
26

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip

WOOYOUNG JANG, Samsung Electronics
DAVID Z. PAN, University of Texas at Austin

In this article, we propose novel and global Architecture-Aware Analytic MAPping (A3MAP) algorithms
applied to Networks-on-Chip (NoCs) not only with homogeneous Processing Elements (PEs) on a regular
mesh network as done by most previous application mapping algorithms but also with heterogeneous PEs
on an irregular mesh or custom network. As the main contributions, we develop a simple yet efficient
interconnection matrix that can easily model any core graph and network. Then, an application mapping
problem is exactly formulated to Mixed Integer Quadratic Programming (MIQP). Since MIQP is NP-hard, we
propose two effective heuristics, a successive relaxation algorithm achieving short runtime, called A3MAP-SR
and a genetic algorithm achieving high mapping quality, called A3MAP-GA. We also propose a partition-based
application mapping approach for large-scale NoCs, which provides better trade-off between performance
and runtime. Experimental results show that A3MAP algorithms reduce total hop count, compared to the
previous application mapping algorithms optimized for a regular mesh network, called NMAP [Murali
and Micheli 2004] and for an irregular mesh and custom network, called CMAP [Tornero et al. 2008].
Furthermore, A3MAP algorithms make packets travel shorter distance than CMAP, which is related to
energy consumption.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Network-on-chip, application mapping, homogeneous/heterogeneous
processing element, mixed integer quadratic programming, genetic algorithm, successive relaxation
algorithm

ACM Reference Format:
Jang, W. and Pan, D. Z. 2012. A3MAP: Architecture-aware analytic mapping for networks-on-chip. ACM
Trans. Des. Autom. Electron. Syst. 17, 3, Article 26 (June 2012), 22 pages.
DOI = 10.1145/2209291.2209299 http://doi.acm.org/10.1145/2209291.2209299

1. INTRODUCTION

Continuing advancements in semiconductor technology enable to integrate many cores
on a single die, called System-on-Chip (SoC). As thousands of cores will be integrated
to a single chip for enhanced performance and functionality by 2015 [Borkar 2007],
on-chip communication techniques and application mapping algorithms become key
factors in the success of the multi- or many-core chips. Recently, Networks-on-Chip
(NoCs) replacing point-to-point and shared bus interconnections have been employed
to solve complex on-chip communication issues. NoCs also provide great scalability and

A preliminary version of this article was presented at the Asian and South Pacific Design Automation
Conference (ASP-DAC) 2010 [Jang and Pan 2010a]. This work is supported in part by Samsung Electronics.
Authors’ addresses: W. Jang (corresponding author), System LSI Division, Samsung Electronics, South
Korea; email: wooyoung.jjang@gmail.com; D. Z. Pan, Electrical and Computer Engineering Department,
University of Texas at Austin, Austin, Texas.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1084-4309/2012/06-ART26 $15.00

DOI 10.1145/2209291.2209299 http://doi.acm.org/10.1145/2209291.2209299

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:2 W. Jang and D. Z. Pan

Fig. 1. Overview of A3MAP.

flexibility for the modern and future SoCs [Dally and Towles 2001; Benini and Micheli
2002; Jang 2011].

So far, most of the NoCs favor a regular mesh architecture consisting of regular rect-
angle tiles on which homogeneous processors are placed. The regular mesh network
makes application mapping easy, increases routing efficiency, provides desirable elec-
trical and physical properties, and reduces the complexity of resource management.
Hence, most previous works have optimized application mapping on the regular mesh
architecture. However, industrial SoC platforms, such as Nexperia [Dutta et al. 2001],
Nomadik [STMicroelectronics], and OMAP [Texas Instruments], consist of various Pro-
cessing Elements (PEs) such as a general processor, a Digital Signal Processor (DSP),
a specific memory, and a peripheral. Since such physically different sized processing
elements cannot be floorplanned into a regular mesh network, the resulting NoCs
get an irregular mesh network or even a custom network [Chatha et al. 2008]. The
irregular mesh networks are also found in a regular mesh network when any links
become faulty or degraded by process and temperature variation. Therefore, applica-
tion mapping and routing path allocation should deal with the abnormal links and
compensate for the loss of yield and performance [Markovsky et al. 2009]. In addition,
since Voltage-Frequency Island (VFI)-based NoCs have links with different bandwidth
[Jang and Pan 2011a] and 3D NoCs have irregular interconnections due to manufac-
turing constraints [Jang et al. 2011], they are no longer a regular mesh network. On
the contrary, the previous application mapping algorithms are not adaptive to various
network architectures. As a result, specific mapping algorithms may be required for
different network architectures. Therefore, an application mapping algorithm that can
be applied to various networks is required.

In this article, we propose Architecture-Aware Analytic MAPping (A3MAP) algo-
rithms that are analogous to analytical communication minimization in a given hard
NoC. We use a metric space that exactly captures network architectures and that is
simple yet efficient for an application mapping problem in various networks. In the
proposed application mapping formulation, we seek to embed a core graph into the
metric space of a network. Then, the quality of the application mapping is measured
by the total distortion of metric embedding. Through this formulation, cores can be
mapped adaptively to any different sized tiles on regular/irregular mesh and custom
networks. Figure 1 shows the overview of A3MAP. Given a core graph and a network

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:3

as inputs, interconnection matrices that can model any directed/undirected and
weighted/unweighted graphs are generated. Next, an application mapping problem
is exactly formulated to Mixed Integer Quadratic Programming (MIQP) and then is
solved by two efficient heuristics since MIQP is NP-hard [Sahni and Gonzalez 1976].
One is successive relaxation of MIQP to a sequence of Quadratic Programming (QP)
providing short runtime and the other is a genetic algorithm that is an efficient random
search algorithm providing high mapping quality. Importantly, our framework not only
enables global, rather than local, optimization but also maps cores to various network
architectures, in particular, irregular mesh and custom networks.

The rest of this article is organized as follows: Section 2 reviews the related works.
Section 3 presents an NoC platform where A3MAP algorithms are performed and a
novel and global A3MAP formulation to MIQP. In Section 4, a successive relaxation
algorithm and a genetic algorithm are proposed as the efficient solutions of the MIQP.
In Section 5, we present an application mapping approach in a large NoC. Section 6
shows experiment results in comparison with the previous state-of-art works [Murali
and Micheli 2004; Tornero et al. 2008]. Section 7 is used for conclusion.

2. RELATED WORKS AND OUR CONTRIBUTIONS

In the last decade, application mapping problems have been mainly solved on a regu-
lar mesh network. In Hu and Marculescu [2003], a branch-and-bound algorithm was
adopted for application mapping in a regular mesh-based NoC architecture, which min-
imized the total amount of power consumed in communications. Murali and Micheli
[2004] presented NMAP that was a fast algorithm, where cores were mapped onto a
regular mesh network under bandwidth constrains, aiming at minimizing average com-
munication latency. Shin et al. [2004] explored the design space of NoC-based systems,
including task assignment, tile mapping, routing path allocation, task scheduling, and
link speed assignment, using three nested genetic algorithms. Hansson et al. [2005]
proposed a unified algorithm, called UMARS, that couples mapping, path selection, and
time-slot allocation, using a single consistent objective. The work presented in Chou
et al. [2008] proposed an efficient technique for runtime application mapping onto a
homogeneous NoC platform with multiple voltage levels. Chen et al. [2008] proposed
a complier-based application mapping algorithm that consisted of task scheduling,
processor mapping, data mapping, and packet routing to reduce energy consumption.
However, since these solutions have been optimized only for a regular mesh network,
they cannot be applied to various network architectures or their mapping quality
severely deteriorates in irregular/custom networks.

