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Abstract—Under the real and evolving manufacturing
conditions, lithography hotspot detection faces many challenges.
First, real hotspots become hard to identify at early design stages
and hard to fix at post-layout stages. Second, false alarms must
be kept low to avoid excessive and expensive post-processing
hotspot removal. Third, full chip physical verification and
optimization require very fast turn-around time. Last but not
least, rapid technology advancement favors generic hotspot
detection methodologies to avoid exhaustive pattern enumeration
and excessive development/update as technology evolves. To
address the above issues, we propose a high performance hotspot
detection methodology consisting of: 1) a fast layout analyzer;
2) powerful hotspot pattern identifiers; and 3) a generic and
efficient flow with successive performance refinements. We
implement our algorithms with industry-strength engine under
real manufacturing conditions and show that it significantly
outperforms state-of-the-art algorithms in false alarms (2.4X
to 2300X reduction) and runtime (5X to 237X reduction),
meanwhile achieving similar or better hotspot accuracies.
Compared with pattern matching, our method achieves higher
prediction accuracy for hotspots that are not previously
characterized, therefore, more detection generality when
exhaustive pattern enumeration is too expensive to perform a
priori. Such high performance hotspot detection is especially
suitable for lithography-friendly physical design.

Index Terms—Lithography hotspot detection, machine learn-
ing, manufacturability/yield, pattern classification.

I. Introduction

W ITH THE RAPID shrinking of semiconductor pro-
cess technology nodes, the minimum feature size of

modern integrated circuit (IC) becomes much smaller than
the lithographic wavelength [1]. In order to bridge the wide
gap between design demands and manufacturing limitations
of the current mainstream 193 nm lithography, various design
for manufacturability (DFM) techniques [2]–[5] have been
proposed to improve product yield and avoid potentially prob-
lematic patterns (i.e., process hotspots). However, for 45 nm
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node and below, hotspot patterns still exist even after design
rule checking (DRC) and various resolution enhancement
techniques (RET) such as optical proximity correction (OPC)
[6], double exposure double patterning lithography [7], and
self-aligned double patterning lithography [8], [9].

Therefore, fast and high fidelity hotspot detection en-
gines can play an essential role to enhance physical veri-
fication/DRC, and to develop process-aware physical design
tools. On the one hand, conventional approaches that employ
lithographic simulations [10], [11] are accurate but very costly
to run; on the other hand, approaches that utilize pattern/graph
matching techniques [12]–[14] are fast but reliant on a set of
predefined hotspot patterns. However, general hotspot patterns
are hard to define/model in a deterministic manner. Too many
patterns lead to high overestimate (false alarms) and too few
patterns result in low hotspot coverage. Pattern enumera-
tion could become more problematic as process technology
advances and RETs improve, as the definition of the real
lithography hotspots is highly dependent on the evolving
manufacturing conditions.

In recent years, there have been emerging works that
start incorporating modern data mining methods for fast and
accurate hotspot detection. A neural network judgment-based
detection flow was proposed in [15], where 2-D hotspot image
patterns were directly used to train an artificial neural network
(ANN) kernel. In [16], data mining algorithms are devel-
oped for hotspot pattern (2-D images) clustering. While these
early attempts have shown promising potential for lithography
hotspot detection using data mining methods, there are still
limitations to overcome, such as high training noise and low
hotspot detection fidelity.

Later in [17], a support vector machine (SVM)-based
hotspot detection method is utilized through performing
2-D distance transform and histogram extraction on pixel-
based layout images. Also in [18] and [19], SVM is employed
for hotspot detection through extraction and classification
of certain special layout density-related metrics. References
[17]–[19], as improvements over [15] and [16], demonstrate
higher detection accuracy and lower classification noise, due
to the introduction of high fidelity metrics. However, these
approaches have limited efficiency in runtime and/or detection
coverage, since 2-D transforms and density extractions can
be quite expensive to perform, meanwhile detection windows
(or hotspot candidate locations) for the layout images can be
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Fig. 1. Illustrative example of process variability bands depicting manufac-
turing variations under different manufacturing conditions [23]. (a)–(f) Design
pattern under process variations.

very hard to anchor for full-chip area detections. In practice,
these windows are slid, scanned, or sampled across the entire
layout with a certain amount of overlap (or blank interval)
between each other. As an inevitable result, detection per-
formance becomes a tradeoff between runtime and detection
coverage. In [20], critical hotspot signature is proposed and
extracted through certain special edge-based metrics. Although
such edge-based extractions operate much faster compared
with [17], [18], their chip level applications still face similar
problems such as scanning window coverage, and others.

Moreover, very few existing studies deal with the detection
challenges under the real manufacturing conditions in which
hotspots become increasingly harder to detect. In order to
be practically employed in modern IC physical design, a
successful hotspot detection engine must demonstrate superior
speed compared to full lithography simulation (>100 CPUs
running in the order of days) and DRC (tens of CPUs running
for a few hours), as well as comparable performance to
meet the real design and manufacturing requirements. Unfortu-
nately, under such situations, the hotspot evaluation models in
[15]–[18], [20] suffer from severe performance degradation.
This is because detecting real hotspots under industry-strength
PDK/manufacturing conditions require more than just one
straightforward model, but multiple levels of identification
models for performance refinement.

To better address the issues and challenges above, we extend
our work in [21] and propose a generic hotpot detection
methodology that is capable of fast online data learning and
high performance hotspot pattern identifications. This method-
ology provides a full layout, feature-centric analysis without
being penalized in runtime or coverage by conventional sliding
window [18] or raster scanning [17] related techniques. Under
such a methodology framework, we define novel layout ana-
lyzing algorithms that process the layouts in a fragment-based
manner. We implement the framework in a leading industrial
geometry processing engine via a shared object library [22].
The proposed framework is tested with enhanced ANN and
SVM kernels on large industry layouts under real manufactur-
ing conditions, demonstrating very promising performance in
detection accuracy enhancement, false-alarm suppression, and
CPU time reduction.

The remainder of this paper is organized as follows. In
Section II, we further motivate a few key challenges in

lithography hotspot identification and summarize our major
contributions. Section III gives an overview of our proposed
methodology. In Section IV, we propose a layout analyzer for
the extraction of hotspot-related features with high detection
coverage and speed, followed by Section V, where we describe
in detail our hotspot identifiers with special machine-learning
models for enhanced accuracy. In Section VI, we propose a
novel flow to integrate, configure, and validate multiple succes-
sive levels of hotspot identifiers for ultralow false alarms under
current real manufacturing conditions. Simulation results on
various placed and routed industry layouts are assessed and
analyzed in Section VII. Section VIII concludes this paper.

