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Abstract—In systems-on-chip (SoCs), a microprocessor de-
mands guaranteed synchronous dynamic random access memory
(SDRAM) latency whereas most of the other cores are served as a
best-effort packet. However, a priority service for the guaranteed
latency causes the SDRAM utilization and latency of an overall
system to be degraded critically. In addition, the data size of
SDRAM requested by various cores is not matched with an
SDRAM access granularity such that the SDRAM utilization
and latency are further deteriorated. In this paper, we propose an
application-aware networks-on-chip (NoCs) design for an efficient
SDRAM access, which can consider memory latency demands
and memory access granularities in various applications. In
order to provide short latency for priority memory requests
with few penalties, memory request packets are scheduled by
our guaranteed SDRAM service router that includes a hybrid
flow controller of priority-first and priority-equal algorithms. In
addition, our SDRAM access granularity matching NoC design
further improves the memory performance by splitting a memory
request packet to several short memory request packets and then
controlling the short memory request packets with a partially
open-page mode and an auto-precharge operation in a memory
subsystem. Experimental results show that our cost-effective
application-aware NoC design significantly improves, on average,
memory latency for latency-sensitive cores up to 32.8%, overall
memory latency up to 7.8%, and memory utilization up to 3.4%,
compared to the state-of-the-art SDRAM-aware NoC design [4].

Index Terms—Access granularity, flow control, memory,
networks-on-chip, quality-of-service, router.

I. Introduction

W ITH THE advance of semiconductor technology, many
cores are integrated on a single chip and intercon-

nected by on-chip networks, called networks-on-chip (NoCs)
[1], [2]. In the NoC based multi-core processors, a memory
service becomes one of the most important issues since its
performance becomes the performance bottleneck of an overall
system. However, its improvement aided by a single mem-
ory subsystem is severely limited since diverse applications
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generate their specific memory requests with various latency
constraints and various sizes of data. In addition, the perfor-
mance of applications considerably depends on the resource
sharing policies employed in an on-chip network, which is
one of the most critical shared resources in multi-core proces-
sors. Therefore, memory-aware NoC exploration and design
have attracted great attentions in multi-core processor designs
[3].

Recently, the responsibility for memory performance has
been shared not only with a memory subsystem but also with
an on-chip network. In [4], multiple NoC routers instead of
a single memory subsystem schedule memory request packets
that access a synchronous dynamic random access memory
(SDRAM) for the purpose of encouraging row-buffer hit and
bank interleaving but preventing bank conflict, data contention
and short turn-around bank interleaving (which are introduced
in Section III-A). As a result, the memory request packets
can reach a memory subsystem in the order friendlier with
SDRAM operations. In addition, the cost of overall hard-
ware significantly reduced since a memory subsystem does
not require a complex memory scheduler and a number of
reorder buffers. This approach mainly provides a best-effort
memory service since each SDRAM-aware NoC router equally
manages all memory request packets. However, since the latest
real-time applications request a memory service with short
latency, a priority memory service should be provided for
cores sensitive to memory latency. Furthermore, different cores
request various sizes of SDRAM data. In the state-of-the-
art multimedia system, the length of memory request packets
requested by a video encoder/decoder such as H.264 [5] gets
shorter whereas the length of memory request packets re-
quested by a video enhancer/format converter gets longer. The
long best-effort packets cause a priority packet to be further
delayed. If any long best-effort packet is already scheduled in
a router, a priority packet may wait until the best-effort packet
is completely transferred to the next router. On the contrary,
the short packets cause SDRAM utilization to be severely
deteriorated. Since most SDRAMs receive or transmit fixed-
length data per request, SDRAM data unnecessarily acquired
may be thrown away. Therefore, a NoC design should consider
the access granularity of diverse applications for an efficient
SDRAM access.

In this paper, we propose an application-aware NoC design
to efficiently access shared SDRAMs. Our key motivations
are twofold. First, some cores request a guaranteed SDRAM
service to an on-chip network and a memory subsystem. For
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example, a demand request generated by a microprocessor is
usually served as a priority packet since the microprocessor
may halt until the demand request is served. However, the
priority packet causes overall memory latency and utilization
(defined as the number of clock cycles used for data transfer
divided by the number of total clock cycles) to be severely
degraded. Since an on-chip network first serves the priority
packet without any consideration of SDRAM operations, there
exits strong possibility to meet bank conflict, data contention
and short turn-around bank interleaving in SDRAM, which
all make memory performance deteriorated. Therefore, the
priority memory service should be considered not only in
a memory subsystem but also in an on-chip network. In
addition, since long best-effort packets may interfere with
the fast service for the priority packet, they should be split
to several short packets and then served. Second, different
cores request various-length SDRAM data whereas DDR I/II
SDRAMs always generate fixed-length data. Even if DDR
III SDRAM can generate variable-length data, it has few
advantages due to column access strobe (CAS) to CAS delay
time (tCCD) [6]. If the length of data requested by cores is not
either the same as the length of data served by SDRAM or a
multiple of the length of data served by SDRAM, unnecessary
data may be accessed and then thrown away. Therefore, the
access granularity mismatch problem, which causes memory
utilization and latency to be deteriorated, is considered in our
application-aware NoC design. Based on these motivations,
the major novelties and contributions of this paper include the
following.

1) We propose a guaranteed SDRAM service (GSS) router.
It provides an efficient priority service for cores sensitive
to memory latency.

2) We propose an SDRAM access granularity matching
(SAGM) NoC design. Since a packet is split to several
short packets of which the size is equal to or less than
SDRAM access granularity and then served by our GSS
router and memory subsystem, unnecessary SDRAM
data can be less accessed.

3) We show the hardware architecture of our GSS router
and memory subsystem working with a partially open-
page policy and an auto-precharge (AP) operation.

4) We show the GSS router significantly improves memory
latency for a priority packet with few penalties of overall
memory utilization and latency. In addition, the SAGM
NoC design not only recovers the penalties but also
further improves overall memory performance.

To the best of our knowledge, this is the first work
that addresses a NoC design improving the quality of
SDRAM service through application-aware manners. The rest
of this paper is organized as follows. In the next section,
we survey related works. In Section III, we review basic
SDRAM operations and scheduling schemes and then intro-
duce two problems of conventional application-unaware NoC
designs. Section IV presents the detail description of the
proposed application-aware NoC design. Experimental results
are shown in Section V. Finally, Section VI concludes this
paper.