Recently, heterogeneous cores have been considered for low energy consumption
[Jang et al. 2010]. Smit et al. [2004] solved the problem of runtime task assignment
on heterogeneous processors with task graphs restricted to the small number of ver-
tices or the large number of vertices within degree no more than two. Carvalho et al.
[2007] investigated the quality of several mapping heuristics promising for runtime
use in NoC-based MultiProcessor SoCs (MPSoCs) with dynamic workloads, targeting
NoC congestion minimization. Chang et al. [2008] proposed ETAHM to allocate tasks
on a target multiprocessor system. It mixed task scheduling, mapping, and dynamic
voltage scaling utilization in one phase and coupled an ant colony optimization algo-
rithm. ADAM presented in Abdullah et al. [2008] was runtime application mapping in
a distributed manner, targeting for adaptive NoC-based heterogeneous MPSoCs. How-
ever, the previous application mapping solutions have not considered the irregularity
of NoC tiles and links which are caused by different sized heterogeneous PEs. Since
the irregularities cause long detoured packets on a network, a lot of communication
energy may be consumed or a quality-of-service requirement may not be guaranteed.
Recently, Tornero et al. [2008] proposed a communication-aware topological mapping

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:4 W. Jang and D. Z. Pan

technique for irregular NoCs, which matched the communication requirements of the
application running on the cores with the existing network resources. Ghosh et al.
[2009] proposed a technique for mapping application tasks to heterogeneous PEs on
an NoC platform, operating at multiple voltage levels. Singh et al. [2009] described
two runtime mapping heuristics for mapping applications onto NoC-based heteroge-
neous MPSoC. Le Beux et al. [2010] proposed an approach that concurrently optimizes
the mapping and the partitioning of steaming applications on heterogeneous nodes.
However, its mapping quality was low since it did not provide the efficient solution
searching algorithm. Singh et al. [2010] described a number of communication-aware
runtime mapping heuristics for the mapping of multiple applications onto an MPSoC
platform in which more than one task can be supported by each PE. He et al. [2011]
proposed a unified task scheduling and core mapping algorithm for various NoCs.

Such a different-sized PE is mainly considered in the topology synthesis and routing
path allocation for application-specific NoC. Murali et al. [2006] presented a floorplan-
aware design methodology that automated the synthesis of such application-specific
NoC architectures. It considered the wiring complexity of NoCs during the topology
synthesis process. Chan and Parameswaran [2008] presented NoCOUT, a methodology
for generating an energy-optimized application-specific NoC topology which supports
both point-to-point and packet-switched networks. Chatha et al. [2008] presented the
design methodology and synthesis of an application-specific NoC architecture. It em-
ployed a three-phase synthesis approach consisting of core-to-router mapping, custom
topology decision, and routing path generation. In Schafer et al. [2005], an adaptive
deadlock-free routing algorithm was proposed to handle NoC layouts with embedded
different sized cores. Bolotin et al. [2007] proposed hardware-efficient routing in ir-
regular mesh NoCs and routing table size minimization based on static shortest path
routing. Holsmark et al. [2008] listed the issues that a designer would encounter while
designing a heterogeneous mesh topology for NoC using multiport or multiaccess point
cores and presented two deadlock-free routing algorithms for irregular mesh networks.

In this article, we propose novel and global Architecture-Aware Analytic MAPping
(A3MAP) algorithms. The proposed approach can be employed in most network archi-
tectures including regular/irregular mesh and custom networks. The main novelties
and contributions are as follows.

—We formulate an application mapping problem to MIQP, based on a metric embed-
ding technique. Then, we show that the formulation achieves excellent application
mapping quality not only in regular networks but also in irregular/custom networks.

—We propose two effective heuristics solving the MIQP, based on a successive relax-
ation algorithm for short runtime and a genetic algorithm for high mapping quality.
We show they provide a better trade-off between mapping quality and runtime for a
small-scale network.

—We propose a partition-based application mapping approach for large-scale networks
and show that it provides short runtime whereas it has little loss of mapping quality.

3. PROBLEM FORMULATION

The proposed application mapping approach is applied to NoC-based MPSoC. PEs in
the MPSoC are placed on a regular mesh network, an irregular mesh network, or a
custom network where a router is interconnected to a single PE and other routers.
Each network link between routers or a PE and a router can have the same or different
bandwidth that depends on the number of wires and operating clock frequency and
wirelength that depends on the size of PEs and their physical design such as floorplan-
ning and placement and global/detail routing. In addition, a network link can have uni-
or bidirectional ways.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:5

0 3 0

0

0

0

0

0

0 0

000 0

00

00 0

0 0

(e) custom network

0

0

(d) irregular mesh network(c) regular mesh network

0 5 0 5 0 0

0

0

0

0

0

5 55 0 0

500 5 0

500 05

5 50 5 0

0 0 5 0 5

vA vB vC vD vE vF

vA

vB

vC

vD

vE

vF

vA vB vC vD vE vF

vA

vB

vC

vD

vE

vF

vol(eAB) vol(eAC) vol(eAD) vol(eAE)0 vol(eAF)

0 vol(eBC) vol(eBD) vol(eBE)vol(eBA (lov) eBF)

vol(eCB) 0 vol(eCD) vol(eCE)vol(eCA (lov) eCF)

vol(eDB) vol(eDC) 0 vol(eDE)vol(eDA (lov) eDF)

vol(eEB) vol(eEC) vol(eED) 0vol(eEA (lov) eEF)

vol(eFB) vol(eFC) vol(eFD) vol(eFE)vol(eFA) 0

(a) Interconnection matrix, CN

vA vB vC vD vE vF

vA

vB

vC

vD

vE

vF

(b) Interconnection matrix, CC

bw(eAB) bw(eAC) bw(eAD) bw(eAE)0 bw(eAF)

0 bw(eBC) bw(eBD) bw(eBE)bw(eBA (wb) eBF)

bw(eCB) 0 bw(eCD) bw(eCE)bw(eCA (wb) eCF)

bw(eDB) bw(eDC) 0 bw(eDE)bw(eDA (wb) eDF)

bw(eEB) bw(eEC) bw(eED) 0bw(eEA (wb) eEF)

bw(eFB) bw(eFC) bw(eFD) bw(eFE)bw(eFA) 0

vA vB vC vD vE vF

vA

vB

vC

vD

vE

vF

A B C

FED

5

5

5

5

5

5

5

5

5

5

5

5

5

5

0 3 0 5 0 0

0

0

0

0

0

0 55 0 0

000 1 0

000 02

0 40 5 0

0 0 10 0 4

vA vB vC vD vE vF

vA

vB

vC

vD

vE

vF

A B C

FED

3

1

5

4

4

5

2

5

5
10 A B C

FE

1

3 5

5

8

5

D

3

9

5

5

0 5

1 5 0

9

0 3 5

α80

α55

Metric space
conversion

Metric space
conversion

Metric space
conversion

tile

router

Fig. 2. Various graphs and their interconnection matrices.

One of the PEs performs the proposed A3MAP algorithms as a global manger that
is commonly placed in the corner of the MPSoC. Whereas it is similar to Chou et al.
[2008], our MPSoC does not need a control network which is responsible for delivering
a control packet between a global manager and PE. Since control and data packets can
be differentiated by different address spaces and a few control packets are not critical
in packet routing performance, our MPSoC is equipped with only a data network that
control packets share [Jang and Pan 2010b, 2011b]. The communication infrastructure
is controlled by an Open Core Protocol (OCP) or an AMBA protocol. Packets are routed
with the deterministic and minimum path and are controlled by wormhole switching.
Each PE has its own computation capability and is considered as an independent
subsystem.

Under such NoC architectures, we formulate an application mapping problem to
MIQP using metric embedding. As inputs, we take a core graph and a network. A graph
G(V,E) with n vertices is a directed graph, where each vertex vi ∈ V represents a core or
a tile and where each directed edge ei, j ∈ E represents communication between vi to v j .
vol(ei, j) represents communication volume between vi to v j in a core graph and bw(ei, j)
represents a bandwidth requirement between vi to v j in a network. We construct an
n × n interconnection matrix, CN corresponding to a network, where cNi, j∈CN is equal to
bw(ei, j) as shown in Figure 2(a). Each row in CN represents an interconnection relation
with respect to a single tile on NoC. Thus, CN contains interconnection relations for
an entire network, representing the metric space of a network. Similarly, we construct
an n × n interconnection matrix CC , corresponding to a core graph, where cCi, j∈CC is
equal to vol(ei, j) as shown in Figure 2(b).

For example, Figure 2(c), (d), and (e) show three network graphs and their metric
spaces using the proposed interconnection matrix. In Figure 2(c) that is a regular
mesh, all routers are interconnected by a bidirectional network link with the same
bandwidth. Its interconnection matrix is symmetrically composed as shown under the
network graph. In case of an irregular mesh network in Figure 2(d), interconnections
between tile A and tile B or between tile C and tile F are unidirectional and tile
D is not interconnected to tile E. Since the bandwidth of links is also different, its
interconnection matrix is asymmetrically composed. The irregular mesh network can
be observed in a VFI-based NoC where each PE operates with its own voltage and
frequency [Jang et al. 2010] and in NoC with faulty and degraded links by process and
temperature variation [Markovsky et al. 2009].