II. Motivation and Contributions

To visualize the aforementioned challenges, in Fig. 1 we
show the printed images of three layout patterns under two
different manufacturing conditions: Figs. (a)–(c) are printed
under a real production 45 nm process which provides in-
sights on the frequency of occurrence of hotspots under real
manufacturing conditions, while Figs. (d)–(f) are under sim-
plified but widely accessible manufacturing conditions (e.g.,
free PDK 45 nm), which lack the detailed information in
optical, resist, and actual OPC and RET recipes used during
production tending to exacerbate process variations. In this
case, we observe significantly less poor-printability areas in
Figs. (a)–(c) than in Figs. (d)–(f). The significance of this mo-
tivational example is manifold: first, a real hotspot pattern by
definition is strongly dependent on manufacturing conditions,
and second, the number of real hotspots under continuously
improving manufacturing conditions becomes less (assuming
improving RETs) but hard to fix at post-layout stages. More-
over, non-hotspot detection inaccuracy (false alarms) increases
the burden of hotspot correction processes, and should there-
fore be minimized. Last but not least, the huge data volume
of large area design layouts requires ultrafast detection speed
and good runtime scalability.

To sum up, the key challenges for lithographic hotspot
detection under real manufacturing conditions include:

1) lithographic hotspot patterns that are highly dependent
on manufacturing conditions and very hard to enumerate
exhaustively;

2) hotspots that become harder to identify in early design
stages and harder to fix at post-layout stages;

3) non-hotspot detection accuracy (indicating false alarms)
that becomes vitally important as excessive false alarms
are severely penalized in post-layout corrections;

4) ultrafast detection speed that is desired for large layouts
and for guiding lithography-friendly physical design;

5) sliding window techniques that can be highly penalized
by considerable loss of accuracy and detection coverage.

In face of the aforementioned challenges, this paper pro-
poses a novel methodology and a set of highly effective
techniques for fast and accurate lithographic hotspot detection
under real manufacturing conditions. Our main contributions
are summarized as follows.

1) We propose a generic methodology for lithography
hotspot detection whose flow is compatible with evolv-
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Fig. 2. Overview of our proposed hotspot detection methodology. (a) Calibration stage. (b) Detection stage.

Fig. 3. Illustration of the hotspot detection hits, misses, and extras.

ing RETs and manufacturing conditions.
2) We define special hotspot signature measurements for

ultrafast, full layout detection without sliding window
or raster scanning techniques.

3) We introduce fast layout analyzers and generic
hotspot identifiers with powerful machine-learning mod-
els especially for capturing new/unknown types of
hotspots.

4) We develop a generic and efficient flow with multiple
levels of successive pattern identifiers for ultralow iden-
tification false alarms.

5) We perform thorough qualification using real industry
examples for a 45 nm METAL1 process under real
manufacturing conditions.

III. Methodology Overview

The ultimate objective of our methodology is to correctly
classify hotspots and non-hotspots with low false-alarm rates
at a fast speed.

Fig. 3 depicts the relations between the actual hotspots/non-
hotspots and the predicted hotspots/non-hotspots, where hit
number is the number of correctly predicted hotspots, miss
number is the complement of hit in the actual hotspot set, and
extras is the number of non-hotspots predicted as hotspots.
Based on Fig. 3, we define several important terms used
throughout this paper, as in (1)–(4).

Definition 1: Hhit: the hotspot detection accuracy rate

Hhit =
correctedly detected hotspots

real hotspots
. (1)

Definition 2: Hmiss: the hotspot detection inaccuracy rate
(1s complement of Hhit)

Hmiss =
undetected hotspots

real hotspots
. (2)

Definition 3: Hextra: the hotspot detection overshoot rate
(false-alarm rate)

Hextra =
falsely detected hotspots

real hotspots
. (3)

Definition 4: Nhit: non-hotspot detection accuracy rate

Nhit =
correctedly detected nonhotspots

real nonhotspots
. (4)

Since the number of falsely predicted hotspots is
(1 − Nhit) · real nonhotspots, we have

Hextra

real nonhotspots
=

(1 − Nhit)

real hotspots
. (5)

From (5), we can see the relation between Hextra and
Nhit, both of which are measurements of the hotspot detection
false alarms. With Hextra we can clearly see the total false-
alarm counts, while using Nhit, we can better appreciate
the occurring frequency of the false alarms among all non-
hotspots. For this reason, we will use both of them in the
analysis and discussions of this paper.

Before going further to details, we first illustrate an
overview of our proposed methodology in Fig. 2, which is
divided into the calibration stage and the detection stage.

The calibration stage involves: 1) a relatively small set of
layouts for configuring the hotspot identifiers via supervised
learning techniques; 2) a layout analyzer for characterizing
layout geometries; 3) a lithography simulator (or post-silicon
measurement) to provide accurate information of the real
hotspots as learning targets; and 4) a novel calibration process
for the training and validation of hotspot identifier models via
successive refinements. The result of the calibration stage is a
set of hotspot identifiers established at a one time computation
cost. In the detection stage, we apply the hotspot identifiers to
search for hotspot patterns over very large volume of design
layouts with high efficiency given that the identifiers have
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Fig. 4. Three major types of hotspot feature measurements. (a) Corner
information. (b) External length. (c) Internal length.

been setup a priori. This stage mainly consists of: 1) a layout
analyzer, and 2) a hotspot detection process that utilizes the
multiple hotspot identifiers via levels of refinements.

Note that the function of layout analyzer is to characterize
the layout and convert patterns to compact 1-D vectors.
With these data vectors, special hotspot identifiers can be:
1) trained and validated under the supervision of our employed
production simulator [22], and 2) applied with very high speed
and fidelity over new layouts. Note that the hotspot identifiers
must be updated by re-running the calibration stage if the
design rules or manufacturing conditions are changed for the
new layouts. In the following sections, we will further explain
the details of each block from Fig. 2.

IV. Feature-Centric Layout Analyzer

Layout analyzer performs the function to characterize
the layout context and extract hotspot-related features in
the format of data vectors. Here, we define hotspot feature
metrics (or hotspot signature measurements) as a set of special
measurements which contribute strongly to the decision-
making process of hotspot detection. Unlike special restricted
design rules, a layout analyzer does not decide whether a
certain pattern is hotspot or not, but it leaves the decision-
making process to the recursively refined supervised training
of hotspot identifiers using machine-learning techniques.
In face of the aforementioned challenges under real
manufacturing conditions, a successful layout analyzer must
first define a proper set of hotspot signature measurements.
Unlike previous studies utilizing 2-D transforms or density
calculations or sliding window techniques, we propose novel
metrics and special data structures for significant runtime
reduction and satisfactory accuracy.

A. Hotspot Signature Measurements

The hotspot signature measurement step aims at scanning
the layout and extracting useful information/data from all
geometries in the layout. To achieve this goal, we first define
several classes of measurements as shown in Fig. 4, including:
1) corner information (convex or concave); 2) distance to
an externally facing polygon edge; and 3) distance to an
internally facing polygon edge. In a design layout where
the fragments (polygon edges) are indexed numerically, these
basic measurements are programmed and optimized to reach
high speed and memory efficiency using the function library
provided via advanced programming interface of [22].

To perform the above signature measurements, we pro-
pose four different types of feature-centric operator functions,
summarized in Table I. Given a fragment Frag in certain

Fig. 5. Fragmentation-based hotspot signature extraction. (a) Effective ra-
dius centered at each fragment. (b) Fragmentation-based context characteri-
zation.

