
228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

Structure-Aware Placement Techniques
for Designs With Datapaths

Samuel I. Ward, Student Member, IEEE, Myung-Chul Kim, Member, IEEE, Natarajan Viswanathan, Member, IEEE,
Zhuo Li, Senior Member, IEEE, Charles J. Alpert, Fellow, IEEE, Earl E. Swartzlander, Jr., Life Fellow, IEEE,

and David Z. Pan, Senior Member, IEEE

Abstract—As technology scales and frequencies increase, a new
hybrid design style emerges, wherein designs contain a mixture
of random logic and datapath standard-cell components. This
paper demonstrates that conventional half-perimeter wirelength
driven placers underperform in terms of regularity and Steiner
wirelength (StWL) for such hybrid designs. In addition, the
quality gap between manual and automatic placement is more
pronounced as the designs become more datapath oriented. To
effectively handle hybrid designs, this paper proposes a new uni-
fied placement flow that simultaneously places random logic and
datapath cells. This flow is built on the top of a leading academic
force-directed placer and significantly improves the quality of
datapath placement while leveraging the speed and flexibility
of existing random-logic placement algorithms. It consists of a
suite of novel global and detailed placement techniques, collec-
tively called structure-aware placement techniques (SAPT). These
techniques effectively integrate alignment constraints into place-
ment, thereby overcoming the deficiencies of existing random-
logic placers when handling designs with embedded datapaths.
Compared to other state-of-the-art placers, SAPT improves total
StWL by more than 28% and total routing overflow by over six
times on the ISPD 2011 datapath benchmark suite. In addition,
it improves total StWL by 5.8% on industrial hybrid designs.

Index Terms—Algorithms, datapath, layout, optimization,
physical design, placement.

I. Introduction

AS APPLICATION-SPECIFIC integrated circuit frequen-
cies exceed 1 GHz and shrinking schedules drive in-

creased automation for microprocessor designs, the boundary
between manually designed datapath-logic and random-logic
macros is blurring. A new hybrid design style is emerging,
wherein designs contain both random logic and datapath
logic. The datapath logic generally refers to circuit structures
containing highly parallel bit operations [1] (often called the
bit stack), and careful design is important for high frequency
designs. Prior work [2] has shown that handling the datapath-
logic placement independent of the random logic, overly

Manuscript received June 15, 2012; revised August 31, 2012 and October
19, 2012; accepted November 12, 2012. Date of current version January 18,
2013. This paper was recommended by Associate Editor C.-K. Koh.

S. I. Ward, E. E. Swartzlander, Jr., and D. Z. Pan are with the Univer-
sity of Texas, Austin, TX 78712 USA (e-mail: wardsi@utexas.edu; eswart-
zla@aol.com; dpan@ece.utexas.edu).

M.-C. Kim and N. Viswanathan are with IBM Corporation, Austin, TX
78758 USA (e-mail: myungk@us.ibm.com; nviswan@us.ibm.com).

Z. Li and C. J. Alpert are with the IBM Austin Research Laboratory, Austin,
TX 78758 USA (e-mail: lizhuo@us.ibm.com; alpert@us.ibm.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2012.2233862

constrains the random-logic placement, degrading overall con-
gestion and wirelength. A single placement flow handling both
datapath and random logic is extremely valuable, improving
design time, solution quality, and saving development and
maintenance costs. However, [3], [4] demonstrate that most
state-of-the-art placers are incapable of handling designs with
regular structure. This paper shows that with design guidance,
existing half-perimeter wirelength (HPWL)-driven placers can
better handle designs with embedded datapath logic.

This paper presents a novel structure-aware placement flow
for hybrid designs via a set of effective placement techniques
amenable to incorporation within existing random-logic plac-
ers. The flow leverages the speed and flexibility of state-
of-the-art HPWL-driven placers, while imposing alignment
constraints1 to achieve better regularity and Steiner wirelength
(StWL). The key contributions of this paper are as follows.

1) A study of the issues with current academic placers: the
inadequacies and specifically the lack of fidelity of the
HPWL model versus the StWL model when evaluating
and placing datapath logic.

2) A key insight to bit-stack alignment: alignment of the
bit-stack guides indirect StWL optimization, and signif-
icantly improves total StWL and routing congestion.

3) A novel placement flow: structure-aware placement tech-
niques (SAPT) that can be incorporated within existing
HPWL-driven placers to enable better alignment of the
embedded datapaths during both global and detailed
placement.

Section II outlines the problem faced by current random-
logic placers when placing datapath logic. Section III presents
the preliminaries and placement definitions. Section IV pro-
vides an overview of the structure-aware placement flow with
general descriptions of each technique. The structure-aware
global placement techniques are described in Section VI and
structure-aware detailed placement techniques are described
in Section VII. Section VIII presents experimental results,
followed by conclusions and future work in Section IX. This
is an extension of the preliminary work presented in [6].

II. Motivation and Background

A common assumption among integrated circuit (IC) de-
signers is that circuits with high regularity such as datapath
logic require manual placement. Perpetuating this assumption

1Alignment constraint was also discussed in [5] as an example of geometric
constraint handling, but no circuit structures were considered.

0278-0070/$31.00 c© 2013 IEEE

WARD et al.: SAPT FOR DESIGNS WITH DATAPATHS 229

are two key factors that limited adoption of past automa-
tion attempts. First, prior approaches separate control logic
placement from datapath-logic placement. Second, a prevail-
ing evaluation metric for random-logic placement, HPWL is
inadequate for structured circuit styles. This section addresses
each of these factors, by first establishing the need for a unified
placement framework and then highlighting the inadequacy of
the HPWL metric for regular structures. It then demonstrates
that cell alignment during placement implicitly optimizes
StWL, producing significant wirelength improvements for
datapath style circuits.