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:6 W. Jang and D. Z. Pan

In case of a custom network, there is slight difference in the composition of its in-
terconnection matrix. In Figure 2(e), wirelength between tile E and tile F is different
from other wirelengths due to tile E with a larger area. Since a packet has to cross each
link within one cycle, a link between tile E and F may have more repeaters to accom-
modate a fast transmission time resulting in significantly higher energy consumption.
The composition of an interconnection matrix for the custom network is similar to
regular/irregular mesh networks except weight α is added in the matrix in order to
consider efficient communication energy consumption. The hop count based on the as-
sumption that all links consume the same communication energy is no longer suitable
since links with different wirelength consume different communication energy. Let the
energy consumption of each link, Elink computed as

Elink = Edriver + Erepeaters, (1)

where Edriver and Erepeaters are the energy consumed by the output driver of routers
and repeaters on a link, respectively. If Elink1 and Elink2 is the energy consumption of
sending one bit in a solid line and a dotted line respectively, α is the ratio of Elink1 to
Elink2 (= Elink1/Elink2) where Elink1< Elink2. The weigh α (0 < α < 1) reduces the available
bandwidth of a long dotted link in a network such that our formulation makes the long
dotted link less used. In Figure 2(e), let’s suppose that dotted lines are three times
longer than solid lines and a packet generated in tile A goes to tile D. The packet can
choose either A-B-C-D or A-E-F-D as a routing path. Since two routing paths include
the same hop counts, it takes the packet the same clock cycle to reach tile D while the
total wirelengh of path A-E-F-D is longer than that of path A-B-C-D. Thus, the path
A-E-F-D may consume more communication energy than the path A-B-C-D since more
repeaters may be inserted on the long dotted links or the router attached to tile E and
F may be required to equip a stronger output driver. Therefore, it is good to assign
a core with little communication to a tile with the long link or a core with a lot of
communication to a tile with the short link for low dynamic energy consumption. If the
energy consumption is linearly proportional to the length of wires in Figure 2(e) due to
more repeaters and a stronger output driver, α is 1/3. The weight α lets a core with a
lot of communication be mapped into a tile with short wires such that communication
energy consumption can be further minimized. Similarly, our interconnection matrix
easily accommodates other general cases.

Graph embedding [Matousek 2002] maps the vertices of graph G(V,E) into a cho-
sen metric space by minimizing distortion. Thus, application mapping has a natural
correspondence with graph embedding into a given two-dimensional metric space rep-
resenting NoC. Thus, we seek to embed a core graph into the metric space of a network
based on the interconnection matrices. The goal is that a core is mapped to each tile,
satisfying the performance constraints in a core-mapped network while the number of
communications generated between routers is minimal. If a network is exactly same
as a core graph, graph embedding does not cause any distortion of the edges in the
core graph. As a result, it always produces the best possible mapping quality on the
network. However, since most core graphs are generally different from a network, some
distortion is not evitable in a network. Then, the mapping quality is measured by the
total distortion of embedding. By minimizing the extent by which edges in a core graph
are stretched or distorted with intermediate tiles when embedded into a network, we
seek to reduce the total amount of communications and obtain a better global applica-
tion mapping solution in terms of energy consumption under performance constraints.
Based on this concept, our concrete application mapping algorithm is formulated as
follows.

With two interconnection matrices, CN for a network and CC for a core graph,
we exactly formulate an application mapping problem to Mixed Integer Quadratic

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:7

Programming (MIQP). It is similar to a Field Programmable Gate Array (FPGA) place-
ment problem proposed in Gopalakrishnan et al. [2006]. However, a crucial difference
in our work is the use of metric space that accurately captures the interconnections
of a network and a core graph. The application mapping problem is equivalent to de-
termining the assignment of a core to each tile with low energy consumption under
performance constraints. This core assignment action can be mathematically presented
by an n × n permutation matrix P. Column indices and row indices in P represent core
identifiers and tile identifiers, respectively. For example, if P(i, j) = 1, then core j is
mapped to tile i. Thus, only one element in each row and each column of P can be 1; all
others must be 0. The action of P on a core graph is represented by PT CC P. Finally,
P minimizing the difference between the permuted interconnection matrix of a core
graph PT CCP and the interconnection matrix of a network CN for generating little
communication between routers and minimizing the distortion of CC for a short rout-
ing path can be found. For P that is orthogonal, we formulate the application mapping
problem mathematically by our objective as

min fobj = ∥∥PT CC P − CN
∥∥2

F = ‖CC P − PCN‖2
F , (2)

where ‖X‖F =
√∑

i
∑

j x2
i, j , xi, j ∈ X, that is, the Frobenius norm of the matrix X and

xi, j ≤ 0 to satisfy bandwidth constraints, subject to integrity and linearity constrains
as follows.

n∑
i=1

P(i, j) = 1,∀ j = 1, 2, . . . , n (3)

n∑
j=1

P(i, j) = 1,∀i = 1, 2, . . . , n (4)

P (i, j) ∈ {0, 1} (5)

The constraints indicate that just one element in each row and each column is 1 and
other elements are 0 in the permutation matrix P.

While our formulation has a convex quadratic object function, the binary constraints
on the elements of P restrict the solution space to a nonconvex set. Thus, convex
optimization techniques like gradient descent cannot be directly applied to solve this
problem. Actually, this type of formulation is well-known as MIQP that is NP-hard
[Sahni and Gonzalez 1976]. Algorithms we take in MIQP are successive relaxation to
quickly find an application mapping solution and a genetic algorithm to achieve a high
mapping quality. In the next section, we describe how they are applied in the proposed
A3MAP formulation minutely.

4. A3MAP ALGORITHMS

We present an effective heuristic based on successive relaxation of MIQP to a sequence
of Quadratic Programming (QP), called A3MAP-SR, to quickly find the permutation
matrix P that minimizes our objective fobj in Eq. (2). In addition, we apply a genetic
algorithm to find a better mapping solution, called A3MAP-GA, even though it takes a
longer runtime than A3MAP-SR. A genetic algorithm is an efficient random searching
algorithm based on a cycle crossover and a mutation operation.

4.1. A3MAP-SR

In this section, we solve our A3MAP formulated to MIQP based on a successive relax-
ation algorithm [Grossmann and Kravanja 1997]. The optimal MIQP formulation can

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:8 W. Jang and D. Z. Pan

ALGORITHM 1: A3MAP-SR
Input: MIQP
Output: Permutation matrix P
relax P(i, j) ∈ {0, 1} to 0 ≤ P(i, j) ≤ 1;
set all P(i, j) to a variable;
ith = n(VN);
repeat

solve relaxed MIQP only for variables P(i, j) by QP solver;
repeat

find max{P} and store its location to (imax, jmax) for ∀P(i, j) that is a variable;
if max{P} ≥ 1/ith do

P(imax, jmax) = 1 and a non-variable;
P(i, jmax) = 0 and a non-variable, ∀i = 1, 2, .., n(VN);
P(imax, j) = 0 and a non-variable, ∀ j = 1, 2, .., n(VN);
ith decreases by 1;

end if
until (max{P} < 1/ ith)

until (all P(i, j) are a non-variable)

become QP if we relax the discrete constraint of Eq. (5) to a continuous constraint as
follows.

0 ≤ P (i, j) ≤ 1 (6)

Then, the key idea behind this algorithm is to use this QP as a subroutine. QP is solved
much faster and scaled much better. Then, continuous values obtained by a QP solver
are guided to 0 or 1 depending upon a predefined threshold. If any continuous value
is less than the threshold, it is guided to 0. Otherwise, it is guided to 1. The proposed
concrete successive relaxation algorithm employed in our A3MAP formulation is shown
in Algorithm 1.

After relaxing the constraint of Eq. (5) to Eq. (6) in line 1, we set all P(i, j) to a
variable since any P(i, j) is not guided to a permanent value, 0 or 1. Initial ith is set
to the number of tiles in a network and then as an initial threshold, we use 1/ith to
guide continuous P(i, j) solved by a QP solver to 1, where the threshold indicates the
expected average that variable P(i, j) can get. On executing the successive relaxation,
ith decreases by 1 whenever any P(i, j) is set to 1, which means the threshold gets
increased. The rest of Algorithm 1 attempts to constrain continuous values solved by
a QP solver to binary values inversely. We look for the maximum P(i, j) and compare
it to the threshold. If it is greater than the threshold, it is set to 1 and a nonvariable.
In addition, all elements on the same row or column as the maximum P(i, j) are also
set to 0 and a nonvariable since the sum of elements on a single row or a single
column in the permutation matrix P should be 1 from the constraints in Eq. (3) and (4).
This procedure repeats if the next maximum P(i, j) is also greater than the updated
threshold. Otherwise, we again solve the relaxed MIQP for the rest of the variables
P(i, j) by a QP solver and continue to guide continuous values updated to binary values.
If all P(i, j) are guided to 0 or 1, we get the near-optimum permutation matrix P.

