how spatial and systematic
correlation can be accommodated [19]. In this work, we make no

assumptions about the character or distribution of any process
parameter.

This paper proposes a new approach to parameterized path-
based SSTA. The proposed method starts with a preprocessing
step of path enumeration and delay computation of all the paths
in a parameterized form, which we then efficiently represent
using a sparse matrix. We model the delay and slope of each
component in the circuit using a general parameterized poly-
nomial form which can include the influence of
�
 input waveforms and output loading,

�
 manufacturing variations in parameters like threshold voltage

and channel length,

�

1e+08

1e+09
operating environment variations in parameters like power
supply voltage and temperature.

Next, the path delays in this same parameterized form are
computed by a natural extension to the gate delay formulation.
Given a sample of values from the distribution of manufacturing
variations, this computation is shown to be simply a matrix/
vector multiply that produces a vector of delays of each path in
the circuit. Finally, the maximum circuit delay is obtained by
applying the max operator on the path delays. The major
attributes of this work are
1e+06

1e+07

(1)
10000

100000

pa
th

s

We show that the number of paths in practice is sub-
quadratic in number of gates by evaluating the number of
paths in the ISCAS89 benchmarks as well as two different
families of industrial circuits.
1000
(2)
 It can handle global, spatial and intra-die variations in one
unified framework.
100

(3)
10

It can compute the delay based on an accurate propagation of
slope along all paths.
1
(4)

10 100 1000 10000 100000
It minimizes the impact of the error caused by approximating
the max function commonly used in SSTA.
gates
(5)
Fig. 1. The number of paths versus the number of gates in ISCAS’89 benchmarks.

By linear regression we get the following relationship: paths� 0:04� gates1:8.
It is independent of the underlying distribution of the process
parameters, and is not restricted to the usual Gaussian
distribution.
The remainder of this paper is organized as follows. In
Section 2 we first motivate the path-based approach by showing

that it is indeed practical for many circuits. We then show
the need for higher order (more than linear) delay models in
Section 3, and describe our approach to the delay modeling of
practical static CMOS gates. With those models in hand, we then
describe our matrix based formulation for STA and SSTA without
slope in Section 4 and SSTA with slope in Section 5. We
demonstrate its application to the ISCAS family of sequential
benchmark circuits in Section 6. We compare our method with an
existing method in Section 7 and conclude in Section 8.
2. A case for path-based SSTA

The upper bound on the number of paths in an arbitrary
network is exponential in the number of gates. A key observation
in this paper, however, is that for the vast majority of practical
circuits, the number of actual paths is far less than this theoretical
upper bound, and is quite manageable. It should be noted that the
theoretical upper bound is usually met by highly structured
networks such as multipliers. With the easy availability of large
amounts of memory in modern computers, storing and manip-
ulating million of paths is eminently practical.

To test our conjecture, we enumerated all the latch-to-latch,
primary input to latch, and latch to primary output paths in the
ISCAS sequential circuit benchmarks [21] (see Fig. 1), and found
that the paths � 0:04� gates1:8. This is hardly the type of
explosive growth that might cause one to completely discount a
family of algorithms. But since the ISCAS benchmarks are small
compared to modern designs, we further extended our analysis to
two different families of industrial benchmarks, one for large
circuits (much larger than the ISCAS benchmarks), and one for
moderate sized circuits (comparable to the ISCAS benchmarks).

We enumerated all paths for the circuits in those two families.
For the first and larger family, shown in Fig. 2, we saw that the
number of paths � 0:12� gates1:42. For the second and smaller
family, shown in Fig. 3, we found paths � 0:43� gates1:17.

Clearly, the demonstration above should not be taken as
sufficient license to propose a purely path-based SSTA algorithm.
However, it does demonstrate that such an algorithm can be
practical for a significant number of cases. In the broader picture,
one can imagine a pairing of path-based and block-based algo-
rithms with one being applied when the enumeration of paths
results in a manageable number of paths, while the other gets
applied to those circuits where the number of paths exceeds some
suitable threshold.

100

1000

10000

100000

100 1000 10000

pa
th

s

gates

Fig. 3. The number of paths versus the number of gates for another family of nine

industrial benchmarks. By linear regression we get the following relationship:

paths� 0:43� gates1:17.

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

Fi
t t

 [
ps

]

HSPICE delay t [ps]

HSPICE
linear model

our model

Fig. 4. Scatterplot of inverter delay and the values predicted by the linear and our

higher order model for various (L, Vth, CL, Sin) tuples. The variation in delay is due

to variations in process parameters (L, Vth) as well as variations in operating

conditions (CL, Sin).

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1000 10000 100000 1e+06 1e+07

pa
th

s

gates

Fig. 2. The number of paths versus the number of gates for one family of 10

industrial benchmarks. By linear regression we get the following relationship:

paths� 0:12� gates1:42.

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375 367
3. Parameterized gate delay modeling

The advantage of path-based SSTA is that it can naturally
handle accurate nonlinear delay models. In this section, we
present a parameterized gate delay model which explicitly takes
slope propagation into account. In current published approaches,
typically worst-case estimate of the slope or the latest arriving
slope is propagated [6] which can lead to significant error [20]. By
modeling the input slope in the gate delay equation we avoid this
modeling error.

It has been observed that a delay model linear in process
variations has a large amount of error; while a quadratic model
fits the gate delay quite accurately [13–15]. The need for a higher

order delay model is illustrated in Fig. 4, where we show a model
of delay as a function of gate length (L), threshold voltage (Vth),
the output capacitance CL and input slope Sin. The samples of L

and Vth used to create Fig. 4 were generated uniformly in the
range m73s with 3s¼ 0:2m. The samples of Sin were generated in
the range of 10–100 ps and samples of CL were generated in the
range of 1–10 fF.

The x-axis shows the HSPICE delay for various (L, Vth, CL, Sin)
tuples. The y-axis shows the values predicted by the two delay
models. It is clear that our model is a much better predictor of
delay than the linear model. In order to generate the cell delay
model for every gate in the library, we simulate each gate varying
the process parameters, load capacitance CL and input slope Sin

uniformly as described above, then fit to the delay equation given
below:

D¼ ad
0þad

1Lþad
2L2þad

3Vthþad
4V2

th

þCLðb
d
1Lþbd

2L2þbd
3Vthþbd

4V2
thÞ

þadCLþb
dSinþgdSinCL ð1Þ

Similarly, the output slope was also fit to the same canonical form
as delay and is given below:

Sout ¼ as
0þas

1Lþas
2L2þas

3Vthþas
4V2

th

þCLðb
s
1Lþbs

2L2þbs
3Vthþbs

4V2
thÞ

þasCLþb
sSinþgsSinCL ð2Þ

Note that both the output delay equation (1) and the output slope
equation (2) are explicitly dependent on input slope Sin. The
equations are valid only for a certain range of the parameters
involved such as L. The canonical form presented in Eqs. (1) and
(2) is equivalent to canonical forms presented in the literature in
the form of the deviations from the nominal values. If we replace
L with

L¼ LnominalþDL

and Vth with

Vth ¼ Vth,nominalþDVth

in Eqs. (1) and (2) then we will get the canonical forms presented
in the literature. Note that the constants ad

0 in Eq. (1) and as
0 in

Eq. (2) are intercepts obtained from linear regression. They should
not be confused with nominal value of delay or output slope as
they are usually denoted in the literature [6,22].