TABLE I

Hotspot Signature Measurement Operators

Operators Operation Description (Features to Measure)

fcorn(·) Corner information: CV (convex)/CC (concave)

fext (·) External inter fragment distances

fint (·) Internal inter fragment distances

fmisc(·) Miscellaneous information

layout, operator fcorn(·) extracts information of convex and
concave corners touching Frag, and operator fext(·) returns
the distance(s) between Frag and the fragments facing Frag

on the external side. Similarly, operator fint(·) returns the
distance(s) between Frag and the fragment facing Frag on the
internal side. The Operator fmisc(·) requests extra information
regarding Frag, such as fragment orientation (x or y-axis) and
the length of Frag.

With a proper combination of these measurement operators,
we can accurately characterize the entire layout at a one-time
cost. In the real practice, the hotspot signature measurement
of the layout geometries is performed through establishing a
table-structure database that can be indexed in constant time,
so that the next step—the context characterization process—
can be carried out with good runtime and memory efficiency.
More details will be discussed at the end of this section.

B. Fragmentation-Based Context Characterization

The ultimate goal of layout analyzer is to provide high
resolution layout characterization with full scanning coverage.
To achieve this goal, we first perform the hotspot signa-
ture measurement on a per fragment basis, followed by the
fragmentation-based context characterization step. The goal
of this step is to generate a 1-D vector that serves as the
input data of our machine-learning engines. Hotspot detection
decision for a certain fragment will later be made based on
the context information provided by such a data vector. In the
real practice, the context characterization is performed as a
table-lookup procedure.

Given a properly fragmented layout and any fragment of
interest F , we illustrate the concept of an effective radius r in
our proposed context characterization procedure. As shown
in Figs. 5(a) and (b), r centers at (each) fragment F . By
definition, effective radius r covers the neighboring fragments
which need to be considered in the context characterization
of F . In its empirical nature, r depends on the lithography
processes, and it is generally easy to pick in the training
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TABLE II

Shorthand Fragment Notations

Notation Descriptions of the Shorthand Notation

F Current fragment of interest (detection anchor point)

F In Fragment(s) facing F internally

F Ex Fragment(s) facing F externally

F In Ex Fragment(s) facing F In externally

F+i ith neighbor traced from F clockwise

F−i ith neighbor traced from F counter-clockwise

and validation procedure given the manufacturing conditions.
According to Fig. 5(b), we illustrate our proposed context
characterization process as follows.

First, suppose the current fragment of interest is F (colored
red in the center of the effective circle), we define several
shorthand notations whose indices are used for indexing
throughout the fragments lying within the effective region
of F . We elaborate their details in Table II. Note that F

can also be denoted as F0. We use F In to represent Fs
internally facing fragment, F Ex meaning the externally
facing fragment. Similarly, F ExIn is the internally facing
fragment of F Ex and F InEx is the externally facing
fragment of F In. Also for each fragment, we mark its
adjacent neighbors with ascending indices in clockwise order.
For example, the first adjoining neighbor of F in clockwise
order is denoted as F+1, and F can also be denoted as F0, as
shown in Fig. 5(b). These indices are used for indexing the
fragments lying within the effective region of certain polygon
of interest in the context characterization process.

Next, we present the characterized context of fragment F

in the format of a 1-D data vector defined as

VF =
F̃i∈δF

r∐
i

{fext(F̃i) ⊕ fint(F̃i) ⊕ fcorn(F̃i) ⊕ fmisc(F̃i)} (6)

F̃ = [F, F Ex, F In, F ExIn, F InEx...] (7)

where F is an integer identification (ID) number representing
a certain fragment in the layout, and δF

r is the effective region
of F . To ensure an efficient learning process meanwhile main-
taining the consistency of the extracted hotspot signatures, we
generate the final learning vector VF via properly combining
the individual measurements of each fragment using proce-
dures

⊕
and

∐
. Together they determine the order of the

learning features in VF so that the same patterns (with the same
surrounding geometries) maintain the same VF after rotation
and mirroring, should the surroundings rotate or mirror at the
same time. The length of VF is the number of features M.

We further illustrate the above equations with a simple
example shown in Fig. 6. Assume fragment A to be the
fragment of interest and r to be two-fragment deep, meaning
to look for a maximal depth of two neighboring fragments
whenever a search algorithm is applied. In this case, fragment
A is F , B is F Ex, and C is F In. This is because B is
facing A on the external side, and C is facing A on the internal
side (on the same metal polygon). D is on the internal side
of B, which is equivalently the internal of the external side
of A: F ExIn. Similarly, E can be written as F InEx, and
so on. Since r is set to 2, we only look at two neighbors on
each side of A, or else we need to look further than D, B

and C, E. In other words, r controls the range of our context
characterization process.

To generate the vector VF , we follow two major steps: first,
in the order of A, B, C, D, and E, select two neighbors counter-
clockwise then two neighbors clockwise for each fragment and
store the ID number of each resulting fragment in a queue.
For simplicity, Fig. 6 marks the order in which the queue is
filled using numbers from 1 to 25. Second, apply the signature
measurement operators in order to each of the fragment in the
queue and put the results in a parameter vector VF .

There are several things worth noting for this procedure.
1) The same fragment in a layout may be queried multiple

times thus showing at different indices/locations in the
queue, such as (10, 16), (9, 17), (6, 18), (1, 13), (4, 12),
and (5, 11) in Fig. 6. This is desirable information since
they usually indicate line-end shapes.

2) A large value LMAX will be used in case when F Ex

or F In does not exist. For example, in Fig. 6, index
9 (or 17) has no facing fragments on either internal or
external side.

After all these considerations, we have the VF as a compact
parameter vector to represent the context information around
fragment A. Such a generation procedure repeats until every
fragment of interest in the layout is processed.

In this paper, the vector VF formed by the context charac-
terization is defined as the hotspot signature, and the context
characterization for each F is also referred as feature extrac-
tion process. Note the set of all VF s over the entire layout
forms the final output of the layout analyzer. It filters out noise
and provides a compact data set for hotspot identifiers (with
machine-learning models) to be properly established.

Apparently, the total number of fragments could be huge
in a chip-level layout, especially for high density METAL1
layers. With Fig. 6, we can figure out that the VF s of close-
by fragments share quite some common context information
thus need not be processed all over again. Based on such an
observation, we can achieve significant speedups by avoiding
processing the layout in a fragment-by-fragment manner. In
practice, we build a lookup table database of the entire design
inside [22]. Using the advanced programming interface of [22],
the memory cost of the lookup table is about 28 MB/mm2

design, which is well acceptable for modern workstations. This
way, (6) can be realized via table lookup with constant time
complexity for the entire layout. This allows us to achieve up
to hundreds of times of runtime reduction compared with some
previous studies. Simulation results and further discussions
will be presented in Section VII.

V. Hotspot Identifiers and Robust Learning

Models

Our hotspot identifiers employ machine-learning models
that play essential roles unlike previous works. Using pow-
erful machine-learning techniques, we build efficient models
specially suitable for classifying lithography hotspot data. In
particular, we modify and enhance two types of machine-
learning techniques, ANN and SVM, in mainly two aspects:
first, robustness and accuracy in the weight update process,
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Fig. 6. Illustrative example of the vector generation process for fragment A
(black color), where r is set to cover a depth of two neighboring fragments.