For example, we assume that an application with 5 cores and NoC with 5 tiles are
given. In order to allocate the cores to the tiles, we should find a 5 × 5 permutation
matrix where only 5 elements will be 1 and 20 elements will be 0 from our A3MAP
formulation. We relax the discrete constraint in Eq. (5), set all P(i, j) to a variable
and set an initial threshold to 1/5. Let the relaxed MIQP solved by a QP solver be as
shown in Figure 3(a). Then, our A3MAP-SR algorithm looks for the maximum P(i, j)
among the variables. In Figure 3(a), P(3, 2) is 0.5 as the maximum. Since it is greater

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:9

0.1 0.2 0.2 0.3 0.2

0.0 0.1 0.5 0.1 0.3

0.4 0.2 0.0 0.3 0.1

0.2 0.3 0.2 0.3 0.0

0.3 0.2 0.1 0.0 0.4

1 2 3 4 5

1

2

3

4

5

th=1/5

(a)

0 0.2 0 0.3 0.2

0 0 1 0 0

1 0 0 0 0

0 0.3 0 0.3 0.0

0 0.2 0 0.0 0.4

1 2 3 4 5

1

2

3

4

5

th=1/3

0 0.2 0 0.3 0

0 0 1 0 0

1 0 0 0 0

0 0.3 0 0.3 0

0 0 0 0 1

1 2 3 4 5

1

2

3

4

5

th=1/2

0 0.6 0 0.4 0

0 0 1 0 0

1 0 0 0 0

0 0.4 0 0.6 0

0 0 0 0 1

1 2 3 4 5

1

2

3

4

5

th=1/2

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1 2 3 4 5

1

2

3

4

5

)c()b(

)e()d(

0.1 0.2 0 0.3 0.2

0 0 1 0 0

0.4 0.2 0 0.3 0.1

0.2 0.3 0 0.3 0.0

0.3 0.2 0 0.0 0.4

1 2 3 4 5

1

2

3

4

5

th=1/4

1

2

3

4

5

(f)

Fig. 3. Guiding continuous P(i, j) to binary P(i, j).

than the initial threshold 1/5, P(3, 2) is guided to 1 and then P(3, k) and P(k, 2) where
∀k = 1, 2, . . . , 5 are set to 0 as shown in Figure 3(b). The guided P(i, j) to 0 or 1 is set
to a nonvariable and the threshold is updated to 1/4. Since the next maximum P(1, 3)
and P(5, 5) are greater than the threshold 1/4 and 1/3 respectively, P(1, 3) and P(5, 5)
is guided to 1 and P(1, k), P(k, 3), P(5, k), and P(k, 5) where ∀k = 1, 2, . . . , 5 are set to 0
as shown in Figure 3(c) and (d). Then, the guided P(i, j) to 0 or 1 is set to a nonvariable
and the threshold is updated to 1/2. Next, since the next maximum P(2, 4) is less than
the threshold 1/2 in Figure 3(d), we again solve the relaxed MIQP by a QP solver for
the rest of variable P(i, j) as shown in Figure 3(e). Then, the guiding procedure repeats
until all P(i, j) are guided to 0 or 1 as shown in Figure 3(f).

4.2. A3MAP-GA

The successive relaxation algorithm solves MIQP with reasonable mapping quality and
runtime. For application mapping with a high mapping quality, runtime may be less
important than the reduction of hop count and communication energy consumption. To
reflect this demand, we develop another heuristic using a genetic algorithm. A genetic
algorithm reproduces the principle of natural evolution to solve search and optimization
problems. It is a promising technique for a system-level design and is especially suitable
for multiple-objective optimization problems. Starting with an initial population, a
genetic algorithm evolves a population using crossover and mutation operations. A
genetic algorithm was previously used in Shin and Kim [2004] to explore the design
space efficiently for task assignment, mapping, and routing path allocation. However,
since the performance of a genetic algorithm depends on encoding, crossover, and
mutation schemes, we need to select different schemes that fit well in our A3MAP
formulation.

Algorithm 2 is the pseudocode of our genetic algorithm for MIQP. First, we generate
two arbitrary permutation matrices as parent individuals. A crossover scheme is widely
acknowledged as critical to the success of a genetic algorithm. A crossover scheme
should be capable of producing a new feasible solution (i.e., new child individual)
by combining the good characteristics of parent individuals while the child individuals
should be considerably different from their parent individuals. We use a cycle crossover
[Oliver et al. 1987] which prevents over two cores being allocated into the same tile.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:10 W. Jang and D. Z. Pan

ALGORITHM 2: A3MAP-GA
Input: MIQP
Output: Permutation matrix P
generate arbitrary parent 1;
repeat

generate arbitrary parent 2;
(child 1, child 2) = cycle crossover (parent 1, parent 2);
mutation of child 1 and 2 by pair-wise swapping;
parent 1 = one of two children with minimum fobj computed by Eq. (2) for the next evolution;

until (no improvement during i-iterations)

0 1 0 0 0 0
0 0 0 01 0

001 0 0 0
0 0 0 00 1

100 0 0 0
0 0 0 100

0 0 0 1 0 0
1 00 0 00

0 00 0 10
0 1

0
00 0

0 0 10
0

0
00 0 0 01

gene

0 0
0

1
0

0

0
01
0

0
0

0 0

1

0
0 1
0 0
0 0

0

0

pets dn2)b(pets ts1)a(

individualparent 1 child 1

parent 2 child 2

parent 1 child 1

parent 2 child 2

parent 1 child 1

parent 2 child 2

(c) 3rd step

1 0 0 0 0
0 0 0 01 0

001 0 0 0
0 0 0 00 1

100 0 0 0
0 0 0 100

0 0 0 1 0 0
1 00 0 00

0 00 0 10
0 1

0
00 0

0 0 10
0

0
00 0 0 01

0 0
0

1
0

0

0
01
0

0
0

0 0

1

0
0 1
0 0
0 0

0

0

1 2 14

0
1

1

1

1

0

0

0

0
0

0

0
0
0
0

0

0
0
0
0 0

0

0
0
0

1 0 0 0 0
0 0 0 01 0

001 0 0 0
0 0 0 00 1

100 0 0 0
0 0 0 100

0 0 0 1 0 0
1 00 0 00

0 00 0 10
0 1

0
00 0

0 0 10
0

0
00 0 0 01

0 0
0

1
0

0

0
01
0

0
0

0 0

1

0
0 1
0 0
0 0

0

0

0
1

1

1

1

0

0

0

0
0

0

0
0
0
0

0

0
0
0
0 0

0

0
0
0

2
3

4
1

2
3

4

1
1

1
1

0
0
0
0

0
0
0

0
00

0
0
0

0
0 0

0
0
0
0

Fig. 4. Cycle crossover.

Figure 4 shows how to generate two child individuals from two independent parents
based on the cycle crossover. In the first step, child 1 inherits a column from parent 1
and child 2 inherits a column from parent 2. We start to choose any inherited column
in parent 1. In Figure 4(a), the first columns are arbitrarily chosen in parent 1 and 2
and then child 1 and 2 inherit the column from parent 1 and 2, respectively. Next, we
look for any column in parent 1 including the same gene as the first column of parent
2. Since the sixth column of parent 1 contains the same gene, the sixth columns of
parent 1 and 2 are selected. Then, child 1 and 2 inherit the sixth column from parent 1
and 2, respectively. Again, we look for any column in parent 1 including the same gene
as the sixth column of parent 2. However, this procedure stops since the first column
of parent 1 is again selected. In the second step, inversely, child 1 inherits a column
from parent 2 and child 2 inherits a column from parent 1. The selection procedure
is similar to the first step. In Figure 4(b), the second column is arbitrarily selected in
parent 1 and 2 and then child 1 and 2 inherit the second column from parent 2 and
1, respectively. Next, we look for any column in parent 2 including the same gene as
the second column of parent 1. Since the fourth column of parent 2 contains the same
gene, the fourth columns of parent 1 and 2 are selected. Then, child 1 and 2 inherit
the fourth column from parent 2 and 1, respectively. This procedure repeats until the
chosen column is again chosen like the first step. If all columns of children are not
filled with the column of parents after the second step, the first and the second steps
repeat with the unselected columns of parents by turns. In our example, the columns
of children are completely filled after the third step as shown in Figure 4(c).