It should be noted that our formulation does not restrict the
model order in any way, and higher order models are possible
with no change to our methodology.
4. Sparse-matrix based SSTA without slope propagation

In this and next sections, we present the sparse-matrix based
SSTA formulation. First, we calculate the path delays without
considering slope propagation and in the next section we take the
slope into account. Let the delay of gate j from input a to the gate
output be dja

AR. Later we will generalize the gate delay as a
function of parameters z, dja ¼ f ðzÞ.

4.1. Sparse-matrix based static timing analysis (STA)

Consider the circuit shown in Fig. 5. This circuit has four paths
and three gates. The gates have two inputs which we distinguish

g1

g2

g3

a

b

a

b

a

b

Fig. 5. Example circuit for illustrating the matrix formulation. The input pins are

distinguished by the labels a and b.

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375368
by labeling them a and b. We define an incidence matrix where
each row represents a path and each column represents a gate
input. The columns are sorted by gate topological order. The path-
gate incidence matrix for the example is given by

A¼

p1

p2

p3

p4

g1a
g1b

g2a
g2b

g3a
g3b

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 1

0
BBB@

1
CCCA ð3Þ

Since each path only consists of a small number of gates,
matrix A is a very sparse. The delay of the gates can be written as
gate delay vector:

dgate ¼ ½d1a
d1b

d2a
d2b

d3a
d3b
�> ð4Þ

where d1b
is the delay from input pin b of gate 1 to its output. The

delay of a path is given by the addition of gate delays along that
path. Thus the path delays are given simply by the multiplication
of the path-gate incidence matrix with the gate delay vector:

dpath ¼Adgate ð5Þ

The overall circuit delay is given by the max of all path delays:

dcircuit ¼maxðdpathÞ ð6Þ

Eq. (6) represents path-based static timing analysis (STA). We
note that STA in this form is essentially a sparse-matrix-vector
multiplication, and that it requires only a single max operator to
find the circuit delay. There are many data structures and
algorithms developed for efficient sparse-matrix manipulation
which we can exploit [23]. Now we turn our attention to the
statistical STA (SSTA).
4.2. Sparse-matrix based statistical static timing analysis (SSTA)

In this section, we drop the input specific delay for the sake of
convenience. Let the delay of gate j be a function of r parameters
zjARr . Thus dj¼ f(z) is a symbolic function of parameters instead
of a real number.

dj ¼
Xr

k ¼ 1

cjkzjk ¼ c>j zj ð7Þ

Note that z need not consist only of linear parameters. For
example, a possible second order gate delay model in channel
length L and load CL might be:

zj ¼ ½1 L L2 CL CLL�> ð8Þ

The same formulation can trivially handle a mixed model such as

zj ¼ ½1
ffiffiffi
L
p

L CL CLeL�> ð9Þ
The gate delays of the circuit in Fig. 5 can be written as

d1

d2

d3

2
64

3
75¼ diagðc>1 ,c>2 ,c>3 Þ

z1

z2

z3

2
64

3
75

dgate ¼ C>Z ð10Þ

where diag() denotes the diagonal of a matrix.
The path delays are obtained by multiplying the path-gate

incidence matrix in Eq. (3) and the gate delay vector in Eq. (10)

dpath ¼Adgate

¼AC>Z ð11Þ

With Eq. (11) we have now extended the path delay calcula-
tion in Eq. (5) to include the dependence of delay on process
parameters. Assuming that these process parameters are random
variables with some well defined joint probability density func-
tion from which we can sample, our goal is to show how we can
generalize this result to calculate the distribution of path delays,
and by using the traditional max function, the distribution of
overall circuit delay.

If the kth random sample is given by Z(k) then the path delay
vector corresponding to the kth random sample is given by

dðkÞpath ¼AC>ZðkÞ ð12Þ

Now if we take ‘ samples then Eq. (12) can be generalized as

½dð1Þpath . . . dð‘Þpath� ¼ AC>½Zð1Þ . . . Zð‘Þ� ð13Þ

To get the circuit delay distribution, we apply Eq. (6) to Eq. (13)

½dð1Þcircuit . . . dð‘Þcircuit� ¼ ½maxðdð1ÞpathÞ . . . maxðdð‘ÞpathÞ� ð14Þ

This is essentially a Monte Carlo simulation expressed in matrix
form. A histogram of the circuit delay vector in Eq. (14) produces
the circuit delay distribution. Thus Eq. (14) represents path-based
statistical static timing analysis (SSTA) ignoring slope. In this
form, SSTA is a natural extension of STA as written in Eq. (6) and is
simply in the form of a matrix–matrix multiplication. We make a
few remarks about the matrices. It is important to note that AC>

matrix is a sparse matrix, which allows for efficient storage as
well as fast computation. The Z vector, though dense, depends
only on the number of gates and not on the number of paths.
4.3. Example

We will present an illustrative example to show how matrices
are constructed and Monte Carlo simulations are done in our
framework.

There are two paths in the circuit shown in Fig. 6. This can be
captured in the incidence matrix A of Eq. (11):

A¼ p1

p2

g1 g2 g3

1 1 0

1 0 1

� �
ð15Þ

For the sake of illustrative purposes, consider the delay to be
function of just length L. Let d1¼70L1, d2¼50L2 and d3¼60L3.
Then the coefficient matrix ðC>Þ and parameter matrix Z in Eq.
(11) is given by

C> ¼

70 0 0

0 50 0

0 0 60

0
B@

1
CA ð16Þ

70

80

90

100

110

120

130

20 30 40 50 60 70 80 90 100

ou
tp

ut
 d

el
ay

 t
[p

s]

input slope t [ps]

Fig. 7. Linear relationship between input slope and delay.

g1

g2

g3

s0

s11 s12

s21 s23

Fig. 8. A simple circuit to illustrate SSTA with slope propagation. Here s0 denotes

the slope at the primary input. The output slope at gate g1 in path 1 is denoted as

s11 and in path 2 is denoted as s21.

g1

g2

g3

Fig. 6. Example circuit for illustrating how Monte Carlo simulation is done in our

framework.