A. Need for a Unified Placement Framework

Automatic placement of structured circuits has been per-
formed by dedicated datapath placers such as [1], [7], [8],
which generate highly compact, area efficient placements. Af-
ter layout generation, these methods construct a larger macro
block or small individual bit-slice macro blocks, followed
by the main random-logic mixed-size placer. More recently,
promising results were presented in [9] where an innovative
row-based placement of the datapath is proposed instead of the
traditional bit-stack alignment. A nonlinear optimization for
HPWL minimization with a sigmoid-based density model for
density control in datapath circuits is proposed. Once datapath
placement completes, the cells become a movable macro.
Generalizing this approach, results show that it is possible to
separately place the datapath cells and then apply mixed-size
placement techniques to generate significantly smaller HPWL
than prior placers.

However, these techniques suffer from some key drawbacks.
First, even though a datapath placer may minimize the local
wirelength through cell ordering [10], or optimizing specific
bit stacks [11], global interconnect optimization with the
embedded datapath is not taken into account simultaneously
during placement. Second, by making the datapath a macro,
in the general case, the datapath macro layout must occur
first and it is very difficult to select and optimize the correct
macro aspect ratio. Third, in industrial hybrid designs, the
datapath is not always tightly packed but many cases still
require alignment. Fourth, packing may force other more
critical random logic out of a specific area, reducing overall
result quality. Thus, though very promising, significant future
work is ahead for evaluating these techniques within a full-
industrial physical design flow.

B. StWL and HPWL Comparisons for Datapath Circuits

Datapath circuits are typically driven by one or more
high-fanout nets. Traditional HPWL-driven placers naturally
compact the placement of high-fanout nets to minimize total
wirelength. However, known optimal layouts for many regular
datapath structures are drastically different [18], often not
corresponding to a minimum-HPWL placement solution. To
illustrate this point, Table I compares a few state-of-the-art
academic placers using both, total HPWL and total StWL
on the modified ISPD 2011 Datapath Benchmark Suite [19].2

All StWL measurements were performed using coalesCgrip
[20], and all reported numbers are total wirelength results for

2The MISPD 2011 Datapath Benchmark Suite was modified to con-
tain unfixed latch rows compared to the original fixed latch place-
ment reported in ISPD 2011. Benchmarks can be downloaded at
http://www.cerc.utexas.edu/utda/download/DP/ [3].

Fig. 1. Example circuit where StWL of the manually placed design is better
than that of the automated placement, but HPWL of the automated placement
solution is better than that of the manual placement. Net1 has fanout of 10.

each design. The HPWL column in Table I is sorted from the
smallest to the largest for each benchmark. In addition, the
table reports the wirelength ratio normalized to the manually
placed solution. Careful examination of this table yields the
following surprising results.

1) While HPWL from the automated placement solutions
for both benchmarks are very close to the manually
placed solution, the StWL results degrade significantly,
with the best automated solution at 1.82× in StWL for
benchmark A and 2.27× for benchmark B compared to
the manual solution.

2) Fidelity of the HPWL metric appears low for datapath
logic. As shown in Table I, the HPWL column is sorted
by increasing value and it is generally expected that
StWL would maintain the same order, but in fact that
does not happen. Additionally, for both benchmarks,
the placer with the best HPWL (Capo) is not the placer
with the best StWL (SimPL).

As shown in Section VIII-D, the significant improvement
in StWL also corresponds to vastly improved congestion
metrics. There has been prior work in directly optimizing
StWL [21] with the Rooster placer. As reported in [21], StWL
has much better correlation to the routed wirelength (rWL) as
compared to HPWL. However, as results show in Table VII for
Rooster, optimizing StWL alone does not effectively address
the alignment requirements of datapath circuits. Additionally,
HPWL is easy to compute, and is a reasonable first-order
estimate of timing and power on the vast number of random-
logic designs. This makes it a popular objective to optimize
during placement. Therefore, instead of completely changing
the placement objective, this paper presents techniques to
improve the placement quality of datapath logic under the
hood of existing HPWL-driven placement frameworks.

C. Implicit StWL Optimization Through Bit-Stack Alignment
In Fig. 1(a), a partial logic netlist with one NAND gate,

shown as hashed, drives net net1 with a fanout of 10. All the
input and output pins are fixed objects placed on top of the
gate. Fig. 1(b) shows a manually placed solution for this partial

230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

TABLE I

Legalized HPWL and StWL Comparison on the ISPD 2011 Datapath Benchmark Suite [12] Between

Manually Placed and Automated Placement Solutions

ISPD Datapath Benchmark A ISPD Datapath Benchmark B
Total HPWL Total StWL Total HPWL Total StWL

Manually placed 11 000 365 1.00 11 066 683 1.00 Manually Placed 8 642 097 1.00 9 823 680 1.00
CAPO v10.2 [12] 11 535 525 1.05 21 516 128 1.94 CAPO v10.2 10 338 805 1.20 23 881 606 2.43
SimPL [13] 11 837 307 1.08 20 180 311 1.82 NTUPlace3 v7.10.19 10 433 894 1.21 26 110 039 2.66
mPL6 v6 [14] 12 919 955 1.17 23 950 663 2.16 SimPL 10 631 304 1.23 22 319 594 2.27
NTUPlace3 v7.10.19 [15] 13 447 753 1.22 24 673 151 2.23 Dragon v3.01 12 229 019 1.42 28 577 316 2.91
FastPlace v3.0 [16] 15 672 727 1.42 27 115 750 2.45 FastPlace v3.0 14 537 026 1.68 36 642 434 3.73
Dragon v3.01 [17] 16 424 739 1.49 26 182 449 2.37 mPL6 v6 16 263 018 1.88 28 846 387 2.94

Placement results are sorted by increasing HPWL value. Note that: 1) best HPWL solution does not indicate the best StWL solution, and 2)
bold numbers are the best automated placement wirelength.

circuit and Fig. 1(c) shows a solution from an existing placer.
The dark-shaded cells match the same dark-shaded NAND
gates in Fig. 1(a). The light-shaded gray cells represent other
logic placed within the design.