Then, a mutation operation is performed for each child. In this operation, two columns
randomly selected are swapped to generate a new individual. Then, the swapping is
valid only when it reduces the number of traffic. The pairwise swapping operation for

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:11

Fig. 5. Partition-based application mapping flow for large-scale NoC.

each child continues until the pair of swapped columns cannot minimize our object
function, that is, Eq. (2) any more. After the mutation operation, we choose one of two
children with the minimum distortion as the parent 1 for the next evolution. Those
operations repeat until there is no improvement for several (i) iterations. If there is
not any improvement for i-iterations, a permutation matrix providing the near-optimal
performance to NoC is obtained.

Our genetic algorithm makes the superior column of parents passed down to their
children and the best child again becomes any parent (parent 1) for the next evolution.
In addition, since the new elements of columns (parent 2) from the outside are supplied,
the possibility of local minima is relatively lower. This approach can efficiently cover
wider solution spaces even if runtime is longer than A3MAP-SR.

5. A3MAP FOR LARGE-SCALE NOC

Whereas A3MAP enables global optimization, the runtime of A3MAP algorithms be-
comes longer and longer as the number of cores or tiles increases. Even NMAP [Murali
and Micheli 2004] that is one of the fastest mapping algorithms takes a long runtime in
case that the number of cores or tiles is greater than 70. Recently, since NoCs include
more cores for high performance and applications are more complex, an application
mapping approach with better trade-off between runtime and performance is required.
Therefore, in this section, we propose a partition-based application mapping approach
which can be easily extended to any large-scale NoC. In addition, we show that A3MAP
algorithms are suitable for the partition-based approach.

Figure 5 is an example of the proposed partition-based application mapping approach
for large-scale NoCs. In Figure 5(a), any application is scheduled to 9 cores and NoC
with 9 tiles are given for a simple explanation. We assume that cores 1, 5, and 6 have
two times higher computation complexity than other cores, tiles A, H, and I have four,
two, and four times higher computational capacity than other tiles, respectively, and
all communication volumes between the cores is just 1. We first perform k-way min-cut
partitioning for the cores as shown in Figure 5(b) where k is 3. The number of the core
groups partitioned (k) can be determined by a user. For example, if runtime constraints
are much tighter than performance constraints, a number of groups are desirable.
Otherwise, few groups are desirable to high performance. All groups are not required
to include the same number of cores. Then, the groups are sorted in a decreasing order

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:12 W. Jang and D. Z. Pan

by the amount of communication inside each group and then mapped in the order. As
shown in Figure 5(c), group 1 is first mapped, group 2 is then mapped, and group 3
is last mapped since the communication volume of group 1, 2, and 3 are 4, 3, and 2,
respectively.

Large NoC (R) including N tiles also requires being partitioned to several subnet-
works (R ′) with a convex region. This near-convex region selection problem can be
formulated as

min[L1(R ′) + L1(R − R ′)], (7)

where L1(R) is the total Manhattan distance between all tiles inside region R. The
objective in Eq. (7) is to find a subregion R ′ with N’ tiles of which the computational ca-
pacity must be greater than or equal to the computational complexity of cores included
in the mapped subgroup. The time complexity of the near-region selection algorithm
is known as O(NlogN) in Chou et al. [2008]. Then, cores in each group are mapped to
tiles inside the selected convex region.

In Figure 5(d), the first convex region including tile F, G, and H is selected by
Eq. (7) and then cores in group 1 which have the maximum communication are mapped
to tiles in the convex region by A3MAP algorithms as shown in Figure 5(e). Since the
size of its interconnection matrix is 3 × 3, the runtime of A3MAP algorithms is hun-
dreds of times shorter than that of A3MAP algorithms for a 9 × 9 interconnection
matrix. Then, among the rest of the regions, the next convex region with tiles D, E, and
I is selected. Based on the mapping result of group 1, cores in group 2 are mapped to
tiles in the convex region as shown in Figure 5(f). Even though a 6 × 6 interconnection
matrix is generated, its runtime is similar to that of a 3 × 3 interconnection matrix.
This is because some variables P(i, j) in the 6 × 6 interconnection matrix are already
fixed by mapping cores in group 1. Last, based on the prior two mapping results, cores
in group 3 are mapped to tiles in the last convex region as shown in Figure 5(g). Even
if the interconnection matrix generated by A3MAP algorithms is 9 × 9, its runtime
is also similar to that of the prior groups. The reason is that the number of variables
P(i, j) that A3MAP algorithms solve for the last group are the same as the number of
variables P(i, j) in the first and second groups.

Even though most of the application mapping algorithms can be applied to the
proposed partition-based approach, the A3MAP algorithms such as A3MAP-SR and
A3MAP-GA are more suitable than NMAP and A3MAP solved by a full search algo-
rithm, called A3MAP-FS. This is because the runtime of A3MAP-FS and the mapping
quality of NMAP may be not satisfied in the partition-based approach. The partition-
based approach gets some inevitable mapping quality loss since cores are allocated to
limited tiles inside the selected convex region. In order to minimize the performance
degradation in the partition-based approach, each group and convex region should
include as many cores or tiles as possible, that is, the number of groups and convex
region partitioned should be as little as possible. In case of applying A3MAP-FS in
the partition-based approach, the number of groups cannot be reduced since it takes
A3MAP-FS over 2 seconds to map just 10 cores. As a result, A3MAP-FS applied in the
partition-based approach does not show the efficient trade-off between runtime and
performance. In case of applying a fast application mapping algorithm like NMAP in
the partition-based approach, its mapping quality cannot be satisfactory even though
the number of groups partitioned is few. For example, NMAP itself achieves on average
7%, 8%, and 11% lower application mapping quality than A3MAP-FS when 10, 11,
and 12 cores are mapped, respectively. As a result, even if NMAP performs on a large
convex region with a number of cores, its mapping quality is significantly low in the
partition-based approach. Therefore, the proposed A3MAP algorithms which provide

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:13

Table I. Hop Count and Runtime Compared to A3MAP-FS

of core Hop count increase (%) normalized to A3MAP-FS Runtime (times) normalized by A3MAP-FS
or tile A3MAP-SR A3MAP-GA NMAP A3MAP-SR A3MAP-GA NMAP
9 1.3 1.1 2.0 155 72 202
10 1.7 1.2 7.1 432 373 470
11 2.0 1.5 8.1 3819 1555 5287
12 2.6 1.8 10.9 47K 14K 67K
13 3.8 2.2 15.3 564K 153K 875K

better mapping quality than NMAP and shorter runtime than A3MAP-FS are suitable
for the partition-based approach.

6. EXPERIMENTAL RESULTS

We implement the A3MAP-SR algorithm in CPLEX11.2 [AIMMS 2012] and the
A3MAP-GA algorithm in C++. All experiments were performed on a Linux machine
with Intel 2.4 GHz CoreDuo and 8GB RAM. We repeat each application mapping for
ten times and compute their average to obtain reliable statistics.

6.1. Regular Mesh Network

We carry out experiments by applying A3MAP algorithms on an MPEG-4 Video Object
Plane Decoder (VOPD) [Tol and Jaspers 2002], E3S benchmark suites [Dick 2012],
and synthetic benchmarks. The first application including 16 cores is mapped onto a
4 × 4 regular mesh network. The second benchmark consists of three applications,
that is, consumer, Auto-Industry (AI), and telecomm containing 12, 24, and 30 tasks
respectively, which are scheduled to 9, 16, and 25 by Hu and Marculescu [2003] and
then mapped to a 3 × 3, 4 × 4, and 5 × 5 regular mesh network, respectively. In
addition, we use Task Graph For Free (TGFF) [Dick et al. 1998] to generate several
sets of synthetic applications. The number of tasks and the volume of communication
are randomly selected according to specific distributions.