II. Related Works

Since guaranteed throughput and bounded latency are essen-
tial for NoC designs, many researchers have developed various
approaches [7]. Æthereal NoC proposed in [8] provided a guar-
anteed service combined with a best-effort service employing
variants of time division multiplexing. In [9], Nostrum NoC
was implemented with the service of guaranteed bandwidth
and latency in addition to the existing service of best-effort. In
[10], MANGO using clockless circuit techniques was imple-
mented. It exploited virtual channels to provide connection-
oriented service guarantees and connection-less best-effort
routing. Kim et al. proposed router architecture which utilized
adaptive routing while maintaining low latency [11]. BiNoC
supporting a self-configuring bidirectional channel mechanism
for better bandwidth utilization and lower packet delivery
latency was proposed in [12]. Das et al. [13] proposed efficient
prioritization policies and architectural extensions to NoC
routers that improved the overall application-level throughput,
while ensuring fairness in the network. The prioritization
policies were application-aware, distinguishing applications
based on the stall-time criticality of their packets. In [14],
they also proposed router prioritization policies that exploited
the available slack of interfering packets in order to accel-
erate performance-critical packets and thus improved overall
system performance. In [15], Kim et al. proposed a memory-
centric NoC to support efficient pipelined task execution and
coherence and consistency schemes tailored for 1-to-N and
M-to-1 data transactions in a task-level pipeline. However,
these approaches are not optimized for SDRAM request pack-
ets that cause the most critical latency.

Recently, microprocessors, shared buses, and NoC routers
considering SDRAM operations have been developed to
support a guaranteed memory service. Jang et al. [4]
proposed an SDRAM-aware NoC design where multiple
routers scheduled memory requests instead of a single
memory subsystem. In [16], a memory bus was implemented
to source-synchronous code division multiple access. A
low-cost memory controller was present in [17] to maximize
the benefit of useful prefetches and to minimize harms caused
by useless prefetches. Cost-effective on-chip memory request
issue mechanisms were proposed in [18] using SDRAM
bank-level parallelism (BLP)-aware prefetch issue and
BLP-preserving multi-core request issue. In [19], a network
interface architecture was proposed to cope with in-order
delivery, resource utilization, and latency. A memory controller
was integrated into this network interface to improve memory
utilization and reduced both memory latency and network
latency. However, they all do not provide an efficient priority
memory service or an access granularity matching solution.

III. Problem Description and Our Basic Idea

A. SDRAM Operation and Scheduling

SDRAM has a 3-D structure, i.e., a bank, a row, and a
column. Basic commands to access SDRAM are row access
strobe (RAS), CAS, and precharge (PRE). A bank becomes
active by a RAS command and idle by a PRE command. A
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CAS command can be executed to read or write data only
after a bank is activated.

SDRAM consists of independent multiple banks (com-
monly 4 or 8 banks) whereas address and data pin/wire
resources serialize accesses to different banks. The benefit of
this architecture is that pin/wire resources can be saved and
commands to different banks can be pipelined, i.e., while data
are transferred to or from any bank, the rest of banks become
idle and active for the latter request. Based on this principle,
a memory subsystem schedules SDRAM requests to obtain
successive SDRAM data.

SDRAM conditions improving memory performance are
row-buffer hit and bank interleaving. First, the row-buffer hit
condition is satisfied if an SDRAM request accesses any data
already filled in a row buffer. As a result, since activation
and deactivation operations are not executed, successive data
can be received or transferred. Second, the bank interleav-
ing condition is satisfied if an SDRAM request accesses a
different bank from the previous SDRAM request. While the
previous SDRAM request is served from any bank, the current
SDRAM request is ready to access a different bank. The bank
interleaving is the most useful in a highly parallel system
where SDRAM requests generated by any core interfere with
SDRAM requests generated by different cores.

On the contrary, there exist SDRAM conditions that worsen
memory performance: bank conflict, data contention, and
short turn-around bank interleaving. First, the bank conflict
condition is met if an SDRAM request accesses the same bank
as the previous SDRAM request with a different row address
(RA). Since a bank activated by the former SDRAM request
should get idle and then active for the latter SDRAM request
again, a lot of clock cycles are required to complete these
operations. Therefore, the bank conflict is the most critical
factor in SDRAM performance. Second, the data contention
is met if a write SDRAM request follows a read SDRAM
request or a read SDRAM request follows a write SDRAM
request. Data pins/wires are bidirectional in most SDRAMs
whereas control and address pins/wires are unidirectional.
As a result, input data may be collided with output data
if there is no interval between a read access and a write
access. Finally, the short turn-around bank interleaving mainly
happens in particular, in high performance SDRAM such as
DDR III SDRAM, where the useful bank interleaving may
frequently achieve little improvement [20]. That is because
a bank interleaved does not get sufficient time to be idle or
active again due to long deactivation or activation delay time
after the bank is accessed by the previous SDRAM request
with a different RA.

B. Priority SDRAM Service in NoC

A microprocessor including a general processor, a cache,
and a prefetcher commonly generates a demand request and a
prefetch request. The demand request should be served as soon
as possible since the microprocessor may stall until it receives
a service of the demand request. On the contrary, the prefetch
request does not need to be served with such a priority since
it may be useless or not promptly used by the microprocessor.
Memory requests of multimedia processors and peripherals

Fig. 1. Examples of scheduling memory requests. (a) Input buffer of router
or memory subsystem. (b) Priority-equal scheduling (best-effort service).
(c) Priority-first scheduling. (d) Our approach: hybrid of priority-equal and
priority-first scheduling.

are commonly handled similarly to the prefetch request in the
latest video/graphics systems.

Most of the conventional memory scheduler or NoC router
takes two different approaches as to how to treat a priority
request with respect to others. Figs. 1(b) and (c) show the
operation of three different memory schedulers when two
demand memory requests, two prefetch memory requests, and
two memory requests by specific video processors are filled
in their input buffer as shown in Fig. 1(a). In the figure, BA
means a bank address and all requests are read operations. In
addition, the RAs of all requests are different except prefetch
2 and request 2.

A memory scheduler providing a best-effort service as
shown in Fig. 1(b) regards a priority memory request to have
the same priority as others and then schedules all memory
requests to avoid bank conflict, data contention, and short
turn-around bank interleaving and to encourage row-buffer
hit and bank interleaving. As a result, all memory requests
are successively executed with no bank conflict whereas the
execution of demand 2 is considerably delayed, which may
cause the microprocessor generating demand 2 to halt for a
long time. On the contrary, in Fig. 2(c), the demand requests
are executed with a priority. This approach makes the demand
requests executed early. However, since demand 2 accesses
the same bank as demand 1 access with a different RA, bank
conflict happens. It causes any data not to be delivered while
the row buffer of bank 1 becomes deactivated and then is
filled with the data of demand 2. Consequently, since total
execution time of six requests is longer, memory utilization
gets deteriorated. Therefore, a memory scheduler providing
a priority service without the loss of memory utilization is
required.