For both solutions, the total HPWL and StWL numbers are
shown in Fig. 1. As indicated in Section II-B, even though
the HPWL of the manual solution (1442) is greater than the
HPWL of the automated placement (1415), the StWL shows
the reverse trend. While it is impractical to list HPWL and
StWL of every single net, clearly for net net1, the StWL in
Fig. 1(b) is better than the StWL in Fig. 1(c). This is due to
the better alignment of the structured cells in one horizontal
row, which produces much better StWL. Also the solution of
Fig. 1(c) shows the existing placer compacting the placement
of the net in both the x- and y-directions to lower HPWL, but
degrading StWL. This example shows that if a HPWL-driven
placer can obtain better alignment for regular structures, it
can implicitly have better StWL, without having to optimize
for it directly.

Motivated by the above examples, new techniques are devel-
oped to guide an existing HPWL-driven random-logic placer
to generate a placement similar to Fig. 1(b), with better StWL
than the one in Fig. 1(c). Additionally, by providing alignment
constraints to small portions of the datapath, it is observed that
during the iterative placement process, other surrounding cells
become aligned as well. This can be observed visually in the
placement results in Fig. 11 where only some of the cells have
been manually defined.

The alignment constraints presented in this paper provide
hints to placers, directing them toward more globally op-
timized solution. As the results will show, with relatively
few manually defined bit stacks, our framework significantly
reduces overall wirelength and congestion.

III. Preliminaries

Given a netlist N = (V, E) with nodes V and nets E,
placement obtains locations (xi, yi) for all the movable nodes,
such that the area of nodes within any rectangular region does
not exceed the area of cell sites in that region.

With �x, �y = {xi, yi}, the HPWL is defined as

HPWL(�x, �y) = HPWL(�x) + HPWL(�y) (1)

HPWL(�x) =
∑
e∈E

[MAXi∈exi − MINi∈exi]. (2)

Typically, force-directed placers optimize a quadratic ap-
proximation of the HPWL

�G(�x, �y) =
∑
i,j

wi,j[(xi − xj)2 + (yi − yj)2]. (3)

From (3), (xi, yi) represents the coordinates of cell i, and wi,j

represents the net weight of the connection between cells i

and j.
In this paper, a force-directed global placer in the spirit of

SimPL [13], where wi,j is calculated by the Bound2Bound
net model [22], is used along with a detailed placer derived
from FastPlace-DP [23]. SimPL is a flat force-directed global
placer. It maintains a lower bound and an upper bound place-
ment and progressively narrows the displacement between the
two to yield a final placement solution. The upper bound
placement is generated by applying lookahead legalization
(LAL), which is based on top-down geometric partitioning
and nonlinear scaling. The coordinates obtained from the
upper bound placement are used as fixed points, which are
connected to their corresponding cells via pseudo nets to
provide spreading forces. The lower bound placement is then
generated by minimizing the quadratic objective in (3).

A. Alignment Groups

Definition 1: An alignment group gk ∈ G where 1 ≤ k ≤
|G|, is an unordered subset of cells from V . An alignment
direction �dk is a preferred placement direction of gk, where 0 ≤
�dk ≤ 90, with 0 representing horizontal and 90 representing
the vertical direction.

Essentially, an alignment group is a set of cells that need
to be aligned in a certain direction (e.g., horizontally or
vertically) during placement to optimize the datapath. In this
paper, it is assumed that the set of alignment groups G,
and their alignment directions are given. Additionally, the
collection of gk with the same dk value is pairwise disjoint.

Generally, gk may correspond to bit stacks in the datapath,
but can be other elements such as cells connected to a single
high-fanout net that improves through alignment, buffers that
need careful placement to facilitate routing of large buses,
or pipelining latches. For alignment directions, in this paper,
only horizontal and vertical directions are considered, which
means �dk ∈ {0, 90}. The above assumptions that alignment
groups and directions can be given are valid and practical.
One may use datapath extractors such as [24]–[26] to extract
the alignment groups based on circuit properties. Alternatively,
this information may come directly from logical descriptions
of the netlist, or could be provided by designers. As an
example, if designers are trying to structure the placement
of latches, it is trivial for them to provide sets of latch names
and their preferred placement directions.

B. Pseudo Nets

Fixed-point generation followed by pseudo net insertion is
a common method to apply spreading forces during iterative
force-directed placement.

WARD et al.: SAPT FOR DESIGNS WITH DATAPATHS 231

Definition 2: A pseudo net c(f, i) is a weighted two-pin
connection between a fixed-point f and a cell i in the circuit
netlist. The pseudo net has a weight equal to ε · wi,j , defined
in [13], and does not exist in the circuit netlist.

Please note that these nets are added for every movable cell
in the design. In addition, existing pseudo nets are discarded at
the end of the current iteration, and a new set is added to en-
force spreading during the subsequent placement iteration. The
pseudo net-weighting technique with varying ε is described in
[13], [27], and controls the rate of overlap removal during
global placement. During early iterations, greater significance
is given to interconnect minimization, while the relative cell
ordering stabilizes. This is accomplished by starting with
a small ε value and gradually increasing it through each
iteration. This scheme provides flexibility to the placer during
the early stages, while tightening the constraints to resolve
overlap toward the end of global placement. The theoretical
justification and extensions of the SimPL framework is pro-
vided in [27].

C. Alignment Nets

To achieve better datapath alignment, one approach is direct
manipulation of existing nets between the datapath cells.
However, this approach interferes with other placement di-
rectives. Specifically, direct weighting manipulation of current
nets disrupts timing-driven/power-driven placement and net
weighting for those cells. Hence, a new category of nets
is introduced, referred to as alignment nets, and defined as
follows.

Definition 3: An alignment net sk, where 1 ≤ k ≤ |G|,
is a weighted multipin connection among all cells in an
alignment group gk. For placement, this multipin alignment
net is decomposed into 2-pin nets, where netweights are found
by the Bound2Bound net model [22].

Alignment nets are created at the beginning of placement
and remain persistent during the entire global and detailed
placement stages. A skewed-netweight scheduling helps these
nets align the cells within the corresponding alignment group
gk inside the layout region. By applying alignment constraints
to new nets sk, prior directives relying on net weighting
continue to function as before.