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375 369
Z¼

L1

L2

L3

2
64

3
75 ð17Þ

We get the path delays using Eq. (11):

dpath ¼ AC>Z

¼
1 1 0

1 0 1

� � 70 0 0

0 50 0

0 0 60

0
B@

1
CA

L1

L2

L3

2
64

3
75

¼
70 50 0

70 0 60

� � L1

L2

L3

2
64

3
75¼ 70L1þ50L2

70L1þ60L3

" #
ð18Þ

The Monte Carlo simulation is done by sampling L1, L2 and L3 from
their respective distributions. For example, after sampling it turns
out that L1¼1.6, L2¼1.4 and L3¼1.5. Then substituting these
values in Eq. (18) leads to path delays for this instance:

dpath ¼
182

202

� �
ps ð19Þ

This corresponds to one Monte Carlo simulation as in Eq. (12).
Repeating this ‘ times allows to obtain a distribution for path
delays and circuit delay. The number of samples ‘ depends on the
confidence interval we seek in the variance of the distribution and
it is usually set to ‘¼ 10,000 in the literature.
5. Sparse-matrix based SSTA with slope propagation

We now extend our delay model to include slope propagation.
It is important to note that the output slope of gate j cannot be
specified unless we know which path it belongs to. For example, in
Fig. 5, gate g3 at input pin a will have two different slopes namely:
(1)
 due to path 1 ðg1a
-g3a

Þ, and

(2)
 due to path 2 ðg1b

-g3a
Þ.
We use the same canonical form to express both delay and slope,
but we restrict the dependence of delay and output slope on the
input slope to be linear. This linearity is required in order to
preserve the canonical form as delays are accumulated along a
path. However, we do not require a global linearity wherein the
input slope is varying on order of magnitude. A locally linear
model is sufficient and the sensitivity can be determined based on
table look up from the range of input slope. In order to find the
correct sensitivity, we propose a first step static timing analysis
flow for each path to allow us to determine the three-sigma
spread of each output slope for any fixed path. Based on the range
of slope, we can determine the correct sensitivity coefficient to
use for the SSTA analysis. We also observed a linear relationship
between delay and input slope variation over a range for the cells
in our library and we illustrate it in Fig. 7 for one of the cells in the
library.
We use the superscripts d and s to distinguish the coefficients
of delay and slope. We delineate the input slope to a gate by the
subscript in. The gate delay dij and the output slope sij of gate j in
path i is given by

dij ¼ ld
j sinþðc

d
j Þ
>zj ð20Þ

sij ¼ ls
j sinþðc

s
j Þ
>zj ð21Þ

From Eq. (20), one can see that the input slope at all the gates is
required to calculate the gate and path delays. One way to solve
for the input slope is to look at each path p separately and obtain
the slope of each gate in an individual path. This method is
illustrated using Fig. 8, and this simple circuit consists of inverters
which allows us to conveniently drop the input-pin specific
subscripts.

Let sp be the column vector in which the values of slopes along
path p are listed. Assume the values are listed in the topological
order of the gates along path p.

To illustrate, consider the path p¼1, through gates g1 and g2 in
Fig. 8. The column vector s1 is given by

s1 ¼

s0

s11

s12

2
64

3
75 ð22Þ

and related by Eq. (21) as

s0

s11

s12

2
64

3
75¼

0 0 0

ls
1 0 0

0 ls
2 0

0
B@

1
CA

s0

s11

s12

2
64

3
75þ

ðcs
0Þ
>z0

ðcs
1Þ
>z1

ðcs
2Þ
>z2

2
664

3
775

s1 ¼Ks
1s1þdiagððcs

0Þ
>,ðcs

1Þ
>,ðcs

2Þ
>
Þ Z1

¼Ks
1s1þðC

s
1Þ
>Z1 ð23Þ

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375370
In general Eq. (23) is valid for any arbitrary path containing t

gates. Thus, s1ARtþ1, Ks
1ARðtþ1Þ�ðtþ1Þ is lower diagonal, and

ðCs
1Þ
>Z1ARtþ1. If the circuit has p paths, then the Eq. (23) for all

the p paths can be succinctly captured into one single equation
shown below:

s1

. . .

sp

2
64

3
75¼ diagðKs

1, . . . ,Ks
pÞ

s1

. . .

sp

2
64

3
75þ

ðCs
1Þ
>Z1

. . .

ðCs
pÞ
>Zp

2
664

3
775

s¼KssþdiagððCs
1Þ
>, . . . ,ðCs

pÞ
>
ÞZ

¼KssþðCs
Þ
>Z ð24Þ

From Eq. (24) we can solve for the slope s in the circuit

s¼ ðI�Ks
Þ
�1
ðCs
Þ
>Z ð25Þ

Lemma 1. The matrix ðI�Ks
Þ
�1 is non-singular. Thus its inverse exists.

Proof. Assume path i contains ti�1 gates and 1r irp. Now the
detðI�Ks

Þ can be written as

detðI�Ks
Þ ¼ detðI�diagðKs

1, . . . ,Ks
pÞÞ

¼ detðdiagððIt1
�Ks

1Þ, . . . ,ðItp�Ks
pÞÞÞ

¼
Yp

i ¼ 1

detðIti
�Ks

i Þ

¼ 1

where Ks
i ARti�ti and is a lower diagonal matrix

Next, we reason why Ks
i is a lower diagonal matrix. The output

slope of a gate is a function of the input slope of the gate. But the

input slope of a gate is given by the output slope of its

predecessor gate on the same path. Thus, in a topologically ordered

vector of slopes s, every element is only related to its previous

element by some transformation. This transformation is affine in

case of Eq. (21) where the coefficients were real-valued. Since the

transformation relates an element to the element before it, the

matrix describing this transformation is lower diagonal.

Since Ks
i is a lower diagonal matrix, the matrix ðIti

�Ks
i Þ turns

out to be a lower triangular matrix with diagonal entries 1.

Since for a lower triangular matrix LARm�m the determinant is

given by

detðMÞ ¼
Ym
i ¼ 1

‘ii

Thus we can conclude that

detððIti
�Ks

i ÞÞ ¼ 1, 1r irp

Since the determinant of ðI�Ks
Þ is non-zero it is invertible. &

Lemma 2. The matrix ðI�Ks
Þ
�1 can be computed in linear time in

number of non-zero entries of ðI�Ks
Þ and the inverse is also sparse.