Since the number of cores may be generally different from the number of tiles, the
preprocessing is required. If the number of cores is less than the number of tiles,
additional cores without any communication and computation are added in the core
graph. If the number of cores is greater than the number of tiles, we perform n(VN)-
way min-cut or balanced core partitioning, where n(VN) is the number of tiles and the
computational complexity of the grouped cores must be less than the computational
capacity of PE. The min-cut partitioning reduces communication energy consumption
between tiles that are assigned cores whereas the balanced partitioning for the compu-
tational complexity of cores improves the system performance by encouraging parallel
computing. Then, we perform the proposed A3MAP-SR and A3MAP-GA algorithms.
Finally, we allocate the routing path of packets by a Dijkstra’s shortest path algorithm
to compute total hop count on given networks.

Table I shows how exact and fast solution A3MAP algorithms can find in synthetic
benchmarks with 9 to 13 cores, compared to the full searching approach, called A3MAP-
FS that provides the best solution in terms of application mapping quality. A3MAP-SR
and A3MAP-GA provide near-best solutions since their mapping qualities are just
3.8% and 2.2% lower on average than A3MAP-FS, respectively, when 13 cores are
mapped in a regular mesh network. However, their runtimes are about 564 and 153
thousand times shorter than A3MAP-FS, respectively. On the contrary, the mapping
quality of NMAP [Murali and Micheli 2004] which is one of the most famous core
mapping algorithms is on average 15.3% lower than A3MAP-FS even if its runtime is
the shortest.

Table II shows the application mapping results performed with industrial bench-
marks. A3MAP-SR greatly reduces on average total hop count up to 7.4% in a regular

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:14 W. Jang and D. Z. Pan

Table II. Hop Count Comparison for Industrial Benchmarks in Regular Mesh Networks

Application NMAP A3MAP-SR Imp. (%) A3MAP-GA Imp. (%)
Consumer 50 50 0 49 2
VOPD 4309 4265 1.0 4141 3.9
AI 187 151 19.3 147 21.4
Telecomm 127 115 9.4 102 19.7
Average 7.425 11.75

Fig. 6. Runtime comparison for industrial benchmarks in regular mesh networks.

Fig. 7. Hop count improvement of A3MAP algorithms compared to NMAP for synthetic benchmarks in
regular mesh networks.

mesh network, compared to NMAP. Moreover, A3MAP-GA achieves on average 3.8%
and 11.8% less hop count than A3MAP-SR and NMAP, respectively. On the contrary, the
runtimes of A3MAP-SR and A3MAP-GA are longer than NMAP as shown in Figure 6.

Figure 7 shows the hop count improvement of A3MAP algorithms compared to NMAP
on various regular mesh networks. We generate ten synthetic task graphs per network
by TGFF and compute their average improvement. As shown in Figure 7, A3MAP-SR
and A3MAP-GA reduce on average total hop count up to 5.7% and 8.8%, respectively,
compared to NMAP. In addition, A3MAP algorithms provide much higher mapping
quality than NMAP as the size of networks increases. Finally, even if A3MAP al-
gorithms are optimized for all kinds of network, A3MAP algorithms achieve higher
application mapping quality than NMAP optimized for only regular mesh networks.

6.2. Irregular Mesh Network

In this section, our A3MAP algorithms prove more merits on irregular mesh networks.
We perform NMAP on an irregular mesh network even if NMAP is optimized for a

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:15

A B C D

E F G H

I J K L

M N O P

A

(a) (b)

(d) (e)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(c)

(f)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 8. Various irregular mesh networks.

Table III. Hop Count Comparison for VOPD Benchmark in Irregular
Mesh Networks

Application NMAP CMAP A3MAP-SR A3MAP-GA
Fig. 9(a) 4215 4911 4205 4189
Fig. 9(b) 8704 6544 5820 5345
Fig. 9(c) 6405 7194 6185 5257
Fig. 9(d) 4923 5507 4374 4199
Fig. 9(e) 4950 4259 4191 4189
Fig. 9(f) 7424 6497 4832 4081
Average 6104 5819 4935 4543
Ratio 1 0.953 0.808 0.744

regular mesh network. We also implement Tornero et al. [2008] which considers irreg-
ular networks for application mapping, called CMAP. Figure 8 shows six irregular mesh
networks on which we experiment the application mapping algorithms. Figure 8(a) has
only bidirectional links, Figure 8(b) has both bidirectional and unidirectional links,
and Figure 8(c) has only unidirectional links. Both directions of links have the same
bandwidth in Figure 8(d) whereas each direction of links has different bandwidth in
Figure 8(e). In the figure, solid lines have two times higher bandwidth than dotted
lines. In Figure 8(f), links have all irregularities mentioned in Figure 8(a) through (e).

Table III shows the mapping results of an MPEG-4 VOPD application on the irregular
mesh networks. A3MAP algorithms achieve better application mapping improvement
in an irregular mesh network than that in a regular mesh network. For example,
whereas A3MAP-SR and A3MAP-GA reduce on average total hop count only by 1.0%
and 3.9% in a regular mesh network, respectively, they reduce on average total hop
count by 19.2% and 25.6% in irregular mesh networks, respectively, compared to NMAP.
In addition, A3MAP algorithms achieve much higher mapping quality than NMAP in
Figure 8(f) which is the most complex network. That is because A3MAP formulation
avoids mapping cores with a lot of communication volume to tiles with little band-
width and considers the direction of communication and various network topologies
adaptively. Even if CMAP is optimized for irregular networks, its mapping quality is
slightly better than that of NMAP. Since CMAP just considers the irregular wirelength
of links, it is difficult to improve mapping quality on irregular mesh networks which

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:16 W. Jang and D. Z. Pan

A B C

E

D

F

G H I

L

M

P

J K

ON

A B C

D

E

K

F

G

H I

J

N

L M

O P

)b()a(

A B

E

C

G

I

L O

H

NM

F

J K

P

D

B

K

N P

E

L

E

D

C

F

J

H

M

A

G

I

O

)d()c(

Fig. 9. Custom NoC topologies.

Table IV. Hop Count and Wirelength Comparison for VOPD Benchmark in Custom Networks

Total hop count Total travel distance (wirelength) by all packets
Application NMAP CMAP A3MAP-SR A3MAP-GA NMAP CMAP A3MAP-SR A3MAP-GA
Fig. 9(a) 4488 4752 4531 4087 5879 6300 5332 4543
Fig. 9(b) 4264 4119 4248 4199 5505 4135 5049 4215
Fig. 9(c) 6296 5598 5867 5150 7835 6842 7434 5613
Fig. 9(d) 5524 5735 4263 4263 9196 9627 5170 5170
Average 5143 5051 4727 4425 7104 6726 5746 4885
Ratio 1.000 0.982 0.919 0.860 1.000 0.947 0.809 0.688

have the different direction and irregular bandwidth of links. Furthermore, the run-
time of CMAP is slightly slower than NMAP. Finally, the proposed A3MAP algorithms
provide better application mapping to NoC including irregular mesh networks than
the state-of-the-art mapping algorithms.

6.3. Custom Network

In this section, we perform A3MAP algorithms on custom networks with an MPEG-4
VOPD benchmark and then they are also compared to NMAP and CMAP. Figure 9
shows various custom networks where A3MAP algorithms are performed. Figure 9(a)
contains three PEs that have four times larger area than others. Due to the PEs,
a custom network including irregular interconnections and different wirelengths is
synthesized. Similarly, 16 PEs that have one of three different areas are floorplanned
as shown in Figure 9(b). Figure 9(c) has both unidirectional and bidirectional links
and Figure 9(d) has links with different bandwidth. In Figure 9, links have one of
two different wirelengths and assume that a long link consumes two times higher
communication energy than a short link since the long link requires a strong output
driver or a number of repeaters. Therefore, α is set to 1/2 when the interconnection
matrix of a network is composed.

Table IV shows the application mapping results on the custom networks. A3MAP-SR
and A3MAP-GA reduce on average total hop count up to 8.1% and 14%, respectively,
compared to NMAP. We also measure total distance traveled by all packets, which is

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:17

Fig. 10. Hop count comparison of partition-based application mapping algorithms.

directly related to communication energy consumption than the total hop count in cus-
tom networks including various links. In Table IV, A3MAP-SR and A3MAP-GA reduce
total distance traveled by all packets on average up to 19.1% and 31.2%, respectively,
compared to NMAP. CMAP also improves application mapping quality on custom net-
works whereas it has no benefit on irregular mesh networks. However, its hop count
is 6.5% and 12.4% greater than those of A3MAP-SR and A3MAP-GA, respectively and
total distance traveled by packets is 14.6% and 28.4% longer than those of A3MAP-SR
and A3MAP-GA, respectively. These results prove that our weighted interconnection
matrix is efficient enough for saving communication energy since the improvement
of distance traveled by all packets is greater than that of hop count. Therefore, the
weighted interconnection matrix is desirable for custom networks. Similarly, A3MAP
can be easily manageable for more complex NoC by controlling the weighted inter-
connection matrix. Finally, the proposed A3MAP algorithms provide energy-efficient
application mapping to NoC including various networks, compared to the state-of-the-
art mapping algorithms.