IV. Unified Placement Flow With

Alignment Constraints

Fig. 2 presents a unified structure-aware placement flow,
referred to as SAPT, which simultaneously places both dat-
apath and random logic. The shaded boxes represent the
steps in a conventional force-directed placement flow and the
white boxes represent enhancements to better handle datapath
circuits. The key algorithmic components of SAPT from the
flow diagram are as follows.

1) Alignment Net Insertion: Alignment nets are inserted to
manipulate placements of a specific set of cells during
global placement (Section III-C).

2) Alignment Group Order Extraction: On highly struc-
tured circuits, it is possible to extract relative positions of
alignment groups to better optimize placement. A tech-
nique is presented to automatically extract the relative
order between alignment groups prior to placement (Sec-
tion V).

Fig. 2. Proposed unified datapath-aware placement flow. The baseline com-
ponents are shown in shaded boxes and the newly added datapath-aware
components are shown in transparent boxes.

3) Target Skew Ratio Generation: During placement, the
alignment net weights are modulated to optimize the
datapath placement. A method to automatically generate
the maximum netweights in the horizontal and vertical
directions is developed to achieve a desired spread or
span for an alignment net over the layout region (Sec-
tion VI-B).

4) Skewed Weighting With Step Size Scheduling: This de-
scribes the skewed net-weighting process applied to
each alignment net sk to gradually improve alignment
along the datapath. The weight in a particular direction
gradually increases during placement iterations until it
reaches the target skew for that direction (Section VI-A).

5) Fixed-Point Alignment Constraint with Alignment Group
Order Constraints: Force-directed global placement
frameworks reduce cell overlap by using fixed-points
and pseudo nets. When a placer is structure-unaware,
this process leads to misalignment for datapath logic.
This section describes a process to modify the fixed-
point locations to improve structured placements.
Additionally, fixed-point alignment constraints generate
a relative order among alignment groups that is not
always optimal. This step modifies the fixed-point
positions and maintains the extracted relative order
among alignment groups (from Section V) during
global placement (Section VI-C).

6) Bit-Stack Aligned Cell Swapping: Generating alignment
during global placement does not guarantee that cells
within the alignment group will remain aligned during
detailed placement. The global cell swapping step of de-

232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

Algorithm 1 Alignment Group Order Extraction
Inputs : A netlist N, alignment groups gk

Output : A totally ordered set of alignment groups for each �dk ∈ {0, 90}
Stage 1: Extraction of Intrasupergroup Orders
1: Identify logically independent supergroups by graph traversal.
2: Find a total order of gk within a supergroup based on fanin/out relations.
Stage 2: Extraction of an Intersupergroup Order
3: Identify PO pins in the supergroups with the same smallest logic distance.
4: Determine a total order of supergroups by spatial locations of the PO pins.
Stage 3: Derivation of an Alignment Group Order
5: Derive a total order of gk from the intra- and inter-supergroup orders,

tailed placement is enhanced to maintain the alignment
generated during global placement (Section VII-A).

7) Alignment Group Repartitioning: With datapaths,
traditional HPWL metrics can at times fail to detect
alignment improvements. This technique minimizes
internal net cut values, potentially improving both
HPWL and StWL metrics for all nodes in gk along
sk (Section VII-B).

At each step, the modifications apply only to the defined
alignment groups gk (Section III-A) leaving all other random-
logic cells to be placed as they would before. Though in this
paper SimPL and FastPlace-DP are used as an example, the
techniques can be adapted to other force-directed placement
algorithms. Section V describes preprocessing steps and then
a detailed description of the global and detailed placement
techniques are presented in Sections VI and VII, respectively.

V. Alignment Group Order Extraction

In addition to the misalignment of alignment groups, their
relative orders within the placement region can contribute to
the suboptimality of automated datapath placement. To this
end, techniques are developed for extracting good relative
orders among alignment groups and maintaining them during
placement iterations to better optimize the resulting place-
ments. This section describes the preprocessing step of align-
ment group order extraction, required for supplying alignment
constraints to a set of cells within the netlist. Relative orders
extracted at the beginning of global placement are based on
a given netlist and fixed pin locations, which are persistent
regardless of intermediate placements. First, alignment group
order is defined for each �dk ∈ {0, 90}.

Definition 4: An alignment group order is a binary relation
defined on a subset of G that shares the same �dk. It is a strict
partial order among a pair of gi and gj for 1 ≤ i, j ≤ |G|,
which directly corresponds to directed acyclic graphs.

For each �dk, extraction of the order among alignment groups
is performed in three stages: 1) extraction of relative orders
among alignment groups based on graph traversal [e.g., depth-
first search (DFS)]; 2) extraction of relative order among
logically independent supergroups based on primary input
(PI)/primary output (PO) pin locations; and 3) derivation of
a total order of alignment groups (Algorithm 1).

In the first stage of extraction, sets of logically related
alignment groups per �dk are identified and a unique order
within the sets is determined. According to Definition 4, the
process begins with constructing a directed acyclic graph based
on the netlist and traversing through each defined alignment
group. Starting from a cell in an alignment group, DFS
identifies a set of logically related alignment groups with an
order (via fanin/fanout relations), denoted by supergroup.

Fig. 3. Examples of alignment groups (�dk = 90) and supergroups. Alignment
nets connect cells in alignment groups, depicted by dotted lines. Solid arrows
represent fanin/fanout connections, used to define partial alignment group
orders. The supergroup order obtained by referring to the associated PO pin
locations then finds a total alignment group order.

Definition 5: A supergroup is a totally ordered set of logi-
cally related alignment groups with the same �dk. Supergroups
are pairwise disjoint.

This way, multiple logically independent supergroups can
be extracted where a unique alignment group order within
each supergroup is defined. Since the resulting order within a
supergroup is logical, alignment groups can be either placed
from left to right or from right to left for gk with �dk = 90.
Without loss of generality, they are placed left to right when
�dk = 90 and bottom to top when �dk = 0.