Proof. First we exploit the block diagonal matrix structure of
ðI�Ks

Þ to represent its inverse in a block diagonal form as follows:

ðI�Ks
Þ
�1
¼ ðI�diagðKs

1, . . . ,Ks
pÞÞ
�1

¼ ðdiagððIt1
�Ks

1Þ, . . . ,ðItp�Ks
pÞÞÞ
�1

¼ diagððIt1
�Ks

1Þ
�1, . . . ,ðItp�Ks

pÞ
�1
Þ ð26Þ

Using the special structure of each of sub-matrix above

Ati
� ðIti
�Ks

i Þ, we can write out closed form expression for its

inverse. The special structure can be described by the presence of

one in all diagonal entries, lower triangular matrix and only
entries next to diagonal are non-zero. Assuming that the entries

next to diagonal are l1,l2, . . ., we can arrive at the following

closed form expression for its inverse Bti
. (Following shows the

entry in a-th row and b-th column):

Bti
½a�½b� ¼ 0 if ðaobÞ

¼ 1 if ða¼ bÞ

¼ lb � � �la�1 if ða4bÞ

By setting ak ¼ l1 � � � lk, we can re-express above as
Bti
½a�½b� ¼ 0 if ðaobÞ

¼ 1 if ða¼ bÞ

¼
aa�1

ab�1
if ða4bÞ

It is easy to see thus that the matrix Bti
is lower triangular

matrix and the inverse can be computed in O(ti (ti þ 1)/2), which
is same as the number of non-zero entries in Bti
. We recall that, ti

is number of rows of square matrix Ati
, which is 1 plus the logic

depth of path i. The overall complexity of computing the inverse

in Eq. (26) is Oð
Pp

i ¼ 1 tiðtiþ1Þ=2Þ. Since ti is bounded by 1 plus the

logic depth of circuit, the overall inverse can be computed in

linear time in number of paths O(p).

It is also clear that the number of non-zero entries arePp
i ¼ 1 tiðtiþ1Þ=2¼OðpÞ, while the total number of entries in the

matrix are ð
Pp

i ¼ 1 tiÞ
2
¼Oðp2Þ, again using the fact that ti is bounded

by logic depth, we deduce that the inverse is also sparse. &

The equation for path delays is similar to Eq. (24) and can be
calculated as

dpath ¼KdsþðCd
Þ
>Z

¼Kd
ðI�Ks

Þ
�1
ðCs
Þ
>ZþðCd

Þ
>Z ðusing Eq: ð25ÞÞ

¼Kd
ðI�Ks

Þ
�1
ðCs
Þ
>ZþðCd

Þ
>Z

¼ ðKd
ðI�Ks

Þ
�1
ðCs
Þ
>
þðCd

Þ
>
ÞZ

¼D>Z ð27Þ

Since path delays are a function of process parameters, by taking a
sample of all process parameters one can generate delay of all
paths in the circuit as captured in the following equation:

dðkÞpath ¼D>ZðkÞ ð28Þ

The circuit delay is given by the max of all path delays. Now if we
take ‘ samples then we get ‘ samples of circuit delay captured in
the following equation:

½dð1Þcircuit . . . dð‘Þcircuit� ¼ ½maxðdð1ÞpathÞ . . . maxðdð‘ÞpathÞ� ð29Þ

A histogram on these ‘ samples gives us the circuit delay
distribution. Thus SSTA can be performed considering the slope
and process variations.
6. Experimental results

We implemented our algorithm using a combination of awk/
perl scripts and Cþþ. We report the results of experiments run on
the ISCAS89 benchmarks using a 64-bit Linux machine with
16 GB RAM and running at 3.4 GHz. The delay models were
generated using the 90 nm Berkeley Predictive Technology Model
[24]. In the experiments only latch-to-latch paths were consid-
ered for timing. Thus in Table 1 only the latch-to-latch paths and
the number of gates between the latches are listed. We modeled
the effect of variations in channel length and threshold voltage,
and assumed that the variance of these parameters was such
that 3s¼ 0:2m. We modeled the impact of spatial correlation on

Table 1
Path-gate statistics of ISCAS89 benchmarks and runtime for 10,000 simulations.

Circuit Gates Paths Sparsitya (%) Runtime (s) Percentage runtime (%) Time per matrix multiply (s)

Generatingb Matrixc multiply Total Generatingb Matrixc multiply

Paths Matrix Paths Matrix

s27 8 9 46.13 0.02 0.02 0.07 0.11 18 18 63 7.00e�06

s1196 73 43 11.61 0.15 0.07 0.60 0.82 18 8 73 6.00e�05

s1238 73 43 11.61 0.12 0.04 0.39 0.55 21 7 70 3.90e�05

s208 50 72 10.48 0.07 0.04 0.49 0.60 11 6 81 4.90e�05

s386 92 86 8.56 0.08 0.07 0.57 0.72 11 9 79 5.70e�05

s820 187 207 3.42 0.15 0.13 1.14 1.42 10 9 80 1.14e�04

s298 98 212 4.97 0.10 0.11 1.04 1.25 8 8 83 1.04e�04

s832 188 219 3.41 0.15 0.12 1.07 1.34 11 8 79 1.07e�04

s510 162 230 4.02 0.15 0.19 1.39 1.73 8 10 80 1.39e�04

s641 237 238 12.82 0.41 2.14 4.80 7.35 5 29 65 4.80e�04

s344 154 323 6.21 0.17 0.43 2.33 2.93 5 14 79 2.33e�04

s349 155 333 6.11 0.21 0.40 1.70 2.31 9 17 73 1.70e�04

s382 133 353 4.21 0.16 0.17 1.18 1.51 10 11 78 1.18e�04

s1488 307 366 3.36 0.31 0.51 3.33 4.15 7 12 80 3.33e�04

s1494 306 375 3.37 0.36 0.52 3.33 4.21 8 12 79 3.33e�04

s526n 172 377 2.66 0.15 0.20 1.75 2.10 7 9 83 1.75e�04

s526 171 379 2.67 0.15 0.12 1.76 2.03 7 5 86 1.76e�04

s444 160 482 4.18 0.21 0.27 1.60 2.08 10 12 76 1.60e�04

s953 328 723 2.54 0.40 0.76 3.93 5.09 7 14 77 3.93e�04

s713 250 2650 17.54 5.13 36.47 50.42 92.02 5 39 54 5.00e�03

s5378 1938 6858 0.66 4.44 9.62 20.28 34.34 12 28 59 2.00e�03

a Sparsity¼percentage of non-zero in the sparse matrix.
b We wrote awk/perl scripts to generate paths and build the sparse matrix.
c We wrote Cþþ program to do matrix multiplication.

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375 371
parameter variations, and therefore required placement informa-
tion for the circuits, which we obtained by placing the circuits
using Dragon [25]. To properly account for random die-to-die
(global) and within-die (intra) variations along with the spatial
component mentioned above, we modeled each process para-
meter zg,i as

zg,i ¼
ffiffiffiffiffiffiffi
0:5
p

zglobal
g,i þ

ffiffiffiffiffiffiffiffiffiffi
0:25
p

zintra
g,i þ

ffiffiffiffiffiffiffiffiffiffi
0:25
p

zspatial
g,i ð30Þ

where zg,i
intra models the random variation and zg,i

spatial models the
spatial variation by introducing new grid random variables [5].

We performed 10,000 Monte Carlo simulations for each of the
ISCAS benchmark circuits. The number of simulations performed
in our experiment was set high in purpose to establish an
accurate result. But a run with one tenth (1000) the number of
samples would normally be sufficient to calculate the delay
distribution to engineering accuracy. The results are summarized
in Table 1. The table contains the number of gates and paths along
with the runtime taken by the algorithm to compute the delay
statistics of the circuit. Also shown is the breakdown of effort
among
(a)
 path enumeration (implemented in awk),

(b)
 sparse-matrix generation (implemented in perl), and

(c)
 matrix multiplication (implemented in Cþþ).
In Table 1, we have presented results for smaller benchmarks in
ISCAS89. For the bigger benchmarks we implemented speedup
techniques and they are discussed next.
1 We found that retaining paths whose logic depth was greater than 90% of

the maximum logic depth of the circuit provided the best tradeoff between

accuracy and speed for our synthesized ISCAS89 benchmarks.
6.1. Speedup techniques

In this section, we describe techniques to speedup the Monte
Carlo simulation. The speedup technique is based on removing
the non-critical paths to reduce the matrix size.
If we are concerned only about the circuit delay, the maximum
of all path delays, then we can prune out non-critical paths based
on their logic depth. To ensure fairness, complex gate like XOR
can be assigned an equivalent logic depth of 2 instead of being
treated as the same as a NAND gate.

The idea behind the pruning technique is illustrated using
s1423. The histogram of logic depth of paths in s1423 is shown in
Fig. 9(a). In Fig. 9(b), the histogram of the logic depth of the path
with the maximum delay in a Monte Carlo simulation is plotted.
The histogram was obtained after doing Monte Carlo simulation
for 10,000 runs. s1423 is representative of the ISCAS89 bench-
marks and it is clear that the paths with the higher logic depth
tend to be the one which have maximum path delay. So we
employ the strategy of eliminating paths with smaller logic depth
when we are computing the circuit delay, the maximum of all
path delays.

We have applied this pruning technique to the biggest bench-
marks in the ISCAS89 benchmark suite. Our pruning strategy is to
eliminate paths whose logic depth is less than 90% of the
maximum logic depth of the circuit.1 For example, if the circuit’s
maximum logic depth is 60 then all paths whose logic depth is
less than 0.9�60¼54 are eliminated.

In Table 2, benchmark s38417 seems a little anomalous. This is
because there is a long tail in the logic depth of s38417 as shown
in Fig. 10. This means that after pruning we are left with just 280
paths to analyze. To validate our approach we compare the pdf
obtained from golden simulation (where no paths are eliminated)
to the pdf obtained after pruning paths in Fig. 11. Note that both
the pdf’s, one obtained after pruning paths and the other obtained
by considering all the paths, labeled exact, are nearly identical.
The mean which was obtained from both the methods was the

0

1

2

3

0

Pe
rc

en
t o

f
pa

th
s

Logic depth [d]

0

20

40

60

80

100

0

Pe
rc

en
t o

f
pa

th
s

Logic depth [d]
10 20 30 40 50 60 10 20 30 40 50 60

Fig. 9. Histogram was obtained after doing Monte Carlo simulation for 10,000 runs. Note that the logic depth of paths with maximum delay in (b) is always either 59 or 60.

(a) Histogram of logic depth of paths in S1423 and (b) Histogram of logic depth of paths with the maximum delay in S1423.

Table 2
Runtime after logic depth based pruning for the three biggest benchmarks in

ISCAS89. All paths whose logic depth was less than 90% of the maximum logic

depth were pruned. The number of simulations were set to 10,000.

Circuit Original

pathsa

Pruned

pathsb

Pruned runtime (s)

Generating Matrix

multiply

Total

Paths Matrix

s1423 35,990 334 22.20 4.83 19.31 46.34

s9234 227,837 33,536 227.89 477.36 1691.61 2396.86

s35932 122,997 39,168 91.70 150.53 1012.51 1254.74

s38584 850,422 35,904 530.90 471.37 1732.91 2735.18

s13207 1,005,680 78,082 715.66 1138.58 3946.16 5800.40

s38417 1,389,348 280 541.31 3.75 12.47 557.53

a This column shows the total number of paths in the circuit.
b This column shows the number of paths left after logic depth based pruning.

0

10

20

30

10

Pe
rc

en
t o

f
pa

th
s

20 30 40 50

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375372
same while the standard deviation obtained after pruning paths
was differed by less than 0.9% from the exact method.

Note that the delay distribution of s38417 deviates from
normality by having long tails in Fig. 11. The deviation from
normality is because of two reasons:
Logic depth [d]

Fig. 10. Histogram of logic depth of paths in s38417. Note that there is a long tail
(1)
 max operation;

and there are paths with logic depth of 47. Thus our pruning strategy of
(2)

eliminating paths with logic depth less than 0.9�47 leaves us with just 280

critical paths.
the quadratic terms in delay equation in Eq. (1). Even if the
parameters follow normal distribution, the quadratic terms
make the distribution non-normal.
2000
Pruned

Exact

The results from the other two benchmarks s13207 and s38584
are similar to the results from s38417.
1000

1500

Fr
eq

ue
nc

y

7. Comparative studies

In this section we compare our proposed method with a graph
based Monte Carlo method and a block-based method [6].
0

500

2000 2200 2400 2600 2800 3000 3200 3400 3600
delay [ps]

Fig. 11. Delay pdf of s38417 obtained after pruning paths plotted against the one

obtained without pruning paths. Note that both the pdf’s are virtually

indistinguishable.
7.1. Comparison with path-based Monte Carlo method

In this section, we compare the runtimes of the proposed
method with a path-based Monte Carlo (MC) since a block-based
MC cannot handle slope propagation accurately. By path-based MC
simulation we mean evaluation of path delays without resorting to
sparse matrix method. To understand the difference between the

Table 3
Runtime comparison for the proposed matrix method versus repeated path tracing

method. The number of simulations were set to 10,000.

Circuit Path MCa (s) Sparse matrixb (s) Alt DSc (s)

s27 220.03 0.11 1.12

s208 380.05 0.60 10.76

s1196 460.16 0.82 12.10

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375 373
proposed sparse-matrix method and the graph based MC method
let us compare the algorithms used to implement them.