Fig. 1(d) is the most desirable scheduler that achieves the
same memory utilization as the best-effort scheduler and the
same memory latency for the demand requests as the priority-
first scheduler. In order to achieve this performance, we
propose a hybrid flow control algorithm that gets the advantage
of the priority-equal and priority-first scheduler, which is fully
described in Section IV-B. There may be strong possibility
to meet bank conflict, data contention, and short turn-around
bank interleaving if a demand request is separately considered
on an on-chip network and in a memory subsystem. Therefore,
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Fig. 2. Example of access granularity mismatch.

this scheduling is performed by multiple NoC routers which
are similar to [4].

Moreover, we consider a long best-effort packet interfering
with the fast service of priority packets. In the advanced
video/graphics system, the length of a packet is longer and
longer to provide a high-quality image. For example, the length
of a packet generated by an industrial video enhancer/format
converter reaches 64 burst lengths (BLs), which means that
it takes at least 64 clock cycles to transfer the packet to
the next router [21]. It is usually served as a best-effort
packet. Let a router employing winner-take-all bandwidth
allocation [22] schedule the long best-effort packet to any
channel and then a priority packet reach in this router. If
the router allocates the priority packet to the same chan-
nel as the long best-effort packet, the priority packet must
wait until the long best-effort packet is completely deliv-
ered. In order to solve this problem, we split all packets
to several short packets and then served. As a result, the
priority packet can get more opportunities to be allocated
to the channel. In the video/graphics system with 64-BL
packets, if the best-effort packet is split to several packets
with 4 BLs, a priority packet will wait for the maximum
4 clock cycles and then get the next competition. In the
proposed application-aware NoC design, the length of a packet
split is determined by an SDRAM access granularity intro-
duced in the next subsection.

C. SDRAM Access Granularity Mismatch

SDRAMs transfer/receive fixed-length data (= the number
of data bit × BL) per CAS command, called SDRAM ac-
cess granularity. DDR I SDRAM has a BL 2, BL 4 and
BL 8 mode and DDR II/III SDRAM has a BL 4 and BL
8 mode. In addition, since DDR III SDRAM has a selectable
BL 4 or BL 8 on-the-fly (OTF) mode, it can deliver data with
4 or 8 BLs, depending on address 12 pin without any BL
mode change. For example, if SDRAM with 16-bit data bus
is set to a BL 8 mode via mode register set (MRS), it always
generates 16 bytes per CAS command as shown in Fig. 2. On
the contrary, any cores may request data with various lengths
to SDRAMs. For example, an MPEG-1/2 and H.264 [5]
encoder/decoder requests 8 or 16 bytes and 4, 8, or 16 bytes for
motion estimation/compensation to SDRAM, respectively. If
the MPEG-1/2 or H.264 encoder/decoder requests just 8 bytes
as shown in Fig. 2, the rest of data unnecessarily accessed are
thrown away, which seriously degrades memory performance.

Simple solutions are to reduce the number of data bits or
to use a short BL mode in DDR SDRAM. If the number of

data bits is changed to 8 bits, there exists no wasteful data.
However, the overall system interfacing with SDRAM with
8-bit data bus does not have sufficient memory bandwidth
to feed all cores. If more SDRAMs are interfaced with the
entire system in order to increase the memory bandwidth,
additional memory subsystems and pins/wires that are the
limited resources are required. On the contrary, when short
BL modes such as BL 2 and BL 4 are used in DDR SDRAM,
command bandwidth exceeds data bandwidth such that it is
difficult to hide commands behind data input/output time. The
reason is that BL 2 and BL 4 have just one and two spaces
where commands can be executed, respectively, whereas three
spaces per SDRAM access are always required to execute three
commands such as RAS, CAS, and PRE, except for a row-
buffer hit condition. If there exists no row-buffer hit condition,
memory utilization cannot exceed 33.4% and 66.7% in BL 2
and BL 4.

For this SDRAM access granularity mismatch problem, we
focus on the latter approach using a BL 4 mode. In order to
overcome the shortage of a command execution space, we use
an AP operation in a memory subsystem. When AP is executed
with a CAS command, the row buffer of an accessed bank
automatically becomes idle without a PRE command after
finishing transferring or receiving SDRAM data. In addition,
a packet is split to several short packets with the same BL as
SDRAM or less BL of SDRAM and then served by an on-
chip router and a memory subsystem in our application-aware
NoC design. As mentioned in Section III-B, splitting a packet
to several short packets is also helpful to a priority service
when a best-effort packet is too long. The detail approach is
described in Section IV-C.

IV. Application-Aware NoC Design

Even with a perfect network routing algorithm and a perfect
flow control algorithm mentioned in [7], a priority memory
request may be significantly congested and delayed in a
memory subsystem if it reaches the memory subsystem with
the order unfriendly to SDRAM operations. In addition, if the
length of data requested by cores is different from that of data
served by SDRAM, data unnecessarily accessed are thrown
away. In this regime, our attention shifts to an application-
aware NoC design to improve not only the overall memory
performance but also the quality of memory service.

A. Architecture of GSS Router

The proposed GSS router with p input/output ports consists
of an input buffer, a routing logic, a flow controller, and an
output scheduler as shown in Fig. 3. Typically, p is 5 and 7 for
2-D and 3-D mesh networks, respectively. The input buffers
are managed by a wormhole flow control mechanism or a
virtual-channel flow control mechanism. For our experiment,
the wormhole flow control mechanism is implemented due to
its simplicity and wide popularity [22]. The routing logic is
responsible for determining the next router for each packet.
Our GSS router can be implemented to either deterministic or
adaptive routers according to a routing logic that guarantees
both deadlock and livelock freeness. For our experiment, we
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Fig. 3. Architecture of GSS NoC router for 2-D mesh.

implement XY routing that is a deterministic and minimal
path routing algorithm such that it guarantees deadlock-free
and livelock-free routing.

In this router, more than two different packets arriving on
input buffers at the same time may desire the same channel
toward a memory subsystem. In this situation, our GSS flow-
control mechanism resolves this contention, allocating the
channel to one packet and dealing with the others, blocked
packets. In Fig. 3, our GSS flow controller is parallelly
performed with the conventional flow controller. Each address
parser sends an incoming memory request packet to our GSS
flow controller and an incoming normal packet to the con-
ventional flow controller. Our GSS flow controller schedules
the memory request packets in order to prevent bank conflict,
data contention, and short turn-around bank interleaving and
provide a priority service at the same time. Then, the resulting
memory request packet again competes with a normal packet
by the conventional flow control mechanism. Hence, normal
packets can reach their destination with no additional commu-
nication delay and interference. This parallel implementation
can minimize an increase of timing critical path whereas
its design cost is slightly expensive. In addition, our flow
controllers adopt winner-take-all bandwidth allocation that
allocates all of the bandwidth to just one packet until it is
finished or blocked before serving the other packets.

An output scheduler either detects if an input buffer of the
next router is available or expects when the input buffer is
available. When the input buffer of the next router is full and a
deterministic routing logic is implemented, an output scheduler
makes the corresponding GSS flow controller stop scheduling
packets. On the contrary, packets given multiple routing paths
by an adaptive routing logic can be scheduled to other GSS
flow controllers which are not busy.

In addition, we consider an ordering issue when a master
core sends a read request to another slave core before the
master core receives a read data from one slave core or when
a master core requests another read data to a slave core in NoC
employing an adaptive router before the master core receives
one read data from the slave core. This ordering problem

Algorithm 1 GSS Flow Control

1: if new packet hk(n + 1) comes in each router then
2: for hi(n + 1) ∈ H(n + 1) do
3: ti← ti+1;
4: if hk(n + 1) is priory packet and its BA is equal to

that of hi(n + 1) that is best-effort packet then
5: hi(n + 1) is except from H(n + 1);
6: end if
7: end for
8: ifhk(n + 1) is priority packet then
9: tk ← 2 to 5 (or 6); // PCT for Fig. 4(a) [or 4(b)]

10: else
11: tk ← 1; // best-effort packet
12: end if
13: end if
14: if h(n) finishes being delivered to the next router then
15: for hi(n + 1) ∈ H(n + 1) do
16: Ti(ti) in Fig. 4 ← hi(n + 1);
17: Ti(0) in Fig. 4 ← hi(n + 1);
18: end for
19: if SPPCT = ∅ then
20: for hi(n + 1) ∈ H(n + 1) do
21: ti← ti + 1;
22: end for
23: go to line 14;
24: end if
25: end if

can be solved by various previous works including [23] or
a following constraint: a master core can send a read request
to a slave core only after the master core receives all requested
data. The latter solution is employed in our implementation for
simplicity. In addition, since our GSS flow control algorithm
is performed with in-order buffers, the ordering problem does
not happen in each GSS flow control.

B. GSS Flow Control Algorithm

In this section, we minutely present our flow control
algorithm providing short latency for a priority memory
request packet and similar overall memory utilization and
latency. Let h(n) be a packet, which is already allocated
any channel by our GSS flow control at the nth arbitration.
Let hi(n + 1) be any packet i of all completing packets,
H(n + 1), which may be allocated the same channel as
h(n) by our flow controller at the (n + 1)th scheduling.
The packets, h(n) and hi(n + 1), contain an address and a
command to access SDRAM, denoted by (RAn, BAn, R/Wn)
and (RAn+1,i, BAn+1,i, R/Wn+1,i), respectively, where the nota-
tions are (row address, bank address, read/write). Thus, bank
conflict, data contention, bank interleaving, and row-buffer hit
conditions are defined as (BAn = BAn+1,i and RAn �= RAn+1,i),
(RWn �= RWn+1,i), (BAn �= BAn+1,i), and (BAn = BAn+1,i and
RAn = RAn+1,i), respectively. Based on these notations and
definitions, Algorithm 1 shows how our flow controller works
for a guaranteed memory service, which consists of two parts.

First, a memory request packet (i) is given some tokens (ti),
depending on its input order and priority (lines 1–13). Let a
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Fig. 4. Scheduling memory request packets for guaranteed SDRAM service considering (a) bank conflict and data contention, and (b) bank conflict, data
contention and short turn-around bank interleaving.

new packet come in a router. All of the old packets are given
to one additional token to avoid starvation (line 3). Then, if
the new packet has a priority, old best-effort packets accessing
the same bank as the priority packet are except from H(n + 1)
(line 5). It means that old best-effort packets that access the
same bank as any priority packet are not scheduled until the
priority packet is scheduled. Then, the new packet gets an
initial token. If it is a best-effort packet, one token is given
(line 11). Otherwise, more than two tokens are given (line 9)
to a priority packet by a user, called a priority control token
(PCT). If a single token is given to the priority packet, it is
equal to a priority-equal scheduler and if the maximum tokens
are given to the priority packet, it is equal to a priority-first
scheduler. Therefore, we can control the service speed of a
priory packet by PCT.

Second, when h(n) finishes being delivered, the rest of
packets, H(n + 1) in the router are scheduled (lines 14–25).
They all are input to Fig. 4, according to the number of tokens
each packet has. That is, if any packet has 1, 2, 3, 4, 5, and 6
tokens, the packet is input to T i(1), Ti(2), Ti(3), Ti(4), Ti(5),
and Ti(6), respectively (line 16). All of the packets are also
input to T i(0) in line 17. As mentioned in Section III-A, a
short turn-around bank interleaving problem is not critical for
DDR SDRAM working at a low clock frequency since a short
deactivation clock cycle and a reactivation clock cycle can
be hidden behind the process of accessing a different bank.
For such DDR SDRAMs, our flow controller just resolving
bank conflict and data contention is shown in Fig. 4(a). On

the contrary, since it takes a number of clock cycles to finish
deactivation and reactivation in DDR SDRAM working at a
high clock frequency, it is difficult for them to hide behind the
process of accessing different banks. For example, in DDR III
SDRAM working at an 800 MHz clock frequency, it takes
23 clock cycles to deactivate any bank after writing data [6].
Thus, until the written bank finishes being deactivated, a flow
controller should make different banks accessed for 23 clock
cycles to improve memory performance. Therefore, a flow
controller working for such DDR SDRAMs should consider
not only bank conflict and data contention but also short turn-
around bank interleaving as shown in Fig. 4(b).

In order to check whether each bank finishes being idle,
our flow controller has the same number of a counter as the
bank of DDR SDRAM. After the last data are transferred to
SDRAM, a counter corresponding to a bank written is set
to tWR + tRP , where tWR and tRP are write recovery (WR)
time and row precharge (RP) time, respectively [6]. On the
contrary, after the last data are received from SDRAM, a
counter corresponding to a bank read is set to tRP . Then, the
delay cycle stored in the counter is reduced by 1 every clock
cycle. Thus, in Fig. 4(b), the short bank turn-around bank
interleaving condition is defined as the counter corresponding
to a bank accessed by hi(n + 1) is greater than 0. If it is true,
the bank is not ready to be activated again. Otherwise, the
bank finishes being deactivated.

Finally, the packets are differently filtered in Fig. 4, depend-
ing on the number of token and the priority. If any packet has
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a few tokens, which means an old packet or a priority packet,
it is easy to pass this filter. After filtering all packets, if there is
no packet passing the filter (line 19), all packets are given one
additional token (line 21) and then go to the input of the filter
again (line 23). Finally, if there are any packets passing the
filter, one among the packets is output to SPPCT (Scheduled
Packet). If PCT is n in line 9, SPn is used in Fig. 4 where
To(ti) is the filtered output of Ti(ti). SPn = A?B?C means A is
chosen if A is not 0. If A is 0 and B is not 0, B is selected.
Finally, if both A and B are 0 and C is not 0, C is chosen.
In Fig. 4, a packet with a priority (P) and the most tokens is
first selected. Next, a packet with To(0) is selected. Lastly, a
best-effort packet with the most tokens is selected. The reason
that the packet with To(0) is preferred to the best-effort packet
with the most tokens is that there is strong possibility that h(n)
and hi(n+1) are split from the same packet. Why they are split
from the same packet will be explained in the next section.

C. NoC Design for SAGM

It is useful to split a long packet into several short packets
since on-chip network resources can be efficiently reserved
and an SDRAM access granularity mismatching problem can
be easily solved. That is, the optimal length of packets can
improve memory/network utilization/latency. We split a packet
to several short packets, depending on an SDRAM access
granularity. Since our GSS routers communicate through a
famous open core protocol (OCP) [24] or an AMBA AXI/AHP
[25] protocol, packets consist of body flits but not head and tail
flits including routing information. Instead, more controls and
address buses include the routing information. Therefore, even
if a packet is split to several short packets in each core and
then is injected on a network, network loads do not increase.

As mentioned in Section III-C, DDR I/II SDRAMs always
transfer/receive fixed-length data per read/write command after
any BL mode is set in MRS. Most of the memory subsystems
prefer a BL 8 mode in DDR I/II SDRAM because a BL 2
mode and a BL 4 mode can cause command bandwidth to
be severely limited. As DDR SDRAMs transfer/receive two
burst data per clock cycle, data are transferred/received for
one and two cycles in the BL2 and BL4 mode, respectively.
However, without any row-buffer hit, SDRAM needs three
commands such as RAS, CAS, and PRE to obtain the short
data. Therefore, the commands are so congested that the
execution of commands is delayed. As shown in Fig. 5, we
assume that a PRE command for BA 1 and a CAS command
for BA 2 are issued at the same time. In Fig. 5(a), the
PRE command is performed earlier than the CAS command.
Consequently, the data of the second packet are written with
some delays. In Fig. 5(b), the CAS command is performed
earlier than PRE command. Consequently, the bank 1 gets
idle and active with some delays. Therefore, such command
congestion should be solved when short BL modes are used.

Fortunately, SDRAMs can omit a PRE command if a CAS
command is executed with AP. The AP is enabled to provide
a self-timed row precharge that is initiated at the end of burst
access. As a result, both the PRE command and the CAS
command are not delayed due to AP, as shown in Fig. 5(c).
Under this consideration, it is useful that the BL (granularity)

Fig. 5. SDRAM operations when BL is set to 4. (a) Delay of CAS com-
mands (BA2). (b) Delay of PRE and RAS commands (BA1). (c) No delay of
commands.

of packets is 2 and a BL mode in DDR I/II SDRAM is set to
4. Now that DDR III SDRAM has a selectable BL4 or BL8
OTF mode, it is useful that the BL of packets is 4 and a BL
mode in DDR III SDRAM is set to 8. For example, if the BL
of any packet is 9, it is split to five packets whose BLs are
2, 2, 2, 2 and 1 for DDR I/II SDRAM and it is split to three
packets whose BLs are 4, 4, and 1 for DDR III SDRAM. It is
efficient not only to match the access granularity but also to
manage network resources. That is, a priority packet can be
served faster in a winner-take-all bandwidth allocation policy.
If the length of any best-effort packet is 9, a priority packet
waits until all 9 bursts of the best-effort packet are transferred.
If it is split like our approach, a priority packet wait until the
maximum 2, 2, and 4 bursts of the best-effort packets are
transferred in DDR I, II, and III SDRAM, respectively, and
then get more opportunities to be allocated to a channel.

To implement this idea, we make a core generate short
packets whose granularity is 2, 2, and 4 in DDR I, II, and
III SDRAM, respectively, and the last packet has a tag to
execute AP. Since the relation of packets split is row-buffer
hit, there is not any loss of memory performance. As explained
in Section IV-B, our GSS router prefers the row-buffer hit
condition to the bank interleaving condition even if both do
not cause any loss of memory performance. Therefore, if split
best-effort packets do not meet any priority packet, they are
scheduled successively. On the contrary, a priority packet is
always scheduled without any interference.

Fig. 6 shows our memory subsystem. Since memory
scheduling is performed in multiple GSS routers, our memory
subsystem consists of an SDRAM controller, but not a com-
plex memory scheduler and a number of buffers. Our SDRAM
controller makes DDR SDRAMs work for a partially open-
page mode. Each bank keeps an active state (open-page) after
being accessed by a packet without any tag indicating the last
packet split from a long packet. However, if a bank is accessed
by a packet with a tag, the bank is deactivated (closed-page)
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Fig. 6. SDRAM controller used in application-aware NoC design.

by AP. In addition, when a priority packet meets bank conflict
relation with the previous best-effort packet, the bank is closed
even if the previous best-effort packet has no tag. Our SDRAM
controller works by this concept.

A memory request packet that is input to our SDRAM
controller is decoded to extract SDRAM access information
such as BA, RA, column address, the length of data, the type
of a command, write data (if the command is a write request),
and a master address. Then, the master address of read requests
is stored in an output buffer and then used for building a
memory service packet when requested data are received from
SDRAM. The write data is stored in a data buffer and then
used for generating an SDRAM interface signal for a write
operation. The rest of SDRAM access information is stored in
a PRE buffer. Then, the PRE buffer issues a PRE command
only if a priority packet has any bank conflict relation with
the previous best-effort packet without any tag. Since AP
performing with a CAS command can be substituted for the
PRE command, a number of PRE buffers are not required.
The information stored in the PRE buffer is again stored to
a RAS buffer. The RAS buffer issues a RAS command only
if a packet does not have any row-buffer hit relation with the
previous packet. The information stored in the RAS buffer is
again stored in a CAS buffer. The CAS buffer always issues a
read/write command. If a tag is attached to any information,
its command is executed with AP. Next, all PRE, RAS, and
CAS commands are scheduled by a command scheduler with
a round-robin policy. Finally, an SDRAM interface signal
generator builds SDRAM interface signals for each command
and then sends them to SDRAM.

V. Experimental Results

Our application-aware NoC for an efficient SDRAM access
is implemented in a Verilog hardware description language.
We also implement the SDRAM-aware NoC design [4] and
the conventional NoC design including a round-robin NoC
router and a memory subsystem, called CONV. The memory
subsystem interconnected to DDR SDRAM with 32-bits data
bus employs the design concept from Sonics’ MemMax [26]
and Denali’s Databahn [27]. MemMax offers a sophisticated
thread-based pipeline and advanced arbitration schemes which
prevent bank conflict and data contention conditions. Because
there are no ordering requirements between threads, requests
from different threads can be freely reordered. Different

bandwidths and the qualities of service (QoSs) may be al-
located to different threads to effectively support system data
flow requirements. In MemMax, users can choose the depth
of buffers, operation modes, and QoS settings that best suit
various applications. Since MemMax supports OCP where
request signals and data signals are separated, MemMax
requires both a request buffer and a data buffer per thread.
We use 4-thread MemMax where each thread requires a 32-
flit request buffer and a 32-filt data buffer. The Databahn is an
SDRAM controller that optimizes RAS, CAS, PRE and refresh
operation. Since the Databahn employs command look-ahead
to prepare pages in memory in advance of when commands
execute, it can give class-leading performance even if the
pattern of traffic is not known at design time. The MemMax
and Databahn are employed in the conventional NoC design
with a round-robin flow control based router. DDR I/II/III
SDRAM modeled to Verilog files in [6] are interconnected
to the SDRAM controller. The conventional NoC design and
the SDRAM-aware NoC design set the DDR SDRAMs to a
BL 8 mode via MRS. They are compared to our application-
aware NoC design where DDR I/II SDRAM are set to a BL
4 mode and DDR III SDRAM is set to a selectable BL 4 or
BL 8 OTF mode.

We use a Blu-ray model [5], a single digital television
(DTV) model and a dual DTV model [21] as applications,
which consist of 9, 9, and 16 cores, respectively. A memory
subsystem is placed in a corner and the other cores are mapped
to 3×3, 3×3, and 4×4 mesh network, respectively, by A3MAP
[28] as shown in Fig. 7. These multimedia systems can work
for various video sizes to measure memory performance in
different DDR SDRAMs. For example, let dual DTV work
for two video streams with 1920 × 1088 pixels, interfacing
with 400 MHz DDR II SDRAM for real-time computing. If
the dual DTV interfaces with 200 MHz DDR I SDRAM and
800 MHz DDR III SDRAM, it works for video streams with
1280 × 720 pixels and 2560 × 1600 pixels, respectively. All
simulations run for one million cycles.

A. No Priority Memory Request

Our application-aware NoC design is first experimented
when there is no priority packet. Since a demand packet
generated by a microprocessor or a cache is not assigned to
a priority packet, all packets receive a best-effort service. We
implement the proposed application-aware NoC design to two
versions. One is that only a GSS router is employed and the
other is that both a GSS router and an SAGM design are
employed in our NoC design, called GSS and GSS+SAGM,
respectively.

Table I shows their memory performance, where the perfor-
mance ratio is based on [4]. The GSS router achieves slightly
better overall memory utilization and latency than [4] even if
it is optimized for the latency of priority memory requests.
On the contrary, the GSS router shows slightly worse latency
of demand packets, compared to [4]. However, the latency of
demand packets is not important since the demand packets are
not assigned to a priority packet. Our NoC design employing
both the GSS router and the SAGM design achieves not only
higher memory utilization and shorter memory latency of
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Fig. 7. Application mapping by A3MAP [28]. (a) Single DTV/Blue-ray
model in 3 × 3 mesh network. (b) Dual DTV model in 4 × 4 mesh network.

overall requests, but also much shorter latency of the demand
requests than [4] and the GSS router.

As shown in Table I, our application-aware NoC design
with SAGM is the most useful for DDR II SDRAM where a
read operation cannot be interrupted by any write and a write
operation cannot be interrupted by any read and precharge
operations. In DDR I SDRAM, a read operation can be inter-
rupted by a burst stop command to support a short-burst data.
However, since a write operation cannot be still interrupted,
our SAGM design can improve memory performance in DDR
I SDRAM. Now that DDR III SDRAM has a selectable BL4
or BL8 OTF mode, it looks perfect for the SAGM. However,
in DDR III SDRAM, a CAS command can be performed only
4 clock cycles after the previous CAS command due to tCCD. It
makes DDR III SDRAM similarly work for a BL8 mode even
if the BL mode is not set to 8. Therefore, our performance
improvement in DDR III SDRSAM is less than that in DDR
I/II SDRAM.

B. Priority Memory Request

We test our application-aware NoC design on priority pack-
ets. Since a demand packet generated by a microprocessor
or a cache is assigned to a priority packet, it is served
earlier than a best-effort packet. We also implement the
conventional NoC design and the SDRAM-aware NoC with a

priority-first service (PFS), called CONV+PFS and [4]+PFS,
respectively.

Table II shows their memory performance, where the ratio
is based on [4] in Table I. Our application-aware NoC design
proves more merits when there exists a priority packet on NoC.
[4]+PFS improves, on average, the latency of priority memory
request packets up to 20.7%, compared to [4]. However,
the memory utilization and latency of all packets are 8.3%
and 23.3% worse than [4]. On the contrary, our GSS router
improves, on average, the latency of priority memory request
packets up to 23.7%, compared to [4]. The memory utilization
and latency of all packets are just 1.7% and 2.9% worse than
[4]. Compared to [4]+PFS, our GSS router improves, on av-
erage, 7.7% memory utilization, 16.5% latency of all packets,
and 3.7% latency of priority packets. This result shows our
GSS router has fewer penalties of memory performance than
[4]+PFS to support a priority service.