TABLE III

ANN/SVM Kernel-Related Variables

Variables Descriptions

N Total number of input sample vectors

M Feature number per sample vector

Vp Input sample vectors, p=1 to N

Vi
p ith element(feature) of Vp , i=1 to M

yp Hotspot label for Vp in calibration, p=1 to N

fin Input transfer function for ANN kernel

fhid Hidden layer transfer functions for ANN kernel

fout Output layer transfer function for ANN kernel

outp ANN output prediction value from Vp input

out
j

hid
ANN hidden layer jth neuron prediction output

−→ω ANN kernel matrix of neuron connection weight

K(Vi, Vj ) SVM kernel function between Vi and Vj

α SVM weight vector for input Vps

�(·) Threshold function for hotspot decision making

Estp̃ Machine-learning estimation for a new input Vp̃

and second, detection threshold �(·) optimizations for simul-
taneous Hhit improvement and Hextra suppression.

Generally speaking, ANN and SVM have similar perfor-
mance for most of binary classifications. SVM guarantees
the global optimum in its formulation if the kernel function
satisfies the Mercer’s condition defined as follows.

Definition 5: Mercer’s Condition: A kernel function
K(x, y) satisfies the Mercer’s condition if and only if (8)
holds for any square integrable function f (x) as follows:

∫ +∞

−∞

∫ +∞

−∞
K(x, y)f (x)f (y)dxdy ≥ 0 (8)

where f (x) satisfies∫ +∞

−∞
|f (x)|2dx < ∞. (9)

On the one hand, SVM is usually prone to data noise
and may also result in longer runtime for high-dimensional
data sets when the number of support vectors becomes large.
ANN, on the other hand, provides more noise robustness,
compact kernel models (neuron weight), and flexible network
structures. In theory, the algorithms that ANN uses to update
the neuron weights usually do not guarantee global optimum.
In practice, however, a very close-to-optimum solution can
be found and validated through careful calibration and
convergence control.

With these considerations, we incorporate both classes of
models into our hotspot identifiers with special modifications.

Algorithm 1 Pseudocodes for training and configuring hotspot
identifier-ANN( )
Require: Training vectors Vps and training targets yps

Scale each feature column of the training row vectors to [−1, +1]
Divide training set into learning, cross-valid, cross-test sets
Set converging speed parameters: η+ = 1.5, η− = 0.5, δmax = 50
Initialize conditions for all variables to be updated
while error target not met do

for each Vp in the learning set do
calculate gradients ∂Ep/∂ωij and ∂Ep/∂ωjk for Vp

end for
calculate the average gradient value for each link as ∂Ep/∂ωij

for all weights and biases do
if ∂Ep/∂ωij(t − 1) * ∂Ep/∂ωij(t) > 0 then

sign = η+

else if ∂Ep/∂ωij(t − 1) * ∂Ep/∂ωij(t) < 0 then
sign = η−

else
sign = 1.0

end if
δ(t) = min(sign*δ(t − 1), δmax)
ωij(t) = −δ(t)*sign func(∂Ep/∂ωij(t))+ωij(t − 1)

end for
update error for current epoch t

break if(early stopping criteria met in valid and test sets)
end while
return A hotspot identifier model with ωij , ωjk.

For ANN kernels, we modify the resilient backpropagation
update method [24] with enhanced robustness and better pa-
rameter tradeoffs between convergence speed and detection ac-
curacy. We also propose strategies for optimizing the detection
threshold of each ANN model. For SVM kernels, we combine
a C-type SVM formulation with higher accuracy working set
selection based on [25], together with the detection threshold
optimizations. We describe our special hotspot identifier model
formulations and implementations briefly as follows, with
related symbols and variables summarized in Table III.

A. ANN: Artificial Neural Network Models

In this section, we present hotspot identifiers with ANN
models, together with the techniques used to configure
(Algorithm 1) and apply (Algorithm 2) these novel identifiers.

A typical ANN classifies data by predicting a value for each
Vp based on an established set of weights and biases assigned
to certain neural network structure. Our ANN kernels are
customized with single hidden layer of neurons, with transfer
functions denoted as fhid . Inputs Vp to the ANN kernels are
the extracted feature vector samples labeled with values (yp)
indicating hotspot or non-hotspot patterns (these values can be
continuous for variability prediction). We use p to represent
feature vector index with p = 1 to N, V i

p denotes the ith
element of vector Vp, and i = 1 to M, where M is the total
number of features for each sample vector. We use fin and
fout to represent input and output layer transfer functions, and
index i, j, k to indicate neuron indices in the input, hidden, and
output layer, respectively. In particular, we first choose certain
sigmoid functions for the hidden layer and a linear function
for the output layer. Then we formulate the ANN calibration
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Algorithm 2 Pseudocodes for applying hotspot identifier-ANN( )
Require: Vps from the layout analyzer

Scale the features of Vps correspondingly by the (min, max) values from
Algorithm 1
Load Hotspot identifier-ANN model
Calculate (16)
return A hotspot estimate Estp̃.

process in (10)–(16) as follows:

objective :minimize{
N∑

p=1

Ep} w.r.t. ωij, ωjk (10)

Ep =
1

2
[outp − yp]2 (11)

outp = fout{
∑

j

ωjk · fhid(
∑

i

V i
p · ωij)} (12)

∂Ep

∂ωjk

= (outp − yp) · fhid{
∑

i

V i
p · ωij} (13)

∂Ep

∂ωij

= (outp − yp) · ωjk · V i
p · (1 + outjhid)(1 − outjhid) (14)

fhid =
2

(1 + e−2x)
− 1, fin = fout = x (15)

Estp̃ = �{fout[
∑

j

ωjk · fhid(
∑

i

V i
p̃ · ωij)]}. (16)

As shown in (10), the objective function is set to the
summed square error (SSE) among all N input sample vectors.
Such a minimization is achieved through iterative update of
weight matrix −→ω using modified resilient backprop method.
We call every iteration as one epoch, defined as one complete
representation of V1 through VN to the ANN kernel. outp is the
ANN prediction result for each Vp vector, while outjhid is the
predicted output from the jth node in the hidden neuron layer,
both of outp and outjhid are iteratively updated across epoches.

The training and configuration of each hotspot identifier-
ANN model is achieved by executing Algorithm 1, which
takes in data set Vps after the signature extraction process (the
layout analyzer) and returns final neuron weight coefficient
matrix −→ω . In particular, there are three steps involved for
hotspot detection accuracy enhancement. First, the input data
set is normalized for each feature across the whole sample
space. Second, the data set is divided into learning (80%),
cross-validation (10%), and cross-testing (10%) subsets for the
considerations of kernel establishment robustness, data over-
fitting prevention, and proper early stopping criteria. In the
third step, network output is adjusted incrementally with a
stepwise update of network weight matrix toward minimal SSE
value with parameters and gradient update procedures modi-
fied for hotspot detection under real manufacturing conditions.
With the calculations of the gradient values using (12)–(15)
and the arithmetic smoothing steps, the hotspot identifier-ANN
is trained iteratively until a certain error target is met. Note
in Algorithm 1, the training targets are derived by running
accurate lithography simulations at a one-time runtime cost.
Once the ANN model is fully trained and configured, we can

Algorithm 3 Pseudocodes for training and configuring hotspot
identifier-SVM( )
Require: Training vectors Vps and training targets yps

Scale each feature column of the training row vectors to [−1, +1]
Set control parameters: γ = −1/M, C = 1.5, stopping tolerance ε = 1e-3,
min floating number τ = 1e-12
Initialize weight vector α and gradient vector G

while 1 do
Working set (i, j pair) selection based on [25]
if j == −1 then

break
end if
Calculate η1 = max(τ, Qi,i + Qj,j − 2 yi yj Qi,j)
Calculate η2 = yj · Gj − yi · Gi

Update weight: �i + = yi · η1/η2, �j − = yj · η1 / η2

�i = slop func(�i),�j = slop func(�j)
Update gradients for all k = 1 to M: Gk + = Qk,i (�i − �

prev

i ) + Qk,j

(�j − �
prev

j )
end while
Calculate ρ and bias values for prediction processes
return A hotspot identifier model of nonzero elements of α and corre-
sponding Vps.

apply it to identify hotspots according to Algorithm 2 without
using costly lithography simulations.

B. SVM: Support Vector Machine Models

In this section, we present hotspot identifiers with SVM
models, together with the techniques used to configure (Algo-
rithm 3) and apply (Algorithm 4) these novel identifiers.

SVM classifies sample vectors by calculating a (hyperplane)
boundary with maximum separation margin in-between of dif-
ferent classes. With such an optimized margin, only the sample
vectors forming the boundaries are considered as contributing
factors for new sample classifications. These vectors are called
support vectors; they are assigned different weights and they
perform classification tasks through certain kernel function
K(Vi, Vj). For this paper’s high fidelity detection flow, we
combine a typical 2-class soft error-tolerant SVM kernel, a
special working set selection technique using second-order
information [25] and a detection threshold � optimization
procedure toward simultaneous accuracy enhancement and
false-alarm suppression.

The dual problem of our quadratic formulation of C-type
SVM is given as follows:

objective : minimize{f (α) =
1

2
αT Qα−eT α} w.r.t. α (17)

subject to : 0 ≤ αi ≤ C, i = 1, . . . , N (18)

yT · α = 0 (19)

K(Vi, Vj) = exp{γ · ‖Vi − Vj‖2} (20)

Estp̃ = �{
∑

i

αiyiK(Vp̃, Vi) + bias}. (21)

Given Vi, i = 1 to N sample vectors, with label yi (either
+1 or −1 for 2-class SVM). e is a vector of all 1s. C is a
preset upper bound to constrain feasible regions for hotspot
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Algorithm 4 Pseudocodes for applying hotspot identifier-SVM( )
Require: Vps from the layout analyzer

Scale the features of Vps correspondingly with the (min, max) values from
Algorithm 3
Load hotspot identifier-SVM model
Calculate (21)
return A hotspot estimate Estp̃.

detection under real manufacturing conditions. Q is N by N

positive semidefinite matrix defined as Qij = yiyjK(Vi, Vj),
where K(Vi, Vj) is defined in (20) as the kernel function to
meet the Mercer’s condition. α is the N element weight vector
for Vps. Note α is generally sparse and the nonzero weights
correspond to the final support vectors. Due to the fact that Q

is usually dense and large, decomposition methods are usually
used to solve the formulation iteratively rather than directly
dealing with the quadratic (17).

The training and configuration of hotspot identifier-SVM
models are achieved through performing Algorithm 3, which
intakes data set Vps and returns the supporting vectors and
corresponding weight coefficients. There are three major steps
involved: first, data set normalization for detection robustness;
second, high order working set selection for enhanced de-
tection accuracy particularly for our special hotspot detection
requirements; and third, update weight and gradient vectors.
The last two steps are carried out in an iterative manner
until certain error target is met. For implementation details
regarding the higher order working set selection, please refer
to [25]. When the SVM model is fully trained and configured,
we can apply it to evaluate a new design pattern using
Algorithm 4, without using accurate lithography simulations.

To sum up, our hotspot identifiers with modified ANN
and SVM kernels hold their respective advantages as two
of the most important machine-learning classifiers, which are
fine-tuned for our hotspot detection requirements under real
manufacturing conditions. From a data mining point of view,
evaluating both types of classifiers can help us quantitatively
interpret the nature of lithography hotspot features/signatures.
Such tools can also assist the design rule development process.

VI. Integrative Flow for Successive

Identification Refinements

A. Overview

Due to the relatively small number of real hotspots and the
highly noisy detection environment under real manufacturing
conditions, we propose a novel hierarchical flow with
successive levels of refinements to integrate our proposed
layout analyzer and hotspot identifiers. In its nature, such an
approach hybrids the strength of hotspot identifier models and
the successive levels of pattern classifications, contributing to
significant detection performance boost in runtime, detection
accuracy, and false alarms, when compared with previous
approaches such as using straightforward machine-learning
techniques.

Following our previous discussions, we present the pseu-
docodes in Algorithm 5 and Algorithm 6 for the calibration
stage and the detection stage overviewed in Section II. For both

Algorithm 5 Pseudocodes for the calibration stage
Require: A small set of input design layouts

Setup optical models, fragmentation specifications
Generate training targets by accurate lithographic simulation
Invoke the layout analyzer
for each fragment in the design layout do

Perform hotspot signature measurements
Update lookup tables

end for
Invoke hotspot identifier-ANNs (or -SVMs) (signatures, targets) for
supervised learning processes with successive refinements (Fig. 7)
return Compact hotspot identifiers models

Algorithm 6 Pseudocodes for the detection stage
Require: A large set of new input layouts

Setup (the same) optical models, fragmentation, and others
Invoke the layout analyzer
Load the hotspot identifiers
for each fragment in the design layout do

Apply the hotspot identifiers inside a novel successive refinement hier-
archy (Fig. 8)

end for
return Identified hotspot patterns.

Fig. 7. Training and configuring successive hotspot identifiers and thresholds
with cascaded refinements.

algorithms, the proposed hierarchy of successive identification
refinements plays a critical role in both detection accuracy
and runtime. Such a hierarchy takes slightly different forms
in the calibration than in the detection stage. As shown
in Fig. 7, in the calibration stage, the hierarchy takes the
form of a multilevel cascade with each level contributing
an unique hotspot identifier model. As illustrated in Fig. 8,
various successive levels of hotspot identifiers derived from the
calibration stage are applied in the detection stage in a similar
hierarchically refined manner to help reduce the false alarm
rate Hextra without penalizing the hotspot detection rate Hhit.
In the following sections, we explain such a hierarchy in detail
by dividing it into two terms: a global term and a local term.

B. Global Calibration and Detection

Here, we refer to the first-level training in Fig. 7 as the
global training, since hotspot identifier Model 1 (abbreviated
as Model 1) is trained with the whole training data set (on the
global scale); similarly, in Fig. 8, detection with only Model 1
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Fig. 8. Applying successive hotspot identifiers and thresholds for hotspot
detection.

is defined as global detection, since the whole testing data go
through this model. As we will show later in Section VII, using
the layout analyzer and hotspot identifiers, the global term
alone achieves very satisfactory hotspot detection accuracy
Hhit but low non-hotspot detection accuracy Nhit. Under the
evolving manufacturing conditions, hotspot and non-hotspot
patterns are highly unbalanced in quantity, which results in
huge number of non-hotspot patterns. Under such a scenario,
even a small fraction of identification error can lead to highly
excessive false alarms therefore heavy workload of post-
design hotspot removal. Consequently, global term alone is not
enough to ensure overall satisfactory detection performance.

C. Successive Local Refinements

To further suppress false alarms meanwhile maintaining
satisfactory hotspot detection rate, we extend the global term
with sublevels of identification hierarchies, which we refer to
as the successive local refinements. As illustrated in Figs. 7
and 8, we apply the level 2 to level N hotspot identifiers that
serve as successive stages of refinements in both calibration
and prediction stages. In the calibration stage, the refinement
flow consists of several key steps.

1) Training, configuring, and validating multiple hotspot
identifiers using the entire training data set plus the false-
alarm data sets accumulated with each additional level.

2) Stopping criteria to decide when to stop adding more
hotspot identifiers.

3) Optimizations of the thresholds associated with the
hotspot identifers. In the detection stage, all the hotspot
identifier models and thresholds are applied successively,
and hotspots are detected as those patterns that are
eventually identified as “hotspots” after all levels of
refinements. We describe related key steps in more detail
in the following sections.

1) Configuring Successive Hotspot Identifiers: The con-
figuration of each hotspot identifier involves the training and
validation of both the learning model and a detection threshold
above which a pattern is identified as a hotspot. Fig. 9 shows
some motivations on the importance of threshold selection.

Fig. 9. Motivation of the threshold function in hotspot identification.

By now we have a hotspot identifier Model 1 derived from
global stage using Algorithms 1 and 3, and the training layouts.
Then we apply Model 1 (using Algorithms 2 and 4) over
some validation data subset1 to derive a threshold1. With this
threshold, we collect all the identification false alarms (the
configuration mistakes) and use them to configure a Model 2.
Subsequently, an extra hotspot identifier Model 3 can be
derived over another false-alarm set of data generated by
applying Model 1 and Model 2 successively (as in Fig. 8).
Consequently, threshold2 can be derived. Such a refinement
goes on until our predefined performance metric saturates over
the validation data set subset2.

2) Stopping Criteria: To quantify the stopping criteria for
the local successive refinements, we introduce a user-defined
performance metric perf as follows:

perf = α · Hhit + β · Nhit (22)

where α and β are user-defined weights, Hhit is the hotspot
detection accuracy, and Nhit is the non-hotspot detection
accuracy. Therefore, perf represents the weighed summation
of hotspot and non-hotspot detection accuracies. With each
additional level, we re-evaluate perf over subset2 using all
the hotspot identifiers derived so far, according to Algorithms 2
and 4, and Fig. 8. We stop configuring additional hotspot
identifiers when perf saturates or starts to degrade.

3) Threshold Optimizations: The important role of thresh-
old optimization has been illustrated in Fig. 9. In this paper,
we employ a heuristic approach, that is to exhaust the solution
space with grid-based simulations and select the threshold
combinations giving the best perf . The main justification
is twofold: a) the calibration stage is performed only once
a priori, therefore, does not lead to runtime overhead for
the detection stage, and b) based on our experiments in
Section VII, perf saturates at level 3, therefore the total
solution space is limited and the heuristic approach would
suffice. For more details of the simulation results please refer
to Section VII.

4) Detections and Testings: Testing is carried out over a
new set of layouts using the layout analyzer, the hotspot iden-
tifiers, and the refinement architecture in Fig. 8. Our proposed
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Fig. 10. Illustration of the calibration and testing data sets.

flow differentiates the data streams and guides them through
successive levels of identifications, resulting in satisfactory
overall performance.

VII. Simulation and Testing

The simulation process involves the calibration stage and
the detection stage. The data used in these stages to calibrate
(train/validate) and test the proposed models are referred
to as the calibration data and the testing data, which are
illustrated in Fig. 10. Note that in the real practice, the testing
layouts generally have more hotspot patterns than those the
calibration data set can represent, since it is usually too costly
to enumerate all the possible hotspot patterns. In this section,
we will test and analyze our proposed methodology in terms
of both hotspot detection accuracy and prediction generality
over new testing layouts.

A. Layout Calibration Stage

We break down the calibration stage into two major steps:
1) under real manufacturing conditions, multiple hotspot iden-
tifiers are trained and configured over a relatively small set of
layouts that are fully placed and routed in 45 nm technology,
and 2) under the successive local refinement framework, the
threshold optimizations are carried out over the validation
data set to reduce detection inaccuracies introduced by the
unbalanced hotspot/non-hotspot ratio.

For the first step, we perform sparse samplings over a
number of different size training layouts (summing up to
∼3000 μm2 in area) and generate a data set with 5K non-
hotspot samples, equivalent to the total number of frag-
ments/patterns of a 500 μm2 design. We also sample the
hotspot patterns (totally around 25 classes) from all the train-
ing layouts and replicate them to around 5K. Then we combine
the hotspot and non-hotspot data sets together to generate our
final training data set, which contains 10K data samples with
hotspot versus non-hotspot ratio 1:1. The validation data set is
built similarly with 20K samples, including about 30 different
classes of hotspot samples.

The main goal of the sampling is to properly select repre-
sentative samples from the training and the validation layouts
for more effective learning process. In our simulation setups,
this sampling is implemented by first marking the layouts into
very small grid regions, then selecting several fragments of
interest from different locations within each region. Note that
the training and validation sets do not include all possible types
of hotspot patterns. In other words, we must build a detection

Fig. 11. Spectrum of detection accuracies in the threshold optimization.

Fig. 12. Visualizations of false-alarm locations when simulating (a) [20] on
C5, (b) [26] on C5, and (c) our method on C5 (barely visible: ∼100 false-
alarm spots on 1 mm2 layout).

engine to best predict new types of hotspots that have not been
calibrated in the training stage. For this purpose in the second
step, we will select the Bayesian-decision thresholds of the
machine-learning models.

For the second step, Fig. 11 plots a fine-grid simulation
result of the threshold optimization process in the calibration
stage. The x-axis is the hotspot detection accuracy Hhit

over the validation set subset2, and y-axis is the non-hotspot
detection accuracy Nhit. Every point on the plot represents
a different combination of the thresholds as in Fig. 7, the
data depicted with cross markers is derived through applying
hotspot identifier-ANNs and the circles are through SVMs.
As a quick observation, ANNs give more robustness against
noises, while the SVMs achieve better performance ψperf . In
our case, we pick the upper-right corner threshold combina-
tions on ANN and SVM curves, respectively, in Fig. 11 for the
purpose of generating the identifiers: Model 1 to Model 3.

The simulation time cost of the layout calibration stage is
around 2.0 CPU h, which is about 35 min on a quad-core
Linux workstation. We break down the calibration runtime
as follows in Table IV, where the layout analyzer runs at an
average speed of around 6.6K samples per second among all
calibration layouts on a single core workstation; and the core
ANN/SVM model generations take about 5–10 min for 10K–
20K samples per hotspot identifier model.