6.4. Large-Scale NoC

We prove A3MAP algorithms suitable for the partition-based approach which is de-
scribed in Section 5. In this experiment, core graphs with one hundred cores are gener-
ated by TGFF and mapped to a 10× 10 regular mesh network. The cores are partitioned
to 9 to 15 groups with the minimum cuts by hMETIS[2012] and then the groups are
sorted in a decreasing order by the amount of communication inside each group. The
network is also partitioned to 9 to 15 groups with a convex region. Then, A3MAP-FS
which achieves the best mapping quality, A3MAP-SR, A3MAP-GA, and NMAP which is
one of the fastest solutions, perform application mapping for each ordered core group on
a selected convex region, which are called A3MAP-FS-P, A3MAP-SR-P, A3MAP-GA-P
and NMAP-P, respectively.

Figure 10 shows the hop count comparison of the application mapping algorithms.
As the number of groups increases, that is, the number of cores included in each
group decreases, A3MAP-GA-P and A3MAP-SR-P achieve similar mapping quality to
A3MAP-FS. In addition, total hop count of most partition-based application mapping
algorithms tends to increase since cores are mapped to tiles included in a restricted
convex region. On the contrary, if the number of groups decreases, the number of cores
included in each group increases. As a result, since cores can be mapped to tiles included
in a larger convex region, most of the application mapping algorithms improve their

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:18 W. Jang and D. Z. Pan

Fig. 11. Runtime comparison of partition-based application mapping algorithms.

hop count. The mapping quality of A3MAP-GA-P and A3MAP-SR-P is similar to that
of A3MAP-FS whereas it is much greater than that of NMAP-P.

However, since the runtime of A3MAP-FS rapidly gets long in the larger convex
region as shown in Figure 11, it shows an inefficient trade-off between mapping qual-
ity and runtime. The application mapping quality of A3MAP-FS-P can be obtained by
A3MAP-GA-P or A3MAP-SR-P if A3MAP-GA-P or A3MAP-SR-P performs in a net-
work that is partitioned to fewer groups. In addition, their runtime is much faster
than that of A3MAP-FS-P. For example, the mapping quality of A3MAP-FS-P on a
network partitioned to 10 groups is worse than the mapping quality of A3MAP-SR-
P and A3MAP-GA-P on a network partitioned to 9 groups in Figure 10. In addition,
the runtime of A3MAP-SR-P and A3MAP-GA-P on a network partitioned to 9 groups
is much faster than that of A3MAP-FS-P on a network partitioned to 10 groups. On
the contrary, even though NMAP-P shows slightly faster runtime than A3MAP-SR-
P and A3MAP-GA-P in Figure 11, its mapping quality is much worse in a network
with few groups in Figure 10. Therefore, A3MAP algorithms are more suitable for the
partition-based approach in large-scale NoC.

Next, we check how many hop counts the partition-based A3MAP algorithms in-
crease in regular networks, irregular networks, and custom networks. We use synthetic
benchmarks with 25, 36, 49, 64, 81, and 100 cores. We make each partitioned group not
include more than 16 cores such that 25, 36, 49, 64, 81, and 100 cores are partitioned
to 2, 3, 4, 4, 6, and 7 core groups, respectively. The groups are not required to include
the same number of cores when the cores are partitioned with the minimum cuts. We
perform the partition-based A3MAP algorithms ten times with different core graphs
and networks.

Figure 12 shows the hop count of A3MAP-SR-P normalized by A3MAP-SR in regular
networks, irregular networks, and custom networks, called A3MAP-SR-P-R, A3MAP-
SR-P-I, and A3MAP-SR-P-C, respectively. The hop count performed by A3MAP-SR-P
slightly increases compared to A3MAP-SR due to the partitioning process. In addition,
the hop count increases in most networks as the number of PEs increases. Conse-
quently, A3MAP-SR-P increases on average total hop count by 1.5%, 2.0%, and 2.6% in
regular mesh, irregular mesh, and custom networks, respectively.

Similarly, Figure 13 shows the hop count of A3MAP-GA-P normalized by A3MAP-
GA in regular mesh, irregular mesh, and custom networks, called A3MAP-GA-P-R,
A3MAP-GA-P-I, and A3MAP-GA-P-C, respectively. A3MAP-GA-P increases on average
total hop count by 1.7%, 2.5%, and 3.2% in regular mesh, irregular mesh, and custom
networks, respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:19

Fig. 12. Hop count of A3MAP-SR-P normalized by A3MAP-SR on regular mesh, irregular mesh, and custom
networks.

Fig. 13. Hop count of A3MAP-GA-P normalized by A3MAP-GA on regular mesh, irregular mesh, and custom
networks.

Figure 14(a) shows the runtime of A3MAP-GA, A3MAP-SR, A3MAP-GA-P, A3MAP-
SR-P, and NMAP. A3MAP-SR-P and A3MAP-GA-P show that the increase of their
runtime is less than others as the number of PEs increases. Consequently, when the
number of PEs is more than 60, they are the fastest even if their runtimes in 25 PEs are
similar to A3MAP-SR. Figure 14(b) shows their hop counts, where A3MAP-SR-P and
A3MAP-GA-P achieve less hop count than NMAP. Even A3MAP-GA-P achieves better
mapping quality than A3MAP-SR as the number of PEs increases. This is because
applications with many tasks have more chance of being partitioned with fewer cuts.
However, in case that a number of cuts increase, A3MAP-SR achieves better mapping
quality than A3MAP-GA-P. Finally, the A3MAP algorithms are more suitable for the
partition-based approach in large-scale NoCs since they provide an efficient trade-off
between runtime and mapping quality.

7. CONCLUSION

In this article, we propose novel and global Architecture-Aware Application MAPping
(A3MAP) algorithms for NoC. Based on a metric embedding technique, we analytically
formulate an application mapping problem to MIQP. Then, the MIQP is solved by two
effective heuristics, that is, a successive relaxation algorithm providing short runtime
and a genetic algorithm providing high mapping quality. In addition, we propose the

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:20 W. Jang and D. Z. Pan

Fig. 14. Overall comparison.

partition-based approach for large-scale NoCs, where A3MAP algorithms provide an
efficient trade-off between runtime and mapping quality. Experimental results show
that our A3MAP algorithms greatly reduce hop count on various networks, compared to
the previous state-of-the-art works. Especially, A3MAP algorithms show more merits
on irregular mesh and custom networks. All networks can be easily converted to the
simple but efficient interconnection matrix such that our A3MAP algorithms have
no limitation to map cores to tiles on any arbitrary, faulty, and degraded network.
Furthermore, A3MAP algorithms are easily manageable for low communication energy
consumption and high performance by an architecture-aware analytical manner.

REFERENCES

AIMMS. 2012. Optimization software for operations research applications. http://www.aimms.com
BORKAR, S. 2007. Thousand core chips: A technology perspective. In Proceedings of the IEEE/ACM Design

Automation Conference (DAC’07).

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

A3MAP: Architecture-Aware Analytic Mapping for Networks-on-Chip 26:21

BENINI, L. AND MICHELI, D. G. 2002. Network on chips: A new SoC paradigm. Comput. 35, 1, 70–78.
BOLOTIN, E., CIDON, I., GINOSAR, R., AND KOLODNY, A. 2007. Routing table minimization for irregular mesh

NoCs. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE’07). 1–6.
CARVALHO, E., CALAZANS, N., AND MORAES, F. 2007. Heuristics for dynamic task mapping in NoC-based

heterogeneous MPSOCs. In Proceedings of the International Workshop on Rapid System Prototyping.
34–40.

CHAN, J. AND PARAMESWARAN, S. 2008. NoCOUT: NoC topology generation with mixed packet-switched and
point-to-point networks. In Proceedings of the Asia and South Pacific Design Automation Conference
(ASP-DAC’08).

CHANG, J. M. AND PEDRAM, M. 2000. Codex-dp: Co-Design of communicating systems using dynamic program-
ming. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 10, 7, 732–744.

CHANG, P. C., WU, I. W., SHANN, J. J., AND CHUNG, C. P. 2008. ETAHM: An energy-aware task allocation algorithm
for heterogeneous multiprocessor. In Proceedings of the IEEE/ACM Design Automation Conference
(DAC’08). 776–779.

CHATHA, S. K., SRINIVASAN, K., AND KONJEVOD, G. 2008. Automated techniques for synthesis of application
specific network-on-chip architectures. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 27, 8.

CHEN, G., LI, F., SON, W. S., AND KANDEMIR, M. 2008. Application mapping for chip multiprocessor. In Proceed-
ings of the IEEE/ACM Design Automation Conference (DAC’08). 620–625.

CHOU, C. L., OGRAS, Y. U., AND MARCULESCU, R. 2008. Energy- and performance-aware incremental mapping
for networks on chip with multiple voltage levels. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 27,
10, 1866–1879.

DALLY, J. W. AND TOWLES, B. 2001. Route packets, not wires: On-Chip interconnection networks. In Proceedings
of the IEEE/ACM Design Automation Conference (DAC’01). 746–749.

DICK, P. R. 2012. Embedded system synthesis benchmarks suites (E3S). http://www.ece.northwestern.
edu/∼dickrp/e3s/

DICK, P. R., RHODES, L. D., AND WOLF, W. 1998. TGFF: Task graphs for free. In Proceedings of the International
Workshop on Hardware/Software Codesign. 97–101.

DUTTA, S., JENSEN, R., AND RIECKKMANN, A. 2001. Viper: A multiprocessor SoC for advanced set-top box and
digital tv systems. IEEE Des. Test Comput. 18, 5, 21–31.

FARUQUE, A. A. M., KRIST, R., AND HENKEL, J. 2008. ADAM: Run-Time agent-based distributed application
mapping for on-chip communication. In Proceedings of the IEEE/ACM Design Automation Conference
(DAC’08). 760–765.

GHOSH, P., SEN, A., AND HALL, A. 2009. Energy efficient application mapping to NoC processing elements
operating at multiple voltage levels. In Proceedings of the International Symposium on Networks-on-
Chip. 80–85.

GOPALAKRISHNAN, P., LI, X., AND PILEGGI, L. 2006. Architecture-Aware fpga placement using metric embedding.
In Proceedings of the IEEE/ACM Design Automation Conference (DAC’06). 460–465.

GROSSMANN, E. I. AND KRAVANJA, Z. 1997. Mixed-Integer Nonlinear Programming: A Survey of Algorithms and
Applications, Large-Scale Optimization with Applications, Part II: Optimal Design and Control. A. R.
Conn, L. T. Biegler, T. F. Coleman, and F. N. Santosa, Eds. Springer.

HANSSON, A., GOOSSENS, K., AND RADULESCU, A. 2005. A unified approach to constrained mapping and routing
on network-on-chip architectures. In Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis (CODES + ISSS’05). 75–80.

HE, O., DONG, S., JANG, W., BIAN, J., AND PAN, Z. D. 2011. UNISM: Unified scheduling and mapping for general
networks on chip. IEEE Trans. VLSI Syst. 99, 1–14.

HMETIS. 2012. Hypergraph and circuit partitioning. http://glaros.dtc.umn.edu/gkhome/views/metis
HOLSMARK, R., PALESI, M., AND KUMAR, S. 2008. Deadlock free routing algorithms for irregular mesh topology

NoC systems with rectangular regions. J. Syst. Archit. 54, 3–4, 384–396.
HU, J. AND MARCULESCU, R. 2003. Energy-Aware mapping for tile-based NoC architectures under performance

constraints. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’03).
233–239.

HU, J. AND MARCULESCU, R. 2005. Communication and task scheduling of application-specific networks-on-chip.
IEEE Proc. Comput. Digit. Tech. 152, 5, 643–651.

JANG, W. 2011. Architecture and physical design for advanced networks-on-chip. Ph.D. dissertation, Univer-
sity of Texas at Austin.

JANG, W. AND PAN, Z. D. 2010a. A3MAP: Architecture-Aware analytic mapping for networks-on-
chip. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’10).
523–528.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

26:22 W. Jang and D. Z. Pan

JANG, W. AND PAN, Z. D. 2010b. An SDRAM-aware router for networks-on-chip. IEEE Trans. Comput. Aided
Des. Integr. Circ. Syst. 20, 10, 1572-1585.

JANG, W., DING, D., AND PAN, Z. D. 2010. Voltage and frequency island optimizations for many-core/NoC
designs. In Proceedings of the International Conference on Green Circuits and Systems. 217–220.

JANG, W. AND PAN, Z. D. 2011a. A voltage-frequency island aware energy optimization framework for networks-
on-chip. IEEE J. Emerg. Select. Topics Circ. Syst. 1, 3, 420–432.

JANG, W. AND PAN, Z. D. 2011b. Application-Aware NoC design for efficient sdram access. IEEE Trans. Comput.
Aided Des. Integr. Circ. Syst. 30, 10, 1521–1533.

JANG, W., HE, O., YANG, J. S., AND PAN, Z. D. 2011. In Proceedings of the International Conference on Computer-
Aided Design. 207–212.

LE BEUX, S., BOIS, G., NICOLESCU, G., LANGEVIN, M., AND PAULIN, P. 2010. Combining mapping and partitioning
exploration for NoC-based embedded systems. J. Syst. Archit. 56, 7, 223–232.

MARKOVSKY, Y., PATEL, Y., AND WAWRZYNEK, J. 2009. Using adaptive routing to compensate for performance
heterogeneity. In Proceedings of the International Symposium on Networks on Chip.12–21.

MATOUSEK, J. 2002. Lectures in Discrete Geometry. Springer.
MURALI, S., MELONI, P., ANGIOLINI, F., ATIENZA, D., CARTA, S., BENINI, L., MICHELI, D. G., AND RAFFO, L. 2007.

Designing application-aware networks on chips with floorplan information. In Proceedings of the Inter-
national Conference on Computer-Aided Design.

MURALI, S. AND MICHELI, D. G. 2004. Bandwidth-Constrained mapping of cores onto NoC architecture. In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE’04). 896–901.

OLIVER, I., SMITH, D., AND HOLLAND, J. 1987. A study of permutation crossover operators on the traveling
salesman problem. In Proceedings of the Conference on Genetic Algorithms. 224–230.

SAHNI, S. AND GONZALEZ, T. 1976. P-Complete approximation problems. J. ACM 23, 3, 555–565.
SCHAFER, F. F. M., HOLLSTEIN, T., ZIMMER, H., AND GLESNER, M. 2005. Deadlock-Free routing and component

placement for irregular mesh-based network-on-chip. In Proceedings of the International Conference on
Computer-Aided Design. 238–245.

SHIN, D. AND KIM, J. 2004. Power-Aware communication optimization for networks-on-chip with voltage
scalable links. In Proceedings of the International Conference on Hardware/Software Codesign and
System Synthesis. 170–175.

SINGH, A. K., JIGANG, W., PRAKASH, A., AND SRIKANTHAN, T. 2009. Efficient heuristics for minimizing commu-
nication overhead in NoC-based heterogeneous MPSoC platforms. In Proceedings of the International
Symposium on Rapid System Prototyping. 55–60.

SINGH, A. K., SRIKANTHAN, T., KUMAR, A., AND JIGANG, W. 2010. Communication-Aware heuristics for runtime
task mapping on NoC-based MPSoC platforms. J. Syst. Archit. 56, 7, 242–255.

SMIT, T. L., SMIT, J. M. G., HURINK, L. J., BROERSMA, H., PAULUSMA, D., AND WOLKOTTE, T. P. 2004. Run-Time as-
signment of tasks to multiple heterogeneous processors. In Proceedings of the 4th PROGRESS Workshop
on Embedded Systems. 185–192.

STMICROELECTRONICS. 2012. Nomadik multimedia processors. http://www.st.com
TEXAS INSTRUMENTS. 2012. Wireless handset solutions: OMAP platform. http://www.ti.com
TORNERO, R., ORDUNA, M. J., PALESI, M., AND DUATO, J. 2008. A communication-aware topological mapping

technique for NoCs. In Proceedings of the 14th International Conference on Parallel and Distributed
Computing. 910–919.

VAN DER TOL, B. E. AND JASPERS, G. T. E. 2002. Mapping of the mpeg-4 decoding on flexible architecture
platform. In Proce. SPIE 4674, 1, 1–13.

Received February 2011; revised January 2012; accepted February 2012

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26, Pub. date: June 2012.