Unlike other random logic-oriented designs, in datapath
designs, there can exist multiple supergroups that are logically
independent while having the symmetry in their structure. For
example, as seen from the Structured Placement Benchmark
A in Fig. 4 from [3], the first m bit MUX select signals form
a supergroup, and such supergroups are repeated many times
at different pipeline stages. Even though such supergroups are
logically independent, and the relevant logic cells around each
subgroup drive different PO pins, one can find that they share
the same structure. In addition, as discussed in [3], having
known that some PI/PO pins can be preplaced on top of their
respective connections to reduce PI/PO routing interconnect, a
good spatial relation can also be extracted among supergroups
to optimize interconnect, despite their logical independence.

In the second stage of extraction, therefore, the closest
PI/PO pins are identified that are connected to each super-
group. Given that such PI/PO locations are ideal to interface
with other external logic, their physical locations provide
clues for relative positioning of supergroups.3 Fig. 3 shows
an example of these supergroups. By taking advantage of the
symmetry of logically independent supergroups, fixed pins are
found that are connected to each supergroup with the same
smallest logical distance and determine a spatial (and total)
order of supergroups by referring to these locations.

Table II summarizes supergroups and their cardinalities that
are extracted via our techniques on the ISPD 2011 Datapath
Placement Benchmarks. On the benchmarks, alignment groups
are defined based on net degrees, where alignment groups
represent select or data input signals. In the last stage of
extraction, it is possible to derive a unique total order on
the set G, based on the following definitions and conditions:
1) a supergroup is a totally ordered set of logically related
alignment groups; 2) the supergroup order defines a total order
of supergroups; and 3) union of all supergroups is the set G.

3Graph traversal should precede this stage to define supergroups.

WARD et al.: SAPT FOR DESIGNS WITH DATAPATHS 233

TABLE II

Net Degrees (Deg.) Used to Define Alignment Groups, the

Number of Supergroups (#SGs), and Their Cardinalities (‖SG‖)

on the ISPD 2011 Datapath Placement Benchmarks

Ckt. �dk = 0 �dk = 90
Deg. No. of SGs ‖SG‖ Deg. No. of SGs ‖SG‖

A 68 128 1 257 64 8
B 256 257 1 261 512 1

On structured placement benchmark B, ‖SG‖ were 1 for both �dk = 0 and �dk = 90,
which indicates no logical orders were found among any alignment groups.

Section VI-C describes how alignment groups are placed
while preserving this extracted order.

VI. Structure-Aware Global Placement

This section presents techniques for providing alignment
constraints to cells during global placement. Skewed weighting
with step size scheduling is described and then methods to
force alignment by modifying fixed-point locations.

A. Skewed Weighting With Step Size Scheduling

In this section, a skewed weighting technique is introduced
that encourages alignment of sk in preferred placement direc-
tions �dk. The high level idea is to apply gradually increasing
net weights for sk only in orthogonal directions to �dk. This ap-
plication of higher net weights in one particular direction (i.e.,
skewed weighting) increases corresponding costs [HPWL(�x)
or HPWL (�y)] of the quadratic objective. Consequently, the
linear system solver generates compact placement in unpre-
ferred directions to reduce the overall cost.

The rate of change of the weighting value increases slowly
during the initial stages of global placement, increases rapidly
during the middle stages, and slows again near the end of
global placement. This is preferable to applying hard con-
straints (forced alignment) in the early stage of wirelength
optimization, as it can disrupt the original optimization and
often lead to a solution that suffers from suboptimality in terms
of overall wirelength.

1) Step Size Scheduling: Let n be the current global
placement iteration and M be its upper bound,4 and p(n) is
defined as the alignment weight schedule function for each
iteration n. The function p(n) is adjusted as follows:

p(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8n2

M2
0 ≤ n <

M

4

1−
8

(
n − M

2

)2

M2

M

4
≤ n ≤ 3M

4

8(n − M)2

M2

3M

4
< n ≤ M.

(4)

To avoid imposing hard constraints during the initial stages of
global placement, p(n) gradually increases during the initial
iterations and to minimize large constraint changes during
the final stages, the function decreases toward zero at the
last iteration. This function is also used in [28] to model
cell density, but it serves a completely different purpose
here as a scheduling function. Using p(n), (5) displays the

4M is typically set to 50 [13].

Fig. 4. Average wirelength improvement using the bell-shaped step-size
scheduling function on the ISPD 2011 Datapath Benchmark Suite at different
values of β.

skewed monotonically increasing weighting parameters γn and
δn for alignment net sk. Using p(n) directly generates very
large weighting steps therefore a constant scaling factor β is
added. This parameter is left as the default throughout all
placement runs. Let x̂, ŷ be the directional unit vectors and
σ2

x,y the nth iteration’s variance in either the x or y direction.
Finally, the modified placement equation is shown in (6). For
nonalignment nets, δi,j = 0 and γi,j = 0

γn = γn−1 + ŷ · −→
dk ∗ β ∗ p(n) ∗ σ2

x (n) where γ0 = 1

δn=δn−1 + x̂ · −→
dk ∗ β ∗ p(n) ∗ σ2

y (n) where δ0 = 1. (5)

�G(�x, �y)n =
∑
i,j

[(γn
i,j + wi,j)(xi − xj)2 +

(δn
i,j + wi,j)(yi − yj)2]. (6)

Fig. 4 displays the average change in wirelength between
fixed scheduling and the bell-shaped step-size scheduling
using different values of β. It shows that for 0.2 < β < 0.9,
the bell-shaped step-size scheduling yields on average, better
HPWL as well as StWL. In our implementation, β = 0.5 is
used based on empirical data.

B. Target Skew Ratio Generation

Section VI-A presents a method to systematically increase
the skewed weight for an alignment net by either increasing
γi,j or δi,j as placement evolves. In the preliminary version of
this paper [6], the maximum skew for γn or δn were provided
as inputs, primarily based on the designers’ discretion. This
section avoids this shortcoming by presenting key insights and
a method for automatic selection of the maximum skew values.
Target skew ratio is defined as follows.