First we summarize the steps involved in a sparse-matrix
based method as a pseudocode in Algorithm 1. Next we summar-
ize the steps involved in a path-based MC as a pseudocode in
Algorithm 2.

Algorithm 1. Sparse-matrix-based-SSTA.

s298 880.09 1.25 29.68
s382 1360.13 1.51 56.00

s344 3060.17 2.93 81.05

th

p

Input: Circuit description after it has been mapped to a library
Output: Timing distribution of the circuit
a This column shows the runtime of a path-based MC whose pseudocode was

1:
presented in Algorithm 2. Monte Carlo simulation uses path-based approach since

2

e n

rese
Enumerate all latch-to-latch paths in the circuit using
depth first search (DFS) [26].
slope cannot be accurately propagated in a block-based method.
2:

b This column shows the runtime of the proposed sparse matrix method

presented in Algorithm 1.
c This column shows the runtime of the proposed method with an alternative
Calculate the parameterized delay for each of the paths and
store it in sparse matrix. This process is captured in Eq.
(27).
data structure, array of hashes. The algorithm is the same as the one presented in
3:
 for i¼1 to ‘ do
Algorithm 1 but the data structure changes from sparse matrix to array of hashes.
4:
 Generate a sample of process parameters, pre-multiply it
by the sparse matrix to get a vector of path delays. This is
captured in Eq. (28). Apply the max operator to get the
circuit delay. This constitutes a single Monte Carlo
simulation.
5:
 end for

6:
 The above for loop results in a vector of circuit delays of

length ‘. This is captured in Eq. (29). From this one can
generate circuit delay statistics and estimate the timing
yield of the circuit.
Algorithm 2. Graph-based-SSTA.
Input Circuit description after it has been mapped to a library
Output: Timing distribution of the circuit

1:
 Enumerate all latch-to-latch paths in the circuit using

depth first search (DFS) [26].

2:
 for i¼1 to ‘ do

3:
 Generate a sample of process parameters for every gate

in the circuit.

4:
 for p¼1 to n paths do

5:
 Get the output slope and delay for every gate in the

path based on the process parameters and input slope. Add
the delays of all the gates in the path to get the path delay.
6:
 end for

7:
 Apply the max operator over all path delays to get the

circuit delay. This constitutes a single Monte Carlo
simulation.
8:
 end for

9:
 The outer for loop results in a vector of circuit delays of

length ‘. From this one can generate circuit delay statistics
and estimate the timing yield of the circuit.
The algorithms presented in Algorithms 1 and 2 look decep-
tively similar. The major difference between the two lies in step
2 of the sparse-matrix based method (Algorithm 1). We generate
path delays in a parameterized form and store it as a sparse
matrix.2 In the path-based method, the delay model evaluation is
done inside the for() loop as shown in step 5 (Algorithm 2).
Thus we need to do sample L and Vth for each simulation and then
evaluate all the gates for their delays and output slope. Then gate
delays along a path are added up to get the path delay. Our
sparse-matrix approach calculates delay and slope in a parame-
terized (symbolic) form and avoids this delay evaluation inside a
It should be noted that there is no restriction on the gate delay model except

eed to have input slope appear linearly. The linearity restriction helps us to

rve the canonical form of the delay and slope models.
for() loop. This is the reason behind the efficiency of our
approach compared to a path-based Monte Carlo method.

The runtimes between the two approaches are compared for
smaller benchmarks in Table 3. From the table one can observe
that the proposed approach has a runtime which is orders of
magnitude faster than the path-based method.

7.2. Implementation details

We presented the construction of sparse matrix (D) in Eq. (28)
as a series of operations on matrices as shown in Eq. (27). This
was done to present our analysis in a mathematically rigorous as
well as an elegant fashion. It should be noted that one can
construct the sparse matrix (D) using graph traversal method. In
fact the sparse matrix construction in our implementation was
done using graph traversal method.

The sparse matrix can be thought of as an efficient data
structure to hold the parameterized path delays. An alternative
data structure such as array of hashes to hold parameterized path
delays lead to slower runtimes. In array of hashes one can
visualize array consisting of all possible paths; each element in
the array points to a hash which consists of all the gates in that
path. The runtime comparison is shown in Table 3. It is clear that
having sparse matrix as a data structure is superior since it is
results in a regular access from caches leading to a faster runtime.

7.3. Comparison with block-based method

A comparison of the proposed method with a block-based
method [6] is shown in Fig. 12 for s27, clearly showing the
proposed method’s accuracy compared with block-based method.
The tails in the distribution are not captured by block-based
method since its delay model is linear. Also the block-based
method is restricted to work only with normal distributions. It
also suffers from the fact that it approximates max of two random
variables. We note that the biggest benchmarks in ISCAS89 ran in
a few seconds using the block-based method showing the
runtime superiority of the block-based method.
8. Conclusion and future work

This paper demonstrates that it is possible and practical to
perform path-based statistical static timing analysis, and that
such an analysis can be written compactly in matrix notation,
allowing the use of standard highly optimized linear algebra
techniques. The major advantage of this formulation is that it

200

0.000

pd
f

blk

pl

pq

200

blk

de
la

y
[p

s]

0.020

0.010

250 300 350 400
delay [ps]

400

300

pl pq

Fig. 12. Delay pdf of s27 obtained using block-based method [6] (denoted as blk), path based method with linear delay models (denoted as pl) and path-based method with

quadratic models (denoted as pq). Results from path-based method with linear models can be thought of how much error is introduced by an analytical max() and using

worst-case slope at the input of a gate. Results from path-based method with quadratic models can be thought of how much error is introduced when we use linear delay

models. Note that the linear models are not adequate enough to model the tails of the distribution. (a) Density plot of circuit delay of s27. (b) Boxplot of circuit delay of s27.

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375374
places no restrictions on process parameter distributions. It
embeds accurate polynomial-based delay model which takes into
account slope propagation naturally. With the exception of the
need to have the slope appear linearly, fairly arbitrary models can
be trivially handled using this framework.

Data was presented to show that many practical circuits have
a bounded number of paths, making such an analysis possible. It
should be noted that this demonstration should not be taken as
sufficient license to propose a purely path-based SSTA algorithm.
We plan to extend the formulation to handle wires, and show
how incremental computation may be done in the framework and
also incorporate a more accurate waveform model [27].
Acknowledgments

This work is partially supported by SRC, IBM Faculty Award,
Fujitsu, Sun, and Intel equipment donation.

References

[1] A. Ramalingam, A.K. Singh, S.R. Nassif, G.-J. Nam, M. Orshansky, D.Z. Pan, An
accurate sparse matrix based framework for statistical static timing analysis,
in: ICCAD ’06: Proceedings of the 2006 ACM/IEEE International Conference on
Computer-aided Design, 2006, pp. 231–236.

[2] J.-J. Liou, K.-T. Cheng, S. Kundu, A. Krstic, Fast statistical timing analysis by
probabilistic event propagation, in: DAC ’01: Proceedings of the 38th
Conference on Design Automation, 2001, pp. 661–666.

[3] A. Agarwal, D. Blaauw, V. Zolotov, S. Vrudhula, Computation and refinement
of statistical bounds on circuit delay, in: DAC ’03: Proceedings of the 40th
Conference on Design Automation, 2003, pp. 348–353.

[4] A. Devgan, C. Kashyap, Block-based static timing analysis with uncertainty,
in: ICCAD ’03: Proceedings of the 2003 IEEE/ACM International Conference on
Computer-aided Design, 2003, pp. 607–614.

[5] H. Chang, S.S. Sapatnekar, Statistical timing analysis under spatial correla-
tions, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24 (9) (2005) 1467–1482.

[6] C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker, S. Narayan, First-
order incremental block-based statistical timing analysis, in: DAC ’04:
Proceedings of the 41st Annual Conference on Design Automation, 2004,
pp. 331–336.

[7] J. Le, X. Li, L.T. Pileggi, STAC: statistical timing analysis with correlation, in:
DAC ’04: Proceedings of the 41st Annual Conference on Design Automation,
2004, pp. 343–348.

[8] A.E. Gattiker, S.R. Nassif, R. Dinakar, C. Long, Timing yield estimation from
static timing analysis, in: ISQED ’01: 2nd International Symposium on Quality
of Electronic Design, 2001, pp. 437–442.

[9] J.-J. Liou, A. Krstic, L.-C. Wang, K.-T. Cheng, False-path-aware statistical timing
analysis and efficient path selection for delay testing and timing validation,
in: DAC ’02: Proceedings of the 39th Conference on Design Automation, 2002,
pp. 566–569.

[10] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala, R. Panda,
Path-based statistical timing analysis considering inter and intra-die correla-
tions, in: ACM/IEEE International Workshop on Timing Issues, 2002.

[11] J.A.G. Jess, K. Kalafala, S.R. Naidu, R.H.J.M. Otten, C. Visweswariah, Statistical
timing for parametric yield prediction of digital integrated circuits, in:
DAC ’03: Proceedings of the 40th Conference on Design Automation, 2003,
pp. 932–937.

[12] M. Orshansky, A. Bandyopadhyay, Fast statistical timing analysis handling
arbitrary delay correlations, in: DAC ’04: Proceedings of the 41st Annual
Conference on Design Automation, 2004, pp. 337–342.

[13] Y. Zhan, A.J. Strojwas, X. Li, L.T. Pileggi, D. Newmark, M. Sharma, Correlation-
aware statistical timing analysis with non-Gaussian delay distributions, in:
DAC ’05: Proceedings of the 42nd Annual Conference on Design Automation,
2005, pp. 77–82.

[14] L. Zhang, W. Chen, Y. Hu, J.A. Gubner, C.C.-P. Chen, Correlation-preserved
non-Gaussian statistical timing analysis with quadratic timing model, in:
DAC ’05: Proceedings of the 42nd Annual Conference on Design Automation,
2005, pp. 83–88.

[15] V. Khandelwal, A. Srivastava, A general framework for accurate statistical
timing analysis considering correlations, in: DAC ’05: Proceedings of the
42nd Annual Conference on Design Automation, 2005, pp. 89–94.

[16] H. Chang, V. Zolotov, S. Narayan, C. Visweswariah, Parameterized block-based
statistical timing analysis with non-Gaussian parameters, in: DAC ’05:
Proceedings of the 42nd Annual Conference on Design Automation, 2005,
pp. 71–76.

[17] K.R. Heloue, F.N. Najm, Statistical timing analysis with two-sided constraints,
in: ICCAD ’05 Proceedings of the 2005 IEEE/ACM International Conference on
Computer-Aided Design, 2005, pp. 829–836.

[18] D. Sinha, H. Zhou, A unified framework for statistical timing analysis with
coupling and multiple input switching, in: ICCAD ’05: Proceedings of the
2005 IEEE/ACM International Conference on Computer-Aided Design, 2005,
pp. 837–843.

[19] J. Singh, S. Sapatnekar, Statistical timing analysis with correlated non-
Gaussian parameters using independent component analysis, in: DAC ’06:
Proceedings of the 43rd Annual Conference on Design Automation, ACM
Press, New York, NY, USA, 2006, pp. 155–160.

[20] D. Blaauw, V. Zolotov, S. Sundareswaran, Slope propagation in static timing
analysis, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 21 (10) (2002) 1180–1192.

[21] F. Brglez, D. Bryan, K. Koźmiński, Combinational profiles of sequential
benchmark circuits, in: Proceedings of ISCAS, 1989, pp. 1929–1934.

[22] H. Chang, S.S. Sapatnekar, Statistical timing analysis considering spatial
correlations using a single PERT-like traversal, in: ICCAD ’03: Proceedings
of the 2003 IEEE/ACM International Conference on Computer-Aided Design,
2003, pp. 621–625.

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2003.

[24] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, C. Hu, New paradigm of predictive
MOSFET and interconnect modeling for early circuit simulation, in: Proceed-
ings of Custom Integrated Circuits Conference, 2000, pp. 201–204.

[25] M. Wang, X. Yang, M. Sarrafzadeh, Dragon2000: standard-cell place-
ment tool for large industry circuits, in: ICCAD ’00: Proceedings of the
2000 IEEE/ACM International Conference on Computer-Aided Design, 2000,
pp. 260–263.

[26] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
McGraw-Hill Higher Education, 2001.

[27] A. Ramalingam, A.K. Singh, S.R. Nassif, M. Orshansky, D.Z. Pan, Accurate
waveform modeling using singular value decomposition with appli-
cations to timing analysis, in: DAC ’07: Proceedings of the 44th
Annual Conference on Design Automation, ACM Press, New York, NY, USA,
2007, pp. 148–153.
Anand Ramalingam received his B.E. degree in Electronics and Communication
Engineering from P.S.G College of Technology, Coimbatore, India, in 2000,

A. Ramalingam et al. / INTEGRATION, the VLSI journal 45 (2012) 365–375 375
M.S. degree in Electrical Engineering from Stanford University in 2003 and Ph.D.
degree in Computer Engineering from The University of Texas at Austin in 2007.
He is currently a Member of Consulting Staff at Magma Design Automation Inc.,
Austin, TX. His research interests include statistical timing analysis, circuit
simulation, and macro-modeling of analog cells.
Ashish Kumar Singh received his B.Tech. degree in Computer Science from the
Indian Institute of Technology, India, in 2001. He has received his M.S. degree from
Royal Institute of Technology, Stockholm and Ph.D. degrees in electrical engineer-
ing from University of Texas, Austin, in 2003 and 2007 respectively.

His research has been in the development of statistical and robust optimization
algorithms for integrated circuit synthesis under manufacturing and operation
uncertainty. He has received the Best Paper Award at 2006 International
Conference for Computer Aided Design.

He has held postdoctoral research position with Professor Michael Orshansky at
Univeristy of Texas, Austin from 2009 to 2010. Prior to joining the postdoctoral
position he held the position of senior member of technical staff at Magma Design
Automation. He is currently a Member of Research and Software Development
Staff at Terra Technology, Schaumburg, IL.
Sani received his Bachelors degree from the American University of Beirut in 1980,
and his Masters and Ph.D. degrees from Carnegie-Mellon University in 1981 and
1985, respectively. He worked at Bell Laboratories until 1996, then joined the IBM
Austin Research Laboratory where he is currently. He has authored numerous
conference and journal publications, received five Best Paper awards (IEEE Trans.
CAD, ICCAD, DAC, ISQED and ICCD), authored invited papers to ISSCC, IEDM,
ISLPED, HOTCHIPS, and CICC, and given Keynote and Plenary presentations at
Sasimi, ESSCIRC, BMAS, SISPAD, SEMICON, PATMOS and VLSI-SOC. He is an IEEE
Fellow (2008), a member of the IBM Academy of Technology, a member of the
ACM, and is an IBM Master Inventor with more than 40 patents.
Gi-Joon Nam received his B.S. degree in Computer Engineering from Seoul
National University in Seoul, Korea, and M.S. and Ph.D degrees in computer
science and engineering from the University of Michigan, Ann Arbor, Michigan.
Since 2001, he has been working with the IBM Austin Research Lab in Austin,
Texas, where he is primarily working in the physical design space. His general
interests include computer-aided design algorithms, combinatorial optimization,
VLSI system design, and computer architecture. Dr. Nam has served on the
technical program committees for various conferences including the International
Conference on Computer Aided Design (ICCAD), the International Symposium on
Physical Design (ISPD), the Asia and South Pacific Design Automation Conference
(ASPDAC), etc., and was a general chair of ISPD 2009. He is the recipient of 1st
place award for the 38th Design Automation Conference Student Design Contest
and SIGDA technical leadership award from ACM.
Michael Orshansky is an Associate Professor of Electrical and Computer Engineer-
ing at the University of Texas, Austin. He received his Ph.D. degree in Electrical
Engineering and Computer Sciences from the University of California, Berkeley, in
2001. Prior to joining UT Austin, he was a Research Scientist and Lecturer with the
Department of EECS at UC Berkeley. His research interests include design
optimization for robustness and manufacturability, statistical timing analysis,
and design in fabrics with extreme defect densities. He is the recipient of the
National Science Foundation CAREER award for 2004 and ACM SIGDA Outstanding
New Faculty Award in 2007. He received the 2004 IEEE Transactions on
Semiconductor Manufacturing Best Paper Award, as well as Best Paper Awards
at the Design Automation Conference 2005, International Symposium on Quality
Electronic Design (ISQED) 2006, and International Conference on Computer-Aided
Design (ICCAD) 2006. He is the author, with Sani Nassif and Duane Boning, of the
book "Design for Manufacturability and Statistical Design: A Constructive
Approach."
David Z. Pan (S197-M100-SM106) received his B.S. degree from Peking University,
M.S. and Ph.D. degrees from University of California, Los Angeles (UCLA). From
2000 to2003, he was a Research Staff Member with IBM T. J. Watson Research
Center. He is currently an Associate Professor at the Department of Electrical and
Computer Engineering, the University of Texasat Austin (UT Austin). He has
published over 140 papers in international conferences and journals, and is the
holder of 8 US patents. His research interests include nanometer physical design,
design for manufacturability and reliability, vertical integration design and
technology, and design/CADfor emerging technologies.

He has served as an Associate Editor for IEEE Transactions on ComputerAided
Design of Integrated Circuits and Systems (TCAD), IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), IEEE Transactions on Circuits and Systems PART
I (TCAS-I) and PART II (TCAS-II), Journal of Computer Science and Technology
(JCST), and IEEE CAS Society Newsletter. He has served as the Chair of the IEEE
CANDE Committee and the ACM/SIGDA Physical Design Technical Committee
(PDTC). He is in the Design Technology Working Group of International Technol-
ogy Roadmap for Semiconductor. He has served in the Technical Program
Committees of major VLSI/CAD conferences, including ASPDAC (Track Chair),
DAC (Track Chair), DATE, ICCAD, ISPD (Program Chair), ISQED (Topic Chair), ISCAS
(CAD Track Chair), SLIP (Publication Chair), GLSVLSI, ACISC (Program Co-chair),
ICICDT (Award Chair), and VLSI-DAT (EDA Track Chair). He is the GeneralChair of
ISPD 2008, General Chair of ACISC 2009, and Steering Committee Chair of ISPD
2009.

He has received a number of awards for his research contributions and
professional services, including ACM/SIGDA Outstanding New Faculty Award
(2005), NSF CAREER Award (2007), SRC Inventor Recognition Award three times
(2000 and 2008), IBM Faculty Award four times (2004–2006, 2010), UCLA
Engineering Distinguished Young Alumnus Award (2009), Best Paper Award at
ASPDAC 2010, Best IP Award at DATE 2010, SRC Techcon Best Paper in Session
Award (1998 and 2007), Best Student Paper Award at ICICDT 2009, a number of
Best Paper Award Nominations at DAC/ICCAD/ASPDAC/ISPD, Dimitris Chorafas
Foundation Research Award (2000), ISPD Routing Contest Awards (2007), eASIC
Placement Contest Grand Prize (2009).

	An accurate sparse-matrix based framework for statistical static timing analysis
	Introduction
	A case for path-based SSTA
	Parameterized gate delay modeling
	Sparse-matrix based SSTA without slope propagation
	Sparse-matrix based static timing analysis (STA)
	Sparse-matrix based statistical static timing analysis (SSTA)
	Example

	Sparse-matrix based SSTA with slope propagation
	Experimental results
	Speedup techniques

	Comparative studies
	Comparison with path-based Monte Carlo method
	Implementation details
	Comparison with block-based method

	Conclusion and future work
	Acknowledgments
	References