B. Hotspot Detection Stage

With the three levels of hotspot identifiers ready from
the calibration stage, we perform hotspot identifications over
five industry design layouts under the real manufacturing
conditions. Details of layouts C1–C5 are in Table V, where
the sizes of the test cases range from 900 μm2 to 1 mm2. We
can tell from the total number of geometry fragmentation in
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TABLE IV

Runtime Breakdown of the Calibration Stage

Layout Analyzer Hotspot Identifier Models Threshold Opt.
(Three Levels for ANN/SVM)

<0.08 CPU h <0.42 CPU h ∼1.5 CPU h

TABLE V

Details of Testing Layouts

Dimension Hotspot Count Non-Hotspot Count

C1 30×30 μm2 4 4.955k

C2 50×50 μm2 0 17.37k

C3 200×200 μm2 6 293.5k

C4 500×500 μm2 38 1779k

C5 1000×1000 μm2 137 7175k

C1–C5 (hotspot count + non-hotspot count) that they contain
very densely placed and routed METAL1 layer. Note that C1–
C5 contain various types of lithography hotspots whose geo-
metric patterns are very hard to enumerate a priori as a library,
i.e., precise geometry matching will result in significant loss
of generality to new hotspot patterns (outside the training set),
while other graph-based methods (e.g., dual-graph matching
[12]) usually lead to large amount of detection false alarms.

In the following sections, we test and evaluate the proposed
methodology on the above design layouts in terms of Hhit,
Hmis, Hextra, Nhit, and runtime under a real set of industry-
strength manufacturing conditions at 45 nm process. Note that
these designs did not participate in the calibration stage. Also
note that our machine-learning flow is designed to be generic
to apply to other technology nodes.

Table VI shows the simulation results of hotspot identifica-
tion accuracies using our proposed methodology, where GD
represents the global detection stage alone (using only hotspot
identifier Model 1) and GD + LR represents the combination
of the global detection and the successive local refinements
(using Model 1-Model 3). We observe that although GD
leads to satisfactory hotspot identification accuracy, it is LR
that plays a vital role in bringing down the false alarms. Also
in these results, we better appreciate the detection challenges
under real manufacturing conditions due to highly unbalanced
quantities of hotspot and non-hotspot patterns. Fig. 12 pro-
vides a good visualization of detection false alarms on the
1 mm2 area design C5 by using two previous methods and
our proposed methodology. From the figure it is obvious
that our approach achieves the least amount of false alarms
(without penalties on the hotspot accuracy Hhit), therefore
the workload overheads can be kept minimum in the post-
layout hotspot removal stages. We can also appreciate that
although a 95% of non-hotspot identification accuracy seems
good percentage wise, we have to raise it to above, e.g.,
99.85% to avoid excessive post-layout corrections under the
real manufacturing conditions.

Table VII shows the runtime breakdown of the hotspot
detection stage, where the context calibration (a table lookup
procedure) runs at a constant speed of about 8.3K samples per
second, and the hotspot identifier applies the SVM or ANN
model to each sample at a constant speed of 1.2K(SVM) or
1.7K(ANN) samples per second.

Since the speeds of the context calibration and the hotspot
identifier dominate the detection stage, the detection runtime
scales linearly to the total number of fragments in the design

TABLE VI

Simulation Results of Our Proposed Methodology on Industry

Layouts Under Real Manufacturing Conditions

Using Hotspot Identifiers-ANN Using Hotspot Identifiers-SVM
GD GD + LR GD GD + LR

Hhita Nmis Hhit Nmis Hhit Nmis Hhit Nmis

C1 4 315 3 18 4 251 4 5

C2 – 109 – 11 – 81 – 3

C3 6 493 5 31 6 355 5 7

C4 32 3020 30 195 34 1983 31 38

C5 121 10 960 111 485 122 7535 114 135

aHhit is the number of correctly identified hotspots; Nmis is the number of incorrectly identified
non-hotspots (false alarms).

TABLE VII

Runtime Breakdown of the Hotspot Detection Stage

Machine- Layout Analyzer Hotspot Identifier

Learning Signature Context Levels
Models Measurement Calibration 1 + 2 + 3

ANN ∼4% ∼16% ∼80%

SVM ∼3% ∼12% ∼85%

layout. Since we use a small shielding factor in the fragmen-
tation rules, the fragmentation process becomes localized and
the number of fragments per area is proportional to the local
metal track density. Given design layouts with similar metal
densities, the detection runtime therefore scales linearly to the
areas of the layouts. So far we have proved the linear runtime
scalability of the proposed machine-learning method, which
will be further validated with simulation results.

Table VIII and Fig. 13 show comparisons of accuracies and
runtime between our approach and some existing machine-
learning-based studies. The simulation results of [20] and [26]
are collected by directly running the original source codes
on our testing cases C1–C5. We also implement the original
method of [17] inside [22] via an advanced programming
interface in C/C++. Due to environment compatibility issues,
we modified the original approach in [17] slightly for better
memory efficiency, which could possibly end up with more
runtime. However, it would suffice as a first-order estimation.

As shown in Table VIII, our proposed methods demonstrate
better performance with superior runtime under real manu-
facturing conditions. With similar or slightly better hotspot
detection rate Hhit of 82–89%, we achieve hotspot false-
alarm reductions ranging from 2.4X (between [26] and hotspot
identifiers-ANN-GD + LR) to 2300X (between [17] and
hotspot identifiers-SVM-GD + LR). As visualized in Fig. 13,
the simulation runtime speedups range from 5X (between
[20] and hotspot identifiers-SVM) to 237X (between [17]
and hotspot identifiers-ANN), when calibred in CPU h/mm2

unit. Such speedups mainly owe to our proposed identification
methodology that is free of time-consuming data transforma-
tions, such as grid density extraction, distance transform, and
histogram calculations.

Inside our locally refined detection methodology, ANN
models result in faster runtime than SVM models while SVM
models outperform ANN models in both hotspot and non-
hotspot detection accuracy. We also notice that the runtime
overhead introduced by the successive local refinements is
negligible, owing to: 1) the ultrafast speed of the layout
analyzer and the hotspot identifiers; and 2) the exponential
reduction of false alarms achieved by each additional level of



1632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2011

TABLE VIII

Performance Comparison Between Previous Hotspot Identification Methods and Our Method

DAC09 SPIE09 ICICDT09 Identifiers-ANN Identifiers-SVM
[17]a [26]b [20]b GD GD + LR GD GD + LR

Average hotspot detection accuracy Hhit 88% 80% 87% 88% 82% 89% 83%

Average Nonhotspot detection accuracy 95.818% 99.985% 99.809% 99.847% 99.994% 99.895% 99.998%

Average false-alarm count per mm2 300K 1.1K 13.5K 10K 0.45K 7.5K 0.13K

Average CPU runtimec per mm2 356 30 10 1.5 1.5 2.0 2.0

Average real-time runtimed per mm2 100 8.50 2.80 0.40 0.40 0.52 0.52

aImplemented within the same geometry engine framework [22] with slight modifications for compatibility reasons. Calibrated on a total 100×100 μm2 region from layout C5 due to runtime
constraint.
bResults collected by running the original source codes on C1–C5.
cRuntime calibrated in the unit of CPU h/mm2 on Linux station with 2.8 GHz quad-core processors.
dRuntime calibrated in the unit of real-time h/mm2 on Linux station with 2.8 GHz quad-core processors.

Fig. 13. Detection stage runtime comparison between our approach and
previously existing works, in the unit of Log10(h/mm2).

refinement. These make our methodology especially suitable
for guiding lithography-friendly physical design.

To evaluate the runtime scalability of our methodology on
multicore platforms, we implemented the layout analyzer and
the hotspot identifiers inside [22] with parallel processing
friendly functions and procedures. Assisted by the layout
segmentation and refactoring features provided by [22], we
plot in Fig. 14 the runtime of our approach when simulated
on a Linux workstation with a Intel quad-core processor.
In Fig. 14, C1–C5 have increasing areas from 900 μm2 to
1.0 mm2. We can see that our methodology shows linear
runtime complexity as design layouts scale to full-chip size.
In comparing the CPU time and the real time of both hotspot
identifiers-ANN and hotspot identifiers-SVM, we observe that
our methodology demonstrates very good multicore scalabil-
ity. From “CPU Time” to “Real Time,” ANN models and
SVM models achieve 73.3% and 74.0% runtime reduction on
quad-core machines, respectively. The main reasons of such
complexity and scalability owe to: 1) good memory/workload
management and database refactoring mechanisms of [22]; 2)
the novel measurement operators we propose in the layout
analyzer; and 3) the ultrafast calculations involved with the
hotspot identifiers.

Based on the results in Table VIII, we summarize and
compare several classes of machine-learning-based hotspot
identification methods in Table IX, where we further highlight
the key contributions of our proposed methodology. First, we
employed powerful hotspot identifiers to achieve high hotspot
detection accuracy. Second, we proposed efficient successive
refinements to suppress detection false alarms. Third, we
employed ultrafast layout analyzer for advantageous runtime

Fig. 14. Runtime scalability of our methodology in the detection state.

TABLE IX

Comparisons Between Existing Methods

[17] [26] [20] Ours

Identifier model SVM Regression ANN ANN, SVM
Accuracy High Medium High High

False alarms High Low High Low
Window-based Yes No Yes No

Scanning coverage Tradeoff Full Tradeoff Full
Runtime Usually slowa Medium Mediuma Very fast

aFor scanning window-based approaches, runtime can be traded-off at the cost of detection
accuracy and coverage.

efficiency. Without sliding windows or raster scanning, our
methodology enables full design layout analysis without leav-
ing any cold spots. Consequently, there is no need to seek
tradeoffs between runtime and detection accuracy/coverage.
It is obvious that our method is most suitable to guide
lithography-aware physical design due to these performance
advantages. Although the machine-learning methodology still
misses some hotspots, it is acceptable as a fast and high-
fidelity prediction at early (physical) design stages.

C. Quantitative Comparison with Pattern Matching

In this section, we further assess our proposed machine-
learning methodology in comparison to a typical pattern-
matching-based detection flow, shown in Fig. 15. The main
objective of such a comparison is to demonstrate the advan-
tageous capabilities of the machine-learning methods in terms
of predicting new hotspot patterns that were not previously
characterized in the calibration stage. This is very important
because in the real practice, exhaustive and complete pattern
enumeration is usually too expensive to perform a priori.

Typical pattern-matching flows take three steps: 1) analyze
the patterns in the calibration data set and build a special
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Fig. 15. Typical hotspot detection flow using a pattern-matching library.

Fig. 16. Some illustrative examples of hotspot patterns. (a)–(c) Example
pattern in PM library. (d)–(f) Specific pattern under category (b).

pattern library to cover all the known hotspot patterns; 2)
apply the pattern library over the entire calibration data set
and adjust the library patterns to reduce the false alarms; and
3) apply the final pattern library to the entire testing layouts
C1–C5.

Initially in Step 1, we processed the hotspot samples and
developed about ten types of structure elements based on
various line-end/corner/jog/contact geometries. Their combi-
nations form a pool of patterns that covers the entire set of
hotspots seen in the calibration data. However, the false alarms
are unacceptably high, thus further refinement is required.

In Step 2, we develop a number of special complex pattern
combinations based on fast dual-graphs [12] and range pattern
methods [14], then merge them together with the existing
patterns. After some fine-tuning, we finalize the library with
about 20 categories of special hotspot patterns. Within each
category there are a number of specific patterns. For each
specific hotspot pattern, we further enumerate a number of
“similar” hotspot patterns that share the same structure skele-
ton but with slight differences in the layout. This way we
can enhance the prediction generality of the library over new
testing samples. A few specific example patterns are depicted
in Fig. 16. In Table X, we see that this library provides 100%
Hhit and 96.2% Nhit over the calibration data set. Such an
Hhit outperforms that of the machine-learning methods over
the same data set, but the Nhit indicates that the detection false
alarms from such a pattern matcher is much worse than most
of the existing machine-learning models.

In Step 3, we apply the special pattern library to the testing
layouts C1–C5 and show the average detection performance
in Table X. Note there are new hotspot patterns in the testing
layouts that were not present in the calibration data set. From
the results we can see that the Hhit reduces to about 74%
meanwhile the false alarms further worsens. This tells us

TABLE X

Performance of the Employed Pattern-Matching Method

Calibration Data Testing Data
Hhit Hextra Nhit Hhit Hextra Nhit Runtime
100% 1.9K 96.2% 74% 2.3K 95.6% 0.9 CPU h/mm2

that the pattern-matching techniques employed have significant
disadvantage in predicting new/unseen hotspots. Comparing
with such a pattern matcher, machine-learning techniques
achieve 11% (82% versus 74%) to 20% (89% versus 74%)
better Hhit meanwhile much better false-alarm rate. The total
runtime for scanning the pattern library in the testing stage
takes about 0.9 CPU h/mm2, which is around 12 min for
a mm2 design on a quad-core workstation. This gives the
pattern matcher 40% (1.5 versus 0.9) to 55% (2.0 versus
0.9) of runtime advantage compared with the machine-learning
methods. However, we also need to consider the time overhead
spent in Step 1 of Fig. 15, which includes the development
and optimization of the pattern library.

Overall speaking, our proposed machine-learning meth-
ods have great advantage in predicting new/unseen types of
hotspots and suppressing detection noise to achieve very low
false alarms. The pattern-matching methods on the other hand,
are very good at precise detection of already characterized
hotspots with very fast speed. As a future work, it will be very
interesting to combine machine learning and pattern matching
together for the ultimate hotspot detection.

VIII. Conclusion

Under real and continuously improving manufacturing con-
ditions, lithographic hotspot detection faces many critical
challenges. To alleviate the huge runtime cost of current
lithographic hotspot simulators, we proposed a fast and high
fidelity hotspot detection methodology providing full layout,
feature-centric assessment. We incorporated hotspot signature
measurements and powerful hotspot identifiers into a suc-
cessively refined detection flow. Our algorithms were imple-
mented and tested with an industry-strength engine [22] under
real PDK/manufacturing conditions, demonstrating significant
advantages over previous studies in both detection false alarms
and runtime. Our method also showed high prediction general-
ity for hotspot patterns that were not previously characterized,
i.e., when exhaustive pattern enumeration becomes too costly.
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