Definition 6: Target skew ratio is the maximum ratio γn/δn

of the net weighting in the x-direction and y-direction for an
alignment net during global placement.

Qualitatively, the multiplier value defines how quickly the
skewed weight grows with each consecutive global placement
iteration. The target skew ratio defines the maximum ratio for a
particular net and too large of a target skew negatively impacts
the overall wirelength. As an example, given a vertically
aligned alignment net, during the initial global placement
iteration γ0 = 1 and δ0 = 1. However, by the end of

234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

Fig. 5. Horizontal skewed weight force example.

global placement iteration n, the x-direction weight would
have increased to δn = δ0ski causing the cells within the
alignment group to become aligned vertically. Key insights
are now outlined for effective target skew multiplier selection
and illustrated using Fig. 5. In this figure, the red alignment
net is shown connecting each of the datapath cells within an
alignment group and the dashed lines indicate net connections
among each cell within the alignment group and other cells
outside the alignment group.

The first key insight is that the alignment net weight must
overcome the interconnect forces imposed by the nets con-
nected among cells within the alignment group. In other words,
the force pulling the alignment group into alignment must
be greater than the force pulling the cells out of alignment.
Equation (7) relates the force from internal pin connections
on the alignment net versus the force from external pin
connections on the datapath cells

T = gp. (7)

This paper solves for the pi exponent value for a particular
alignment net i such that the internal force is always greater
than the external force. The variable T equals the total external
pin cardinality for an alignment group, which is the sum of all
the pins for each cell. This includes pins with a net connecting
cells within an alignment group and pins connecting to cells
outside of the alignment group. The variable g equals the total
number of internal connections which are pins connected to
the alignment net. The resulting p value relates the internal
connections on the alignment net to the external connections
among the cells and a larger p value implies more external
connections necessitating a higher skewed weight multiplier.
Conversely, a smaller p value indicates fewer external connec-
tions thus requiring a smaller multiplier.

The second key insight for automatic target skew ratio
selection is consideration of additional interconnect forces
from alignment nets themselves.

In the degenerate case, the unpreferred direction retains a
weight of zero and this consideration can be ignored. However,
for the general case, the unpreferred direction is not zero. The
primary reason for a nonzero unpreferred weighting would be
to address compaction of the bit stack. Though this paper does
not explicitly consider this case, there could clearly be cases
where compaction can improve overall placement quality and
future paper will explore these options. Thus, the alignment
nets are employed to encourage very compact placement in
unpreferred directions, however, they pull the connected cells
together even in �dk when the unpreferred weight is not zero.
The HPWL model naturally clumps the cells in alignment nets
together in this general case, and therefore the target skew ratio
must be properly adjusted to offset this side effect. Our key

Fig. 6. Example of a fixed-point alignment constraint for a horizontal bit
stack. Lookahead legalization generates new zero-area fixed points and the
locations of these points are modified to be in alignment with ηn

k .

observation is that the required skew ratio should be linearly
increased as the cardinality of an alignment group gi increases.
Thus, the second component of the target skew multiplier
is defined as follows: α ∗ |gi|, α > 1 where α is a placer
specific constant that insures for a two-pin net, the two cells
are always correctly aligned. For example, if aligning two cells
horizontally, the Y -weight must be at least α times larger than
the X-weight to guarantee the cells align horizontally.5 For
this paper, α = 1.25. This constant is then multiplied by the
total number of cells in the alignment group. Finally, taking
both components into account, the skewed weight multiplier
is calculated as shown in

ξi = (1 + logg(T)) ∗ α ∗ |gi|. (8)

C. Fixed-Point Alignment

Force-directed global placement frameworks use fixed-
points and pseudo nets to discourage cell overlap. By gradu-
ally perturbing the unconstrained linear system solver, global
placement iterations progressively generate placements with
less overlap. In SimPL [13], at each global placement itera-
tion, LAL generates fixed points that are connected to their
corresponding movable cells with two-pin pseudo nets. In
the subsequent global placement iteration, these pseudo nets
exert pulling forces and reduce the amount of cell overlap.
For datapath logic, the LAL step and subsequent pseudo net
insertion step cause misalignment within the bit stack requiring
a constraint forcing alignment which minimizes wrong-way
perturbations in the bit stack.
Imposing fixed-point alignment constraint during global place-
ment is achieved in two steps. First, LAL generates fixed-point
locations for all movable cells. Second, fixed-point locations
are modified for all cells in alignment group gk. The modified
fixed-point location for cell i is denoted as ηn

k,i for the nth
iteration, which is computed as follows:

ηn
k,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
xn

i ,
�j=1,...,|gk |y

n
j

|gk|
)

, if dk = 0

(
�j=1,...,|gk |x

n
j

|gk| , yn
i

)
, if dk = 90.

An example of the modified fixed-point locations and
corresponding pseudo nets for a horizontal datapath is shown
in Fig. 6. In this example, there are three gray cells, gk(0 : 2)

5This parameter is set when placing only two cells.

WARD et al.: SAPT FOR DESIGNS WITH DATAPATHS 235

Fig. 7. Imposing ordering constraints by reassigning arithmetic mean val-
ues to alignment groups. Subscripts for ηk indicate the extracted order of
alignment groups from Section V. Lines with circles at both ends represent
modified pseudonet connections.

TABLE III

Legal HPWL and StWL (×10e6) Comparison Varying the

Ordering Constraints Using a Fixed Weighting Scheme

No Ordering Intra-SG +Inter-SG
Ckt. Constraints Ordering Ordering

HPWL StWL HPWL StWL HPWL StWL
A 12.05 15.79 11.74 15.22 11.46 15.06
B 10.58 15.78 10.58 15.78 10.47 15.71
Avg. 1.03× 1.03× 1.02× 1.01× 1.00× 1.00×

On B, results in columns 2 and 4 and in columns 3 and 5 are identical since no
intrasupergroup orders were found.

in one alignment group gk. The other cell connections are
shown with the dashed lines connected to the hollow cells.
For random logic cells, the fixed-point locations will be
determined solely based on the LAL step. For alignment
groups, those locations are modified based on the arithmetic
mean parallel to the preferred placement direction �dk. This
modification of fixed-point locations can be further extended
to consider ordering constraints, as described next. Imposing
ordering constraints across alignment groups is achieved by
reassigning the arithmetic mean values to alignment groups.
Instead of directly using arithmetic means of fixed-point
locations from above: 1) all arithmetic mean locations of
alignment groups are collected and sorted by their values,
and 2) the sorted arithmetic mean values are assigned to
alignment groups following the extracted order of alignment
groups from Section V. The assigned arithmetic mean is
then used to align fixed-point locations per alignment group
(Fig. 7). During early iterations of global placement, this
approach may corrupt the spacing among alignment nets if
they are not initially uniform. However, as iterations continue,
placement evolves locally and recovers good separation
among alignment groups as shown in Fig. 8.

Table III empirically demonstrates the impact of imposing
ordering constraints on solution quality. Columns 4 and 5
only consider alignment group orders within supergroups and
columns 6 and 7 additionally consider the spatial order among
supergroups and determines a unique total order. As can be
seen from Fig. 8, the order of alignment groups (represented
by indices) is preserved during placement.

Modifying the fixed-point locations enables the global
placer to progressively reduce cell overlap while maintain-
ing bit-stack alignment. Two items should be noted about
this process. First, this paper only modifies the fixed-point
locations for datapath logic, not the weighting of the pseudo
net. The pseudo-net weighting, separate from the alignment-
net weighting described in Section VI-A, acts on datapath and
random logic in the same manner. Second, like in other ana-
lytical placement algorithms, this technique may temporarily

allow cell overlap during global placement, but it progressively
reduces with global placement iterations [13, Fig. 6], [27].

VII. Structure-Aware Detailed Placement

Prior detailed placement techniques can disrupt the structure
generated during their wirelength-optimization processes as
they are structure unaware. This section presents our two de-
tailed placement techniques to maintain the aligned placement
obtained by global placement. The impact of these techniques
is reported in Tables VIII, IX, and X in the last row.

A. Bit-Stack Aligned Cell Swapping

This technique extends global cell swapping from [23] for
nodes within each gk by modifying the swap region while
keeping the overlap penalty the same. Assuming all cells in
the layout region are fixed except for cell j, the swap region,
based on the median idea from [10], is the location where the
wirelength for cell j is improved if it is swapped with a cell k

located in the swap region. This technique seeks cells to swap
between the current location of cell j and all cells within the
swap region. If swapping improves HPWL, the cell locations
are updated.

This paper, unlike [23], bounds the swap region perpendic-
ular to �dk. Specifically, for each net p ∈ E, the left, right,
lower and upper edges of the bounding box are: (xl[p], xr[p],
yl[p], yu[p]) and the xopt and yopt from [10] is the median of
the x series (xl[1], xr[1], xl[2], xr[2], ...) and y series (yl[1],
yu[1], yl[2], yu[2], ...), respectively. Because the number of
elements is generally even, the xopt and yopt becomes a region
with bounding box (xopt

l , y
opt
l , xopt

r , yopt
u). Equation (9) finds

the modified swap region for a cell within an alignment group
with �dk = 0 while (10) finds it for a cell within an alignment
group with �dk = 90

x
opt
l , min

y
(gk) − vary(gk)

xopt
r , max

y
(gk) + vary(gk)

when (
−→
dk = 0) (9)

min
x

(gk) − varx(gk), yopt
l ,

max
x

(gk) + varx(gk), yopt
u

when (
−→
dk = 90). (10)

Fig. 9 contrasts the original potential swap region and the
structure-aware swap region. In the original example from
Fig. 9(a), the swap region for cell j, based on the HPWL
would cause j to move out of line with �dk for that group, thus
disrupting the alignment. In this contrary example, Fig. 9(b)
demonstrates that the swap region is shifted down to maintain
alignment for that group.

B. Alignment Group Repartitioning

The second detailed placement technique is a top-down
recursive repartitioning for each gk along alignment net sk,
referred to as alignment partitioning shown in Algorithm 2.
With datapaths, traditional HPWL metrics can at times fail
to detect alignment improvements. This technique minimizes
internal net cut values potentially improving overflow without

236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

Fig. 8. Placement of (a) MUX select signals within supergroup and (b) MUX[0] signals across supergroups on structured placement benchmark A. Red lines
indicate alignment nets with �dk = 0, while blue dotted lines indicate alignment nets with �dk = 90. Blue boxes are MUX cells. For both cases, one quarter of
the horizontal nets (i.e., alignment nets with �dk = 0) are shown.

Fig. 9. Swap region shift for cell j when the alignment direction is parallel
to the x-axis. The upper y coordinate location is defined by cell i plus the
variance between cells i and j. (a) Swap region causes misalignment of the
cells. (b) Modified swap region is shown that maintains alignment of the cells.

Algorithm 2 Alignment Group Repartitioning
Inputs : A netlist N, alignment groups gk , alignment nets sk
Output : A reordered set of nodes gk along each sk
function bipartition(gk):
1: determine median cell within gk

2: partition gk into sets A and B with median from 1
3: evaluate initial HPWL of gk

4: call KL Partitioning with partitions A, B
5: evaluate HPWL ∀ nodes ∈ A, B on updated partition
6: if (HPWL of update partition is < the initial HPWL) gk = new partition
7: else revert to initial A and B partitions
8: if(|A| > minimum partition size) bipartition (A)
9: if(|B| > minimum partition size) bipartition (B)
10: return gk

impacting HPWL and StWL metrics for all nodes in gk along
sk. The base cut algorithm is from [29], but there are a couple
of key differences to the repartitioning method. First, the swap
is only accepted when the HPWL after the swap is less than
or equal to the HPWL before the swap. Second, the initial
median is the midpoint between the nodes. All nodes in gk

with values less than the median go in one partition, while the
other nodes go in the other partition.

For each defined alignment group in the design, the algo-
rithm calculates the median or middle point of sk. Once a
median point has been identified, the algorithm partitions all
nodes connected to the alignment group using KL partitioning

Fig. 10. Group repartitioning example swapping the positions of cell ai and
bi for an improved net cut. (a) Original cell placement. (b) New placement
with improved net cut.

[29]. The partitioning solution is made HPWL-aware by
evaluating the KL solution for HPWL changes. If the HPWL
increases, the solution is discarded and KL evaluates a new
solution for a higher net cut value that does not cause an
increase in HPWL or total net cut. Once a partition has been
selected, the design is legalized and the loop at that partition
level is complete. The algorithm continues to hierarchically
break, using recursive repartitioning, each alignment group
into smaller partitions until a predefined minimum partition
size is met. By minimizing cut value, improved alignment
and routability is possible. As an example, consider Fig. 10(a)
with median location mi, alignment group si in Row(j). In
this placement, the initial cut value across mi is three. After
swapping nodes bi and ai, shown in Fig. 10(b), the total net
cut value along mi is reduced to one.

VIII. Experimental Results

Our implementation is in C++, built on the SimPL [13]
global placement and FastPlace-DP [23] detailed placement
frameworks. It is compatible with the Bookshelf format and
requires an additional datapath definition file as input. This
file, loaded prior to global placement, includes each cell of
the alignment group and the group‘s direction. Since this
paper focuses on the placement solution, each datapath was
manually defined for improved experimental control. SAPT is
empirically validated with two design styles: 1) the modified
ISPD (MISPD) 2011 datapath benchmark suite [19], and

WARD et al.: SAPT FOR DESIGNS WITH DATAPATHS 237

TABLE IV

Parameter Values Set Used for Experiments

Parameter Value Section Description
gk User defined III-A Alignment group
dk User defined III-C Alignment group direction
β 0.5 VI-A1 Constant scaling factor
α 1.25 VI-B Constant force required

to align two cells

2) industrial hybrid designs. All experiments were run on
a 3.2 GHZ Intel(R) Xeon(R) X5672 Linux workstation with
96 GB of memory. Table IV displays parameter settings used
for all experiments.

To independently quantify the effectiveness of our global
and detailed placement techniques, results are provided for
the following three flows.

1) SAPTsg + FP-DP: Only the skewed weighting with step
size scheduling technique (Section VI-A) followed by
the default FastPlace-DP detailed placer.

2) SAPTgp + FP-DP: Our structure-aware global placement
followed by the default FastPlace-DP detailed placer.

3) SAPTgp + SAPTdp: Our structure-aware global and
detailed placement techniques.

The SAPT placer is compared against state-of-the-art aca-
demic placers:6 CAPO v10.2 [12], mPL6 [14], NTUPlace3
v7.10.19 [15], Rooster [21], FastPlace v3.0 [16], Dragon v3.01
[17] and SimPL [13]. All placers were supplied a target
density of 1.0 to achieve the best wirelength, of which the
placers are capable. This configuration corresponds to manual
placement, where movable cells are often packed to optimize
wirelength with no local whitespace injected. All HPWL and
StWL results are reported on legalized placements using the
coalesCgrip [20] tool.

A. Benchmark Circuits

Table V provides the benchmark circuit characteristics. Of
note is the number of alignment groups, gk, and the datapath
ratio in each design, where the datapath ratio is defined as the
ratio of alignment group cells to random-logic cells. Though
the hybrid designs are on the smaller side, they are state-of-the-
art industrial circuits, and pose challenges for designers as they
contain regular structures intermixed with other random logic.
This makes it difficult to place the datapath logic separately
from the random logic. The ISPD 2011 Datapath Benchmark
Suite contains two datapath circuits, each with eight different
utilizations to examine the ability of automatic placers to
generate placement solutions at different densities on highly
regular structures. In this paper, the benchmarks were modified
to make all the latches movable compared to the fixed latch
placement in the original work. All logical connections and I/O
pin locations remain the same. The SAPT placer is compared
against other placers on the Modified ISPD 2011 (MISPD)
Datapath Benchmarks, as unfixed latch placement is more
challenging and often indicative of hybrid industrial designs.

B. Wirelength Results on the MISPD 2011 Datapath Bench-
mark Suite

Tables VI and VII compare the total HPWL and total StWL
on the MISPD 2011 Datapath Benchmark Suite. To clarify, the

6The recent structure-aware placer from [9] does not provide StWL results
for a direct comparison. As of August 2012, a request has been made to the
authors for the binary.

Fig. 11. Forty structured bit stacks are randomly chosen to show the
alignment impact of SAPT on benchmark A. (a) Generated by SimPL [13].
(b) Generated by SAPT. Movable cells are shown lightly shaded while the
cells in the alignment group are shown dark. Note that cells that are not
defined by alignment groups become aligned as well and form (b) regular
structure.

total wirelength calculation includes both random-logic and
datapath-logic nets in the design. All results are the ratio of
the total wirelength of the automatically placed solution to
the total wirelength of the manually designed placement as
described in [3]. Table VI indicates that the total HPWL of
our placement solution is within a few percentage points of
the best HPWL solution for each of the benchmarks. In fact,
the best HPWL on 7/8 variants for benchmark A are obtained
with the SAPT placer.

Table VII demonstrates that the SAPT placer (SAPTgp +
SAPTdp) obtains significantly better StWL than other au-
tomatic placers for all benchmarks. For the benchmark A
variants, the StWL of all the other placers is greater than
1.5× the manually designed solution. For the benchmark
B variants, the results are greater than 2.0× the manually
designed solution. Alternatively, for benchmark A, the skewed
weighting with step step size scheduling technique (SAPTsg
+ FP-DP) was able to obtain a solution that is 1.35× the
manually designed solution at (at 79% utilization). Both global
placement techniques (SAPTgp + FP-DP) improved the solu-
tion to 1.31× the manually designed solution (also at 79%
utilization). Additionally, the detailed placement techