
1496 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

UNISM: Unified Scheduling and Mapping for
General Networks on Chip

Ou He, Sheqin Dong, Wooyoung Jang, Student Member, IEEE, Jinian Bian, Member, IEEE, and
David Z. Pan, Senior Member, IEEE

Abstract—Task scheduling and core mapping have a significant
impact on the overall performance of network on chip (NOC). In
this paper, a unified task scheduling and core mapping algorithm
called UNISM is proposed for different NOC architectures in-
cluding regular mesh, irregular mesh and custom networks. First,
a unified model combining scheduling and mapping is introduced
using mixed integer linear programming (MILP). Then, a novel
graph model is proposed to consider the network irregularity and
estimate communication energy and latency, since the number
of network hops is not accurate enough for irregular mesh and
custom networks. To make the MILP-based UNISM scalable, a
heuristic is employed to speed up our method. Compared with
two previous state-of-the-art works, experimental results show
that more than 15% and 11.5% improvement on the execution
time is achieved with similar energy consumption on average for
regular mesh NOC. For irregular and custom NOC, the improve-
ment is 27.3% and 14.5% on the execution time with 24.3% and
18.5% lower energy. Moreover, our method is scalable for large
benchmarks in terms of runtime.

Index Terms—Core mapping, network on chip (NOC), network
topology, task scheduling.

I. INTRODUCTION

A S VLSI technology advanced into deep submicrometer
era, network on chip (NOC) which enhances on-die com-

munication by data packetization is considered as an alternative
of conventional bus-based interconnection in system-on-chip
(SOC) design. As early stages of the NOC design flow, task
scheduling and core mapping have a great impact on the overall
performance of the entire system. Task scheduling is to assign
each task in a task graph to different cores and decide the se-
quence of their executions (called execution table) if two tasks
are scheduled on the same core. Then, a core graph, which de-
fines the communication between cores instead of tasks, could
be generated from the task graph. Core mapping is to assign

Manuscript received November 03, 2010; revised March 14, 2011; accepted
May 10, 2011. Date of publication July 12, 2011; date of current version June
14, 2012. This paper was supported by the Ministry of Science and Technology
of China International Cooperation Project (2011DFA60290).
O. He was with the Electrical and Computer Engineering Department,

University of Texas, Austin, TX 78712 USA. He is now with the Department
of Computer Science and Technology, Tsinghua University, Beijing 100084,
China.
S. Dong and J. Bian are with the Department of Computer Science and

Technology, Tsinghua University, Beijing 100084, China (e-mail: ho06@mails.
tsinghua.edu.cn; dongsq@mail.tsinghua.edu.cn).
W. Jang and D. Z. Pan are with the Department of Electrical and Computer

Engineering, University of Texas, Austin, TX 78712 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TVLSI.2011.2159280

Fig. 1. Traditional NOC design flow.

cores in the core graph onto network tiles. Based on the floorplan
which is generated after core mapping, network routing could be
performed statically in design time or dynamically in run time.
In a traditional NOC design flow, task scheduling and core

mapping are performed consequently, as shown in Fig. 1. The
energy of network communications is not ignorable, compared
with the energy spent on the computation of cores. Meanwhile,
besides the time for running a task on a specified core, the com-
munication latency also decides the total execution time of the
input task graph. It means that inter-core communications also
dominate the performance and energy of the entire design be-
sides intra-core computations. However, communication can be
optimized by both task scheduling and core mapping. As a re-
sult, it is necessary to consider scheduling and mapping as an in-
tegral process for a globally-optimized communication, which
will further lead to a better performance and lower energy of the
whole system.
Since scheduling and mapping are tightly coupled because of

the communication, we will model them as a unified manner.
Shin et al. [1] explored the design space of the unified method-
ology. Another two previous works were also carried out in a
unified manner recently by Chi et al. [2] and Yu et al. [3]. How-
ever, only regular mesh was considered in these works. The ben-
efit of this unified methodology has been shown by Ghosh et al.
[4], but still for regular mesh.
Practically, there are different types of architectures for a

NOC design, besides regular mesh. Fig. 2 shows three different
NOC architectures. Numbers on the edges denote the relative

1063-8210/$26.00 © 2011 IEEE

HE et al.: UNIFIED SCHEDULING AND MAPPING FOR GENERAL NETWORKS ON CHIP 1497

Fig. 2. Three architectures of NOC design. (a) Regular mesh. (b) Irregular
mesh. (c) Custom NOC.

communication latency on each link. As mentioned before, this
unified methodology has not been fully studied yet, especially
for irregular mesh and custom network, as in Fig. 2(b) and (c).
Besides, the benefit on chip performance and energy by ap-
plying this unified flow on irregular and custom network will
be greater than regular mesh. On the other hand, it is difficult to
model the network irregularity in these two architectures using
a unified manner [5]. A detailed introduction about the benefits
and challenges of a unified approach on different NOC archi-
tectures will be discussed in Section III.
In this paper, a unified task scheduling and core mapping

named UNISM is proposed for all the architectures of NOC in
Fig. 2. To the best of our knowledge, it is the first work to unify
task scheduling and core mapping as an integral process for gen-
eral NOC. Contributions are listed as follows.
1) A thorough study of the unified task scheduling and core
mapping is presented using mixed integer linear program-
ming (MILP).

2) A novel communication model called Labeled Graph is
adopted to extend our MILP model to general networks,
especially to irregular and custom networks, where the
number of network hops is not accurate any more for the
communication latency and energy.

3) A heuristic is developed to accelerate the UNISM algo-
rithm and make it scalable for large benchmarks.

The rest of this paper is organized as follows. In Section II,
previous work on scheduling andmapping are introduced. Then,
in Section III the benefit and challenges by applying the uni-
fied methodology on architectures of NOC (i.e., regular, irreg-
ular and custom network) are illustrated. The problem is for-
mulated in Section IV. Then, how to derive our unified MILP
model and solve the network irregularity by Labeled Graph will
be explained in Section V. After UNISM is developed, how to
accelerate this model is discussed in Section VI. Experimental
results are listed in Section VII followed by conclusions and fu-
ture work in Section VIII.

II. PREVIOUS WORKS

Many previous works have been addressed on task sched-
uling and core mapping, targeting the design flow in Fig. 1.
For task scheduling, different algorithms have been adopted,

such as integer linear programming (ILP) [6], Genetic Algo-
rithm [7] and Ant Colony Algorithm [8]. Besides the system
performance and energy consumption, deadline of the tasks is
also considered in scheduling stage. Hu et al. [9] scheduled tasks
on the custom NOC architecture considering real-time deadline
and energy consumption. Chou et al. [10] learned user’s be-
havior in their scheduling algorithm. Faruque et al. [11] pro-
posed a dynamic task scheduling on distributed systems for

Fig. 3. Scheduling and mapping on irregular NOC. (a) Task graph. (b) Target
networks tiles. (c) Core graph with min cut. (d) Core graph with larger cut.
(e) Mapping result of Fig. 2(b).

NOC-based multiprocessor design. Kandemir et al. [12] put for-
ward thread level scheduling in NOC rather than task level.
Chen et al. [13] presented a compiler with the integration of
task scheduling, core and data mapping and packet routing on
regular mesh NOC. Ostler and Chatha [14] scheduled applica-
tions and data onto a specified architecture using ILP. Similarly,
Kandemir et al. [15] also organized data and computation in a
locality-aware manner to reduce communication energy. Tosun
et al. [16] also adopted ILP to schedule applications onto cores.
Only mesh structure was considered.
Core mapping has also been studied recently. A branch and

bound method was presented in [17] on regular mesh. Murali
et al. [18] implemented a fast mapping method called NMAP
on mesh-based NOC with bandwidth constraints. For irregular
mesh and custom NOC, core mapping is usually performed to-
gether with floorplanning information, like [19], [20]. These
works take a core graph as an input, which describes the com-
munications among different cores rather than tasks. As a result,
a core graph needs to be extracted from the task graph before
mapping. In order to produce a mapping-friendly core graph,
some previous works performedmin-cut partitioning on the task
graph [19] [21]–[24]. With the sequential “min-cut partitioning
+ mapping” flow, Jang et al. [21] put forward the first work in
core mapping called A3MAP for all three NOC architectures,
as shown in Fig. 2.

III. MOTIVATION

In this section, we illustrate the benefit of unified scheduling
and mapping on irregular NOC. The challenge of supporting
general network architectures will be discussed as well.
First, a task graph given in Fig. 3(a) is to be scheduled on

Core a, b, c, and d. In some industrial benchmarks like E3S
[25], the energy variance for the same task on different cores
could be more than 10 times. Table I shows an example of the
computing energy when tasks are executed on the four cores.
The numbers in Table I are assumed for illustration. Then, a core
graph could be generated as Fig. 3(c) or (d), where the nodes
represent the cores and the edges represent the communication
volume between two cores. At last, the core graph is mapped

1498 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

TABLE I
TASK ENERGY ON EACH CORE

onto a given network in Fig. 3(b), where the weight on each
edge denotes communication energy for sending one bit on this
link.
Fig. 3(c) and (e) show scheduling and mapping results gen-

erated by a traditional “min-cut partitioning + mapping“ flow,
like [21]. In that case, the number of cut is 700 and the energy
consumption is

where and denote the core computing energy and
communication energy, respectively.
However, there is another result from a unified flow with a

larger cut (i.e., 900) in Fig. 3(d), which has a smaller total energy

A gap between local and global minimum of energy con-
sumption is found, which originates from the irregularity of core
computing and network communication. However, it is difficult
to implement this unified flow on irregular mesh and custom
network, because communication in the irregular networks is
harder to model than regular mesh. The number of network
hops (i.e., hop count), which is used to reflect the communica-
tion energy on regular mesh network, is no longer accurate. For
example, in Fig. 3(e), the communication energy consumption
from Tile b to Tile d is twice larger than the one from Tile a to Tile
b. However, both of them have one hop (the same hop count).
This problemwas addressed as an open problem (P2) in [3]. This
challenge will be further studied and solved in Section V-B.

IV. PROBLEM FORMULATION

The problem of unifying task scheduling and core mapping
is formulated. Notations in this paper are defined in Table II.

Given

a) A directed acyclic task graph , as shown
in Fig. 3(a), where is the set of tasks and includes
the edges which denote the communications between two
tasks. Also, is associated with , which means the
set of communication volumes. Hard deadline constraints

may be applied on several specified tasks as a subset
of .

b) A list of available cores , which includes the execu-
tion time for running Task i onCore j and the power
of each core , as in Table I.

TABLE II
DEFINITIONS OF NOTATIONS

c) A list of network tiles with routers and links has al-
ready been selected as well, as show in Fig. 3(b). The la-
tency and energy consumption on each link are also given.

Find

a) A scheduling result from tasks to cores.
b) A mapping result from cores to network tiles.

Optimize

a) Total execution time (the time when finishing the whole
task graph).

b) Energy consumption.
c) The total margin for the tasks finished before the deadline.

V. UNISM MODELING AND ALGORITHM

In this section, detailed techniques of our UNISM model will
be discussed.

A. Unified Scheduling and Mapping Using MILP

1) Modeling the Objective Function: As mentioned in
Section IV, the following objectives are optimized together as
a tradeoff.
a) The execution time of the entire task graph: .
b) Total energy consumption: .
c) Total margin before task deadline: .
The cost function (noted as) is formulated as follows:

where and are weight factors (1)

In (1), is decided only by task scheduling, which will
be defined in Section V-A2. The other objectives (, , and
) are relevant to both scheduling and mapping, which will be

modeled in Section V-A4.
2) Modeling Task Scheduling: in Table II is the variable

of task scheduling. In this section, the objectives and constraints
which are only related to will be discussed.

HE et al.: UNIFIED SCHEDULING AND MAPPING FOR GENERAL NETWORKS ON CHIP 1499

First, we assume that one task cannot be scheduled on two
cores at the same time. That means for each task

(2)

When is ready, the objective could be calculated

(3)

Meanwhile, there is another constraint, i.e., two tasks which
are scheduled on the same core cannot be executed at the same
time. This constraint is modeled by the following inequalities.
For each task

where is an auxiliary binary variable, is the index for the
traversal of all cores, and is a constant which is much
greater than , , , and but less than .
Next, further discussion will be given to explain how these

two inequalities work.
If Task i and Task j are scheduled on the same core, then

We will know

These two inequalities can be simplified as

which means or or
If Task i and Task j are not scheduled on the same core, that

means is not always equal to . As a result

Because is a constant which is much greater than , , ,
and , , and are not very important
in these inequalities. So, they could be simplified as

which could be always satisfied. So, there will be no restrictions
for , , , and if Task i and Task j are not scheduled on the
same core.

Moreover, is the execution time for Task i, which is mod-
eled using as follows:

(4)

3) Modeling Core Mapping: There are also several con-
straints in our MILP model, which are only relevant to the
mapping variable It is known that one core cannot be
mapped on two tiles in the network. That means

Meanwhile, one tile cannot be used for two cores.

(5)

4) Modeling the Unification of Scheduling and Mapping: As
mentioned in Section V-A1, more objectives in (1) are related to
both scheduling and mapping. Therefore, the unified modeling
combining these two stages becomes the only way to evaluate
these objectives.
The first challenge is how to design the variables, which can

be used to calculate these objectives in a linear way. In this
paper, is defined as unification variable, which equals true if
and only if Task i is scheduled on a core that is mapped on Tile
j. Therefore, decided by both and as in (6), which is
not linear

(6)

Fortunately, since , , and are all binary variables,
the quadratic relation between and in (6) can be substi-
tuted by two linear inequalities

(7)

where is a constant which satisfies .Moreover, there
is one constraint on in (8), which guarantees that Task i
can only be scheduled and then mapped on one and only one
network tile

(8)

Then, for binary variables , and , we will prove that
the two inequalities in (7) will deduce the same value on as
(6), as long as and are the same.
5) Proof: Because of (2) and (5), (6) has an equivalent form

s.t. and
otherwise.

(9)

Then, we only need to prove (9) can be substituted by (7).
From (7), we know that we get (10), shown at the bottom of the
next page.

1500 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Since , we can further simplify (10) as

or if s.t. and
otherwise.

(11)
From (11), we first assume that

if s.t. and
otherwise.

(12)

Considering (12), we will deduce that

(13)

Then, our assumption about (11) leads to a conflict between
(8) and (13). So, in (11), we have

s.t. and
otherwise.

(14)

Equation (14) which derives from (7) is equal to (6). So, (7)
can be a linear substitution of (6).
After the unification variable is ready, the communication

latency and energy for sending one bit from Task i to Task
j could be calculated by (15) and (16)

(15)

(16)

We only use and to denote this function. Further study
will be discussed in Section V-B to derive the analytical form
of and Because when applying the unification on all net-
work architectures using and , there is another challenge:
network irregularity.
Based on (15), we can formulate the data dependency con-

straint in (17). If there exists one communication from Task i to
Task j, then

(17)

Since has already been formulated in (4), two objectives
and in (1) could be formulated as follows:

s.t.

If Task i has a hard deadline

Fig. 4. Procedure of building labeled graphs.

Based on (16), the objective can be calculated as

where is the set of all communications in the task graph.

B. Extending UNISM to General Networks on Chip

Because of the network irregularity, and in (15) and (16)
have not been solved yet in Section V-A4. In this section, we
will focus on handling the network irregularity to solve (15) and
(16). will be studied in Section V-B1 as an example. could
be solved in the same way.
1) Labeled Graph: Fig. 5(a) shows an irregular mesh in-

cluding six tiles. The number on the edge denotes the energy
consumption on each link. Meanwhile, the energy of the router
is also added into this number. Suppose is the commu-
nication energy to transfer one bit from Tile m to Tile n. The
most straightforward way to calculate the energy consumption
for one communication is to enumerate all the pairs of tiles with
their energy consumptions, as the following inequality:

where denotes the energy of Communication , which starts
from Task j to Task k. is a binary variable and equals true
when and only when Task j is scheduled and mapped to Tile m
and Task k is scheduled and mapped to Tile n.
New variables are needed for the enumeration. The

number of is , suppose we have 10
communications and each one needs variables to
enumerate all the pairs of tiles. These variables may lower the

if s.t. and

otherwise
(10)

HE et al.: UNIFIED SCHEDULING AND MAPPING FOR GENERAL NETWORKS ON CHIP 1501

TABLE III
MINIMAL ENERGIES FOR BUILDING LABELED GRAPHS

efficiency of the MILP solver. A detailed comparison on MILP
complexity is shown in Section V-B2.
In this paper, we explore the network irregularity and propose

a graph model named Labeled Graph to calculate the energy
with no additional variables. Taking the communication from
Tile b to Tile f as an example, steps of building Labeled Graph
are listed in Fig. 4.
Fig. 6 and Table III are adopted here for a better illustration

on how to build Labeled Graphs. A network topology is given
in Fig. 6(a). First, the minimal communication energy between
each two tiles in Fig. 6(a) is calculated using Floyd-Warshall
Algorithm. Results are shown in Column of Table III.
Then, Tile d is picked up and the minimal energies from Tile

d to all the other tiles are labeled in Fig. 6(b) as Labeled Graph
using Dijkstra Algorithm. By subtracting the labels on
, the communication energy between each two tiles is cal-

culated in the third column of Table III. Except those numbers
printed in bold, we find that some other values in Column
cannot be represented by the numbers in the third column. So,
Tile a is picked up and Labeled Graph is generated.
However, there are still some numbers which cannot be rep-

resented by the third and fourth columns of Table III. As a result,
Graph is needed by picking Tile b. Then, all the numbers
in Column are represented at least once by Column 3, 4,
and 5. From Theorem 1, we know that

as shown in the last column of Table III.
2) Theorem 1: Given a set of Labeled Graph , the

energy of the communication from Tile i to Tile j (termed as
) is

where denotes the label value on Tile i in the Labeled
Graph and is the total number of generated graphs.

a) Proof: First, in Step b and c, can be hit at least

once in , i.e., .
Second, for the other ’s, we will prove

Fig. 5. Labeled graphs. (a) An irregular mesh. (b) Calculating minimal energy.

Fig. 6. Example of labeled graph.

According the symmetry of half of will
be negative, which is obviously satisfied this inequality because

.
For those supposed for a Labeled Graph

we have

Meanwhile, we assume is generated from Tile s to
all the other tiles in Step b. As shown in Fig. 7, from Tile s
to Tile j, we have two paths: the minimal path (i.e.,)
and the path via Tile i (i.e.,). Moreover, the en-
ergy consumptions on those two paths are and

, respectively.

Because we can deduce that

Since is the path with minimal energy from
Tile s to Tile j, it should be no greater than the energy of any
other paths. However, it is greater than the energy on the path
from Tile s to Tile j via Tile i (i.e.,).

1502 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Fig. 7. Labeled Graph staring from Tile s.

Fig. 8. Line-based topology and its labeled graphs.

When applying the procedure mentioned in Fig. 4, we do not
need too many Labeled Graphs to satisfy Step 4. For regular
mesh, (i.e., four corner tiles of themesh). For the network
in Fig. 5(a), In fact, the order of picked tiles to generate
a new graph will affect the number of required Labeled Graphs,
even for the same network topology. In this paper, we use a
heuristic to decide the order. Tiles with least degree (the number
of related edges) will be picked first. After that, if the condition
in Step 4 is still not satisfied, we will pick those tiles which
cannot be calculated by the existing graphs to generate a new
graph. Generally, we will have the following Theorem.
3) Theorem 2: The total number of required Labeled Graphs

(termed as) is constrained by the following inequality:

a) Proof: To prove , we first give an example which
only needs two Labeled Graphs. Then, we prove , since
we already know .
Consider the line-based regular network topology, as in

Fig. 8, we need two Label Graphs. One invokes Dijkstra Algo-
rithm starting from Tile a while the other one is from Tile d to
all the other tiles, as in Fig. 8(b) and (c).
Meanwhile, we cannot use just one Labeled Graph to satisfy

the condition mentioned in Step c, which means . In
Step c, the minimal energy between each two tiles should be
calculated by subtracting the labels on these two tiles. Given two
tiles and , the minimal energy from Tile i and Tile j (termed
as) could be calculated by

However, we know that

That means both and cannot be positive at the
same time. Therefore, one Label Graph is always not enough,
i.e., .

Fig. 9. Two network topologies. (a) Fully connected. (b) Tree structure.

On the other hand, we can startDijkstra Algorithm from every
tile to the other tiles. After that, we will get Labeled Graphs.
In this case, the minimal energy between each two tiles could
be calculated anyway by one Label Graph at least. That means

.
Then, an example of “full connection” topology is given in

Fig. 9(a), which needs Labeled Graphs. This is the worst
case in Label Graph. We also illustrate a “tree” topology and the
number of required graphs is four, which equals the number of
leaf nodes (i.e. Tile d, e, f, and g). Empirically for any randomly
specified network topology, is much less than .
Based on Theorem 1, in (16) can be formulated linearly

(18)

Using Labeled Graph, the number of variables is 60 from
(18), compared with 360 for the enumeration-based model.
4) Time Complexity: Then, time complexity of our MILP

model is discussed in terms of the number of variables. Labeled
Graph does not introduce any new variables. Thus, the number
of variables used in MILP is ,
where is the number of task pairs which do not have data
dependency in the task graph. Definitions of the other notations
can be found in Table II.
In practical cases, is usually greater than (thus

) and usually greater than Thus, the
number of variables can be approximated as , which
has the same complexity as a single MILP-based scheduling
problem. However, the aforementioned enumerative modeling
will bring new variables, which makes the model
harder to solve.
5) Modeling the Communication Latency: The communica-

tion latency can also be calculated effectively by assigning la-
tency labels on the Labeled Graph. However, a precise estima-
tion for the latency is harder than energy, since routing conges-
tion may greatly change the latency.
It is hard to precisely estimate the congestion, since the

routing stage has not been started yet in such early stages as
task scheduling and core mapping. As a therapy, two heuris-
tics are adopted to alleviate the impact caused by the routing
congestion.
First, the communication with larger volume will tend to

suffer from the congestion and has longer latency. Second, the
path with more hops will be easily congested. For example, the
path “a-b-e-d” in Fig. 5(a) has stronger possibility to be con-
gested than “a-b”, since more links are included in “a-b-c-d”.

HE et al.: UNIFIED SCHEDULING AND MAPPING FOR GENERAL NETWORKS ON CHIP 1503

Fig. 10. Accelerating the optimization. (a) A task graph with two applications.
(b) A localized unification on 3 3 mesh.

In this paper, two penalty terms are added into the latency
estimation. As a result, larger margin to the deadline is reserved
to these easily congested communications

where is the latency from Task i to Task j calculated by La-
beled Graph, and is the latency after the penalty. and
are communication volume and hop count while and

are the largest volume and hop count of the entire de-
sign. and are penalty percentages, which is empirically set
to 20% in this paper.
We also find that the path with minimal energy could be

different from the one with minimal latency sometimes. That
means in this case we cannot route a path with both minimal
energy and minimal latency at the same time. A tradeoff has
to be made. In our method, we used a weighed objective
function, see (1). For a tight deadline design, and could
be relatively greater than . For other designs which do not
have tight deadlines, we can enlarge to save the energy. In
this paper, the default value of is 0.5 and That
means equals 0.45 and equals 0.05.

VI. SPEEDUP TECHNIQUES FOR UNISM

Since our UNISMmodel has been discussed in Section V, we
will focus on how to accelerate this model in this section.
As pointed in [7], in practical designs, several independent

applications (or called sub task graphs) will appear in the given
task graph, as shown in Fig. 10(a). For a large sub task graph,
such as App 1 in Fig. 10(a), we can still partition it into several
smaller subgraphs using min-cut partitioning.
In this situation, it is inefficient to merge all the sub graphs

and perform an exhausting search on the solution space. A better
tradeoff between solution quality and runtime is to localize each
subgraph on the network, as shown in Fig. 10(b). All the cores

Fig. 11. Grouping cores and network tiles for sub task graphs.

and network tiles are partitioned into three groups and then each
group performs scheduling and mapping within a local domain
of the network. As discussed in Section III, min-cut partitioning
may cause some loss on the solution quality. But different from
the previous works which partition the task graph directly onto
each core, we partition this graph onto different groups of cores,
instead of one core. Within each group, we can still apply our
UNISM. The granularity of our partitioning is much larger than
the previous works which results in a better tradeoff between
CPU runtime and solution quality, as in Section VII. Ourmethod
for accelerating UNISM is introduced as follows:
First, if the number of input applications (or called sub

graphs) is greater than a threshold, they will be clustered to
this threshold. On the other hand, if the number of the applica-
tions is less than the threshold, they will be partitioned to this
threshold. In our implementation, the threshold for grouping
sub task graphs is empirically set to . One
clustered or partitioned group of applications is called a sub
graph group.
Then, cores and network tiles are assigned to each sub graph

group. The procedure of grouping cores and network tiles is
listed in Fig. 11.
An example will be discussed to show how the pseudo code

works in Fig. 11. First, a task graph of two applications is given,
as in Fig. 12(a). Each task has a runtime on each core, as in
Table IV. These numbers can be fixed when the task type and
core type are fixed. They are usually defined in the benchmarks.
In Table IV, they are assumed for illustration. Fig. 12(b) gives
the network topology, where numbers on each link represent the
weighted averages between latency and energy. For the illustra-
tion, the threshold is set to 3.
First, since the number sub task graphs is two which is less

than the threshold, we partition App 1 into two parts, as in
Fig. 12(a).

1504 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Fig. 12. Input task graph and network topology.

TABLE IV
TASK RUNTIME ON EACH CORE

Fig. 13. Assigning cores to each sub graph group.

Fig. 14. Assigning tiles to each sub graph group.

Then, we get three sub task groups: Part 1, Part 2 of App 1
and App 2. The pseudo code in Fig. 11 is performed as follows.
a) The three groups are sorted in the order of Part 1, Part 2
and App 2 as in Line 1 of Fig. 11.

b) Then, we budget the number of cores on each group. Part
1 gets two cores while Part 2 and App 2 get one core.

c) A bipartite Graph B is then built up in Fig. 13 with the
definition in Line 3 of Fig. 11. Note that Part 1 has a
dummy node, since it gets two cores in the last step.

d) The minimal weighted bipartite matching algorithm is ex-
ecuted on Graph B to allocate cores to each group, like
Fig. 13. Only the weights on picked edges are shown in
Fig. 13.

e) From Line 5 to Line 12, we will allocate network tiles to
the three groups. First, Part 1, Part 2 and App 2 are sorted
in order with total communication volume 200, 200, and
0. Then, Part 1 with Core b and c is picked up. Two
tiles with link number 0.01 are assigned to Part 1, as in
Fig. 14(a). After that, Part 2 and App 2 are settled conse-
quently in Fig. 14(b) and (c).

Fig. 15. Custom networks. (a) 7-core custom NOC. (b) 11-core custom NOC.
(c) 17-core custom NOC.

After grouping the input task graph with cores and net-
work tiles, we can run localized UNISM on Part 1, Part
2 and App 2 separately.

VII. EXPERIMENTAL RESULTS

A. Experiment Setup

In this section, we use E3S benchmark suite from the industry
[25] and several random benchmarks by TGFF-3.5 [26]. All
the methods are implemented in C++. hMetis v1.53 is used for
min-cut partitioning [27]. Gurobi v2.02 is adopted as the MILP
solver [28].
As mentioned in [21], authors implemented the first and latest

sequential flow A3MAP-GA (solved by Genetic Algorithm)
supporting all the architectures of NOC (see Fig. 2). A min-cut
partitioning is employed to translate the task graph into a core
graph. In [21], they also expanded NMAP in [18] to support all
the network architectures. Comparisons will be made between
these two previous works and our unified approach UNISM.
1) Task Graph: One group of task graphs is defined in the

industrial E3S benchmark suite.
The other group is randomly generated by an open-source

tool named TGFF-3.5. However in TGFF, the communication
volume, runtime and energy consumption should be provided
by users. In our implementation, all these parameters are set
similarly with E3S benchmarks. For a single task, the maximum
difference on energy consumption could be 10 times in worst
cases, if it is scheduled on different cores.
2) Network Topology: Besides task graphs, the other impor-

tant input is network topology, the latency and energy to transfer
one bit on each link.
For network topology, regular mesh, irregular mesh and

custom NOC are adopted. For these custom networks in
Fig. 155, all the tiles are randomly placed according to their
areas and each tile consumes one router, which is the same as
in [21].
For latency and energy, we are short of industrial data on this

part. Fortunately, as pointed in [29], about 25% of total energy
is spent on the networks. So, the practical ratio between core
computing energy and communication energy should be around
3:1. Be aware of this, we set the number on each link to keep this
ratio and make our network settings practical. On the contrary,
if the communication consumes a very large portion of total
latency and energy, it would not be worthwhile to use NOC in
our multi-processor design.
3) Metrics for Comparison: Two metrics are considered: the

execution time of the given task graph (termed as) and the
overall energy (termed as). can be used to measure

HE et al.: UNIFIED SCHEDULING AND MAPPING FOR GENERAL NETWORKS ON CHIP 1505

TABLE V
(A) COMPARISONS ON 3 3 MESH. (B) COMPARISONS ON 3 3 IRREGULAR MESH. (C) COMPARISONS ON A 7-CORE CUSTOM NOC

the performance. Less means the task graph could be fin-
ished with shorter time, which equals a higher performance of
the system. For fair comparison, the idea of one dynamic routing
algorithm in [30] is implemented supporting different NOC ar-
chitectures, which is used to simulate the real-time behavior of
the task graph and calculate and when scheduling
and mapping are finished.

B. Comparisons on Industrial Benchmarks

First, an industrial benchmark suite named E3S is tested. We
adopt a 3 3 regular mesh with nine homogeneous cores, a 3
3 irregular meshwith nine heterogeneous cores and a seven-core
custom NOC. The custom network is shown in Fig. 15(a).
Results on regular mesh are listed in Table V(a), which

shows a 19% and 15% improvement on the execution time,
compared with NMAP and A3MAP-GA. Meanwhile, the en-
ergy consumption is similar in these three works. We also find
larger improvement on performance/energy (i.e., 26.5% and
12.5% less execution time with 23% and 19% lower energy) for
irregular mesh and custom NOC on average. However, there
is one exception. For networking benchmark in Table V(b),
our method cannot make a shorter compared with
A3MAP-GA. This is because a much better is achieved
only by a small increase on , which has a lower total cost
in (1).
Meanwhile, we also list the results of UNISM without ac-

celeration to show the global minimum found by the solver,
if the runtime is acceptable. We can find that our acceleration
heuristics can get almost the same result in Table V(a) and an
acceptable tradeoff between the solution quality and runtime in
Table V(b) and (c). For the case telecom in Table V(c), our ac-
celerated method even gets lower energy. But the total cost in

Fig. 16. Comparisons on industrial benchmarks. (a). Improvement on execu-
tion time ; (b). improvement on total energy .

(1) is higher than the non-accelerated method, because is
higher.
The CPU time of UNISM is much larger than A3MAP-GA

and NMAP, even if localized unification of scheduling and
mapping is applied for runtime acceleration. However, the
runtime of our algorithm is scalable for larger benchmarks, as
in Section VII-D.
At last, improvements on execution time and total en-

ergy are drawn in Fig. 16(a) and (b), respectively, in-
cluding different types of NOC.

1506 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

TABLE VI
(A) COMPARISONS ON 4 4 AND 5 5 REGULAR MESH. (B) COMPARISONS ON 4 4 AND 5 5 IRREGULAR MESH.

(C) COMPARISONS ON 11-CORE AND 17-CORE CUSTOM NOC

C. Comparison on Random Benchmarks

Then, we generate three groups of larger benchmarks, which
contains no fewer than 30, 50, and 70 tasks by TGFF-3.5. We
tested five random benchmarks for each group. Correspond-
ingly, larger networks of 4 4 and 5 5 tiles are adopted as
well. The custom networks are shown in Fig. 15(b) and (c).
Results are listed in Table VI(a), (b), and (c). In Table VI, we

do not use our method without acceleration, because the run-
time of UNISM grows exponentially. Therefore, in this case,
our acceleration technique becomes necessary when the orig-
inal MILP model ends up with unacceptable CPU time.
On these larger benchmarks of Table VI, we can still find that

accelerated UNISM works better than NMAP and A3MAP-GA
(22% and 14% less with 17% and 11% lower on the
average of all the network architectures), even if some solution
degradation is introduced by our accelerating heuristics.
Also, improvements on execution time and energy are shown

Fig. 17(a) and (b) for different types of NOC.

D. Comparisons on Runtime

At last, we generate very large benchmarks with more than
150 tasks. Correspondingly, networks with more tiles are used
to test the runtime of NMAP, A3MAP-GA and our method. The
result is shown in Fig. 18. The runtime of our method (blue line)
grows almost linearly as the network gets larger. The reason for
this linear growth is that UNISM is only performed locally using
the heuristics in Section VI, even if the MILP problem itself has
non-polynomial complexity.
Meanwhile, the straightforward implementations of NMAP

and A3MAP-GA have a near-exponential grow. However, our
localization procedure in Section VI can also be applied on these
two algorithms, which will give them a linear scalability as well.

Fig. 17. Comparisons on random benchmarks. (a) Improvement on execution
time . (b) improvement on total energy .

But the solution quality of NMAP and A3MAP-GA will be fur-
ther diminished.

E. Sensitivity Analysis on Equation (1)

In this section, we study how the results will be affected if
the weight factors in (1) are changed. The benchmark tg50 is
performed on 4 4 irregular mesh and the benchmark tg70 is
performed on 17-core custom networks.
In (1), is related to total energy while and are related

to execution time. In order to study the tradeoff between energy

HE et al.: UNIFIED SCHEDULING AND MAPPING FOR GENERAL NETWORKS ON CHIP 1507

Fig. 18. Runtime on larger benchmarks.

Fig. 19. Sensitivity analysis on (1). (a) tg50 on 4 4 irregular mesh. (b) tg70
on 17-core custom NOC.

and performance, is set to 0.1, 0.3, 0.5, 0.7, and 0.9. Mean-
while, we still set . So, would be 0.81, 0.63, 0.45,
0.27, and 0.09. The result is shown in Fig. 19, where we can
see the different tradeoffs between and . However,
for different benchmarks, detailed shape of the curve could be
different.

VIII. CONCLUSION AND FUTURE WORK

A. Conclusions

In this paper, a unified flow combining task scheduling and
core mapping named UNISM is proposed to support regular
mesh, irregular mesh and custom NOC, using MILP. To en-
able this MILP modeling on irregular and custom NOC, a novel
graph model called Labeled Graph is developed to calculate the
communication latency and energy. Moreover, this model does
not introduce any new variables, whichmakes our unifiedmodel
as easy as a single scheduling algorithm in terms of the number
of variables in MILP. Then, we accelerate our UNISM using
NOC localization. Compared with two latest previous works,
experimental results show that 15% and 11.5% improvement

Fig. 20. Shared routers by multiple tiles.

Fig. 21. Cooperation with topology generation.

on the execution time of the task graph is achieved on average
with similar energy consumption for regular mesh NOC. For ir-
regular mesh and custom NOC, the improvement is 27.3% and
14.5% with 24.3% and 18.5% lower energy on average. More-
over, our method is scalable in terms of runtime.

B. Future Extensions

1) Shared Routers by Multiple Tiles: In all the test cases of
this paper, each tile owns one router. However, in custom NOC
design, it is common to have shared routers by multiple tiles,
as in Fig. 20(a). In this situation, we can generate an equivalent
topology by adding some dummy routers like Fig. 20(b). After
that, Labeled Graph and UNISM still work.
2) Cooperation With Topology Generation: By far, our algo-

rithm takes network topology as an input. More benefit will be
achieved if we do a co-synthesis combining network topology
generation and our task/core/tile assignment. Compared with
scheduling and mapping, topology generation is more discrete
which is harder to build an analytical model and integrate with
UNISM. Meanwhile, this integration will cause an explosion
of the solution space even if we could take these two issues
together.
Another practical choice is to co-act topology generation and

UNISM incrementally. A general idea is shown in Fig. 21(a).
An example is illustrated to show how this idea works. First, a

complicated clique topology is initiated as in Fig. 21(b). Then,
a task graph is given in Fig. 21(c). After that, it is scheduled
and mapped onto this topology and three links could be reduced
without decreasing the system performance, as in Fig. 21(d). For
larger systems, more iterations will be needed to make a balance
between system cost and performance. This methodology will
be suitable in custom design, e.g., application-specific NOC.
3) Cooperation With Routing: Moreover, better estimation

of the routing congestion can be achieved in the scheduling and

1508 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

mapping stage, if our algorithm is aware of the specified routing
strategy.

REFERENCES

[1] D. Shin and J. Kim, “Power-aware communication optimization for
networks-on-chip with voltage scalable links,” in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth., 2004, pp. 170–175.

[2] H. C. Chi, C. M. Wu, and J. H. Lee, “Integrated mapping and sched-
uling for circuit-switched network-on-chip architectures,” in Proc. 4th
IEEE Int. Symp. Electron. Design, Test, Appl. (DELTA), pp. 415–420.

[3] H. Yu, Y. Ha, and B. Veeravalli, “Communication-aware application
mapping and scheduling for NoC-based MPSoCs,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), pp. 3232–3235.

[4] P. Ghosh, A. Sen, and A. Hall, “Energy efficient application mapping
to NoC processing elements operating at multiple voltage levels,” in
Proc. ACM/IEEE Int. Symp. Netw. Chip, 2009, pp. 80–85.

[5] R. Marculecu, U. Y. Ogras, L. S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding research problems in NoC design: Circuit, microarchi-
tecture, and system-level perspectives,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 28, no. 1, pp. 3–21, Jan. 2009.

[6] G. Varatkar and R. Marculescu, “Communication-aware task sched-
uling and voltage selection for total systems energy minimization,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, 2003, pp.
510–517.

[7] V. Kianzad, S. S. Bhattacharyya, and G. Qu, “CASPER: An integrated
energy-driven approach for task graph scheduling on distributed em-
bedded systems,” in Proc. IEEE Int. Conf. Appl.-Specific Syst., Arch.
Processors, 2005, pp. 191–197.

[8] P. C. Chang, I. W. Wu, J. J. Shann, and C. P. Chung, “ETAHM: An
energy-aware task allocation algorithm for heterogeneous multipro-
cessor,” in Proc. Design Autom. Conf., 2008, pp. 776–779.

[9] J. Hu and R. Marculescu, “Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints,” in Proc. Conf. Design, Autom., Test Eur., 2004, pp. 16–20.

[10] C. L. Chou and R. Marculescu, “User-aware dynamic task allocation in
networks-on-chip,” presented at the Conf. Design, Autom., Test Eur.,
Munich, Germany, 2008.

[11] M. A. Al Faruque, R. Krist, and J. Henkel, “ADAM: Run-time agent-
based distributed application mapping for on-chip communication,” in
Proc. Design Autom. Conf., 2008, pp. 760–765.

[12] M. Kandemir, O. Ozturk, and S. P. Muralidhara, “Dynamic thread and
data mapping for NoC based CMPs,” in Proc. Design Autom. Conf.,
2008, pp. 852–857.

[13] G. Chen, F. Li, S. W. Son, and M. Kandemir, “Application mapping
for chip multiprocessor,” in Proc. Design Autom. Conf., 2008, pp.
620–625.

[14] C. Ostler and K. S. Chatha, “An ILP formulation for system-level ap-
plication mapping on network processor architectures,” in Proc. Conf.
Design, Autom., Test Eur., 2007, pp. 99–104.

[15] M. Kandemir, O. Ozturk, and V. S. R. Degalahal, “Enhancing locality
in two-dimensional space through integrated computation and data
mappings,” in Proc. 20th Int. Conf. VLSI Design, 2007, pp. 227–232.

[16] S. Tosun, O. Ozturk, and M. Ozen, “An ILP formulation for applica-
tion mapping onto network-on-chips,” in Proc. Int. Conf. Appl. Inform.
Commun. Technol. (AICT), 2009, pp. 1–5.

[17] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based NoC
architectures under performance constraints,” in Proc. Asia South Pa-
cific Design Autom. Conf., 2003, pp. 233–239.

[18] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of
cores onto NoC architecture,” in Proc. Conf. Design, Autom., Test
Eur., 2004, pp. 896–901.

[19] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini, G.
De Micheli, and L. Raffo, “Designing application-specific networks
on chips with floorplan information,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, 2006, pp. 355–362.

[20] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-program-
ming-based techniques for synthesis of network-on-chip architec-
tures,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no.
4, pp. 407–420, Apr. 2006.

[21] W. Jang and D. Z. Pan, “A3MAP: Architecture-aware analytic map-
ping for networks-on-chip,” in Proc. Asia South Pacific Design Autom.
Conf., 2010 , pp. 523–528.

[22] K. Srinivasan, K. S., and Chatha , “A technique for low energy map-
ping and routing in network-on-chip architectures,” presented at the
Int. Symp. Low Power Electron. Design, San Diego, CA, 2005.

[23] C. Seiculescu, S. Murali, L. Benini, and G. DeMicheli, “NoC topology
synthesis for supporting shutdown of voltage islands in SoCs,” in Proc.
Design Autom. Conf., 2009, pp. 822–825.

[24] G. Leary and K. S. Chatha, “Automated technique for design of NoC
with minimal communication latency,” in Proc. 7th IEEE/ACM Int.
Conf. Hardw./Softw. Codesign Syst. Synth., 2009, pp. 471–480.

[25] R. Dick, “E3S Benchmark,” [Online]. Available: http://ziyang.eecs.
umich.edu/~dickrp/e3s/

[26] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”
in Proc. 6th Int. Workshop Hardw./Softw. Codesign, 1998, pp. 97–101.

[27] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
in Proc. Design Autom. Conf., 1999, pp. 343–348.

[28] Gurobi Optimization, Houston, TX, “Gurobi Solver,” 2009. [Online].
Available: http://www.gurobi.com/html/academic.html

[29] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no.
5, pp. 51–61, Sep. 2007.

[30] J. Hu and R. Marculescu, “Exploiting the routing flexibility for energy/
performance aware mapping of regular NoC architectures,” in Proc.
Conf. Design, Autom., Test Eur., 2003, pp. 688–693.

OuHe received the B.S. degree from the Department
of Electronics and Information Engineering, Xi’an
Jiaotong University, Xi’an, China, in 2006. He is cur-
rently pursuing the Ph.D. degree from EDA Labs,
Department of Computer Science and Technology,
Tsinghua University, Beijing, China.
From 2009 to 2010, he was a visiting scholar in the

University of Texas, Austin. He is currently with IBM
Microelectronics, China Design Center, STG, Bei-
jing, China, where he works on SOC/IP design. His
current research interest is floorplanning and high-

level synthesis for NOC-based SOC.
Mr. He was the recipient of an annual scholarship for excellent students for

Tsinghua University from 2006 to 2009 and Cadence Scholarship (First Class)
in 2008. As a teammember, he was a recipient of three awards in TheMathemat-
ical Contest in Modeling (MCM), China Undergraduate Mathematical Contest
in Modeling (CUMCM), and China National Undergraduate Electronic Design
Contest (NUEDC).

Sheqin Dong received the B.S. degree (with highest
honors) in computer science, the M.S. degree in
semiconductor physics and devices, and the Ph.D.
degree in mechatronic control and automation from
the Harbin Institute of Technology, Harbin, China,
in 1985, 1988, and 1996, respectively.
From 1997 to 1999, he worked as a Post-Doctoral

Fellow with The State Key Laboratory of Computer-
Aided Design and Computer Graphics, Zhejiang Uni-
versity, Hangzhou, China. He is currently an Asso-
ciate Professor and the Director of the EDA Labo-

ratory, Department of Computer Science and Technology, Tsinghua University,
Beijing, China. His current research interests include computer-aided design for
very large scale integration, parallel algorithms, multimedia application specific
integrated circuits, and hardware design.

Wooyoung Jang (S’08) received the B.E. degree
in radio science and technology from Kyung Hee
University, Suwon, South Korea, in 1998, the M.S.
degree in electrical and computer engineering from
Yonsei University, Seoul, South Korea, in 2000
and the Ph.D. degree in electrical and computer
engineering from the University of Texas at Austin,
in 2011.
Since 2000, he has been with System Large Scale

Integration Division, Samsung Electronics, Suwon,
South Korea, as a Senior Engineer. His current re-

search interests include computer architecture and nanometer physical design
for on-chip communication.
Mr. Jang was the recipient of the SK Telecom Scholarship for 1994–1997, the

Samsung Outstanding Achievement Award in 2005, and the Samsung Scholar-
ship for 2006–2011.

HE et al.: UNIFIED SCHEDULING AND MAPPING FOR GENERAL NETWORKS ON CHIP 1509

Jinian Bian (M’05) received the degree from
Tsinghua University, Beijing, China, in 1970.
Since 1970, he joined Tsinghua University,

where he is currently a Professor with the Depart-
ment of Computer Science and Technology. His
current research interests include SOC-oriented
design methodology and system level synthesis and
verification.
Dr. Bian has joined several National Key Projects

in China, including the PANDA VLSI CAD System
which received the First Class National Science and

Technology Award.

David Z. Pan (S’97–M’00–SM’06) received the
Ph.D. degree in computer science from the Univer-
sity of California, Los Angeles (UCLA), in 2000.
From 2000 to 2003, he was a Research Staff

Member with the IBM T. J. Watson Research
Center. He is currently an Associate Professor and
the Director of the Design Automation Laboratory,
Department of Electrical and Computer Engineering,
University of Texas, Austin. His current research
interests include nanometer VLSI physical design,
design for manufacturing, vertical integration of

technology, design and architecture, and design/CAD for emerging technolo-
gies. He has published over 140 refereed papers in international conferences
and journals, and holds eight U.S. patents.
Dr. Pan has served as an Associate Editor for four premier IEEE journals,

including IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS (since 2006), IEEE TRANSACTIONS ON VERY LARGE
SCALE INTEGRATION (VLSI) SYSTEMS (since 2007), IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS (2008–2009), and IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS (2006–2007).
He has served in the committees of many major VLSI/CAD Conferences, in-
cluding ASPDAC (Subcommittee Chair), DAC (Subcommittee Chair), DATE,
ICCAD (Subcommittee Chair), ISPD (Program/General Chair), among many
others. He was a recipient of a number of awards, including the ACM/SIGDA
Outstanding New Faculty Award (2005), NSF CAREER Award (2007), UCLA
Engineering Distinguished Young Alumnus Award (2009), SRC Inventor
Recognition Award three times (2000 and 2008), IBM Faculty Award four
times (2004–2006, 2010), 6 Best Paper Awards (BPA), and many other BPA
nominations at top conferences such as DAC, ICCAD, ASPDAC, DATE,
ISPD, and SRC Techcon. He is an IEEE CAS Society Distinguished Lecturer
for 2008–2009.