Furthermore, GSS+SAGM further improves the memory
performance since it accesses few SDRAM data unnecessary.
GSS+SAGM achieves, on average, 4.7% higher memory uti-
lization, 10.2% shorter memory latency of all packets, and
9.1% shorter memory latency of priority packets than GSS.
Consequently, GSS+SAGM improves, on average, not only
32.7% latency of priority packets but also 3.4% memory
utilization and 7.8% latency of all packets, compared to [4].
Compared to [4]+PFS, GSS+SAGM improves, on average,
12.7% memory utilization, 25.2% latency of all packets, and
15.2% latency of priority packets.

Fig. 8 shows the memory performance of our application-
aware NoC design according to the number of GSS routers
when a single DTV model (3×3), a Blue-ray model (3×3),
and a dual DTV model (4×4) work with DDR I SDRAM at
200 MHz, DDR II SDRAM at 333 MHz, and DDR III SDRAM
at 666 MHz, respectively. In the conventional NoC design, a
router employing a priority-first and round-robin flow control
algorithm is gradually replaced with our GSS router in the
order where a router that is the closest to a memory subsystem
is replaced first and where a router that is the farthest away
from a memory subsystem is replaced last.

When any input buffer and any memory scheduler are not
adopted in a memory subsystem and the conventional router is
placed on a network, its memory utilization is just 69%, 56%,
and 38% in a single DTV model, a Blue-ray model, and a
dual DTV model, respectively, as shown in Fig. 8(a). However,
whenever our GSS router is substituted for the conventional
router, its memory utilization improves rapidly. As a result,
when three GSS routers are substituted for three conventional
routers, the memory utilization increases up to 77%, 73%,
and 54% in a single DTV model, a Blue-ray model, and
a dual DTV model, respectively. However, more than four
GSS routers achieve little improvement of memory utilization
since the solvable bank conflict and data contention are almost
prevented by three GSS routers.

Fig. 8(b) shows the memory latency of all packets including
both a priority packet and a best-effort packet. The memory
latencies of all packets are initially 134 cycles, 157 cycles,
and 332 cycles in a single DTV model, a Blue-ray model, and
a dual DTV model, respectively. However, whenever the GSS
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TABLE I

Comparison on Industrial Benchmarks Without Priority Memory Request

Application Clock Speed Memory Utilization Memory Latency of All Packets (Cycle) Memory Latency of Demand Packet (Cycle)
CONV [4] GSS GSS+SAGM CONV [4] GSS GSS+ SAGM CONV [4] GSS GSS+SAGM

Blu-ray 133 MHza 0.755 0.763 0.771 0.774 121 81 74 69 111 63 65 60

266 MHzb 0.651 0.691 0.717 0.761 157 109 101 86 153 91 89 74
533 MHzc 0.505 0.592 0.600 0.619 216 134 140 131 216 113 124 113

Single DTV 166 MHza 0.717 0.737 0.766 0.776 144 101 86 71 140 80 74 61

333 MHzb 0.625 0.673 0.715 0.756 173 120 108 91 171 96 94 77
667 MHzc 0.463 0.554 0.577 0.596 244 154 143 140 248 126 127 119

Dual DTV 200 MHza 0.696 0.707 0.708 0.712 154 104 89 80 128 73 67 57

400 MHzb 0.555 0.627 0.627 0.682 246 149 141 115 196 107 104 85
800 MHzc 0.426 0.559 0.531 0.547 364 191 195 184 266 133 144 128

Average 0.599 0.656 0.668 0.691 202 127 120 107 181 98 99 86

Ratiod 0.914 1.000 1.018 1.054 1.591 1.000 0.942 0.846 1.847 1.000 1.007 0.878

aDDR I SDRAM.
bDDR II SDRAM.
cDDR III SDRAM.
dRatio is based on the SDRAM-aware NoC design [4].

TABLE II

Comparison on Industrial Benchmarks with Priority Memory Request

Application Clock Speed Memory Utilization Memory Latency of All Packets (Cycle) Memory Latency of Demand Packet (Cycle)
CONV+PFS [4]+PFS GSS GSS+SAGM CONV+PFS [4]+PFS GSS GSS+SAGM CONV+PFS [4]+PFS GSS GSS+SAGM

Blu-ray 133 MHza 0.729 0.742 0.77 0.774 141 106 77 72 97 59 42 38

266 MHzb 0.612 0.621 0.699 0.745 176 134 112 96 123 73 72 60
533 MHzc 0.454 0.517 0.561 0.608 248 166 151 138 179 88 98 90

Single DTV 166 MHza 0.676 0.699 0.755 0.779 163 124 96 76 105 64 57 41

333 MHzb 0.58 0.613 0.684 0.738 192 143 116 107 128 74 72 66
667 MHzc 0.387 0.489 0.534 0.559 309 182 158 151 213 94 98 95

Dual DTV 200 MHza 0.655 0.675 0.7 0.709 183 124 103 80 131 62 55 36

400 MHzb 0.521 0.577 0.608 0.657 280 178 153 127 156 81 78 68
800 MHzc 0.405 0.481 0.518 0.53 389 252 210 207 198 104 101 99

Average 0.558 0.602 0.648 0.678 231 157 131 117 148 78 75 66

Ratiod 0.85 0.917 0.987 1.034 1.821 1.233 1.029 0.922 1.508 0.793 0.763 0.672

aDDR I SDRAM.
bDDR II SDRAM.
cDDR III SDRAM.
dRatio is based on the SDRAM-aware NoC design [4].

TABLE III

Comparison of GSS + SAGM + STI to GSS + SAGM on Industrial Benchmarks

Application Clock Speed Memory Utilization Improvement Memory Latency of All Packets Improvement Memory Latency of Priority Packet Improvement
Blue-ray 533 MHz 0.674 10.9% 119 cycles 4% 79 cycles 12.2%
Single DTV 667 MHz 0.590 5.5% 140 cycles 7.3% 87 cycles 8.4%
Dual DTV 800 MHz 0.593 11.9% 161 cycles 22.2% 81 cycles 18.2%

Average 0.619 9.4% 140 cycles 11.2% 82 cycles 12.9%

router is substituted for the conventional router, the memory
latency of all packets also improves rapidly. As a result,
when three GSS routers are substituted for three conventional
routers, the memory latency of all packets decreases up to 88
cycles, 98 cycles, and 191 cycles in a single DTV model, a
Blue-ray model, and a dual DTV model, respectively.

Fig. 8(c) shows the memory latency of priority packets.
The memory latencies of priority packets are 92 cycles, 122
cycles, and 146 cycles in a single DTV model, a Blue-ray
model, and a dual DTV model, respectively, when any input
buffer and memory scheduler are not adopted in a memory
subsystem and the conventional router is placed on a network.

However, when three GSS routers are substituted for three
conventional routers, the memory latency of priority packets
decreases up to 54 cycles, 63 cycles, and 95 cycles in a
single DTV model, a Blue-ray model, and a dual DTV model,
respectively. Therefore, three GSS routers placed around a
memory subsystem show the most efficient result in terms of
hardware cost and memory performance.

We also evaluate the improvement of memory perfor-
mance when a short turn-around bank interleaving problem
is considered in our application-aware NoC design, called
GSS+SAGM+STI. For this experiment, we use three GSS
routers employing Fig. 4(b) and execute a Blue-ray model,
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Fig. 8. Memory performance of our application-aware NoC design according to the number of GSS routers. (a) Average memory utilization. (b) Average
latency for all packets. (c) Average latency for demand packets.

TABLE IV

Gate Count Comparison at 400 MHz Clock Speed

Module CONV [4] GSS+SAGM+STI
Gate Count Ratio Gate Count Ratio Gate Count Ratio

Flow controller 3310 0.539 6732 1.097 6136 1
Router 56 683 0.904 62 949 1.003 62 721 1
Memory subsystem 489 898 3.283 158 874 1.065 149 245 1
3 × 3 NoC with memory subsystem 966 250 1.511 661 645 1.035 639 481 1

TABLE V

Average Power Consumption Comparison

Application Clock Speed CONV [4] GSS+SAGM+STI
Power Ratio Power Ratio Power Ratio

Single DTV 200 MHz 179.0 mW 1.550 116.0 mW 1.004 115.5 mW 1
Blue-ray 400 MHz 351.6 mW 1.550 227.8 mW 1.004 226.8 mW 1
Dual DTV 800 MHz 961.9 mW 1.328 726.0 mW 1.003 724.1 mW 1

Average 497.5 mW 1.399 356.6 mW 1.003 355.5 mW 1

a single DTV model, and a dual DTV model with DDR III
SDRAM at 533 MHz, 667 MHz, and 800 MHz, respectively.
The short turn-around bank interleaving problem is not critical
in DDR SDRAM working at a low clock frequency. This is
because a bank can be sufficiently deactivated and reactivated
while any different bank is accessed. On the contrary, the short
turn-around interleaving problem causes memory performance
to be critically degraded in DDR SDRAM working at a high
clock frequency. This is because the deactivation, activation,
and WL/CL delay time are too long, compared to the length of
data accessed. Table III shows that GSS+SAGM+STI achieves,
on average, 9.4% higher memory utilization, 11.2% shorter
memory latency of all packets, and 12.9% shorter memory
latency of priority packets than GSS+SAGM.

CONV, [4], and the proposed NoC design are synthesized
by Synopsys Design Vision with OSU PDK 45 nm CMOS
standard cell library [29]. Table IV shows their gate count
in case that they are optimized at 400 MHz clock speed. Our
flow controller is 8.9% smaller than [4] even if it provides
effective QoS and high throughput. This is because our GSS
flow control mechanism for scheduling memory requests and
avoiding starvation is optimized by event driven architecture.
On the contrary, the gate count of our flow controller is 85.4%
greater than that of a conventional flow controller due to the
additional GSS flow control mechanisms. However, since the

flow controllers are commonly tiny, the gate count increased
or decreased by our GSS flow control mechanism has little
impact on the area of whole NoC design. In addition, routers
can be equipped with the minimum GSS flow controllers
according to a routing policy. That is, any conventional flow
controller through which a packet goes to a memory subsystem
can be just substituted for the proposed flow controllers.
Moreover, the GSS flow controllers can have fewer input ports.
For example, if a memory subsystem is placed in the upper
left corner on NoC as shown in Fig. 7, a router located in
(2, 2) can have two 3-input GSS flow controllers. The GSS
flow controllers schedule memory requests from processing
element, south, and east inputs and are attached to a north
and west output scheduler, respectively. As a result, the gate
count of our router is just 10.7% greater than a conventional
router and 0.4% less than [4], as shown in Table IV.

Our memory subsystem has great impact on the area of
whole NoC design since it does not require any reordering
buffers and any complex memory scheduler. Since memory
requests are already scheduled by multiple routers with GSS
flow controllers, the memory requests arrive at our memory
subsystem with the order friendly with memory operations. In
addition, our memory controller has fewer PRE buffers than
a conventional memory controller and [4] due to effective
AP operations. Thus, our memory subsystem is 69.5% and
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6.1% smaller than a conventional memory subsystem and
[4], respectively. Such a distinguished gate count decrease
by removing reordering buffers and a memory scheduler in
our memory subsystem far exceeds a gate count increase by
GSS flow controllers in multiple routers. As a result, NoC
with our memory subsystem and three routers with GSS flow
controllers is 33.8% and 3.3% smaller than CONV and [4],
respectively, as shown in Table IV.

We compute their power consumption by Synopsys Prime
Time PX after gate-level simulation. Our application-aware
NoC design consumes on average 28.5% and 0.3% less power
than CONV and [4], respectively.

VI. Conclusion

In NoC, a microprocessor and a specific core that perform
various applications request not only a best-effort memory
service but also a priority memory service. In addition, they
request memory data with various sizes which do not match
an SDRAM access granularity. Therefore, we proposed an
application-aware NoC design for an efficient SDRAM access.
The proposed GSS router schedules a priority packet as
fast as possible with the consideration of bank conflict, data
contention, and short turn-around bank interleaving which all
make memory performance severely degraded. Furthermore,
the proposed SAGM NoC design splits a packet to several
short packets, based on the BL of SDRAM and then serves
them with a partially open-page mode and an AP operation
in our memory subsystem. Experimental results showed our
application-aware NoC design improved not only the memory
utilization and latency of all packets but also the memory
latency of priority packets in famous industrial multimedia
systems, compared to the conventional NoC design and the
state-of-art SDRAM-aware NoC design [4]. In conclusion,
our application-aware NoC provides more opportunity for
bandwidth-hungry system-on-chip designs with the high qual-
ity of a memory service.
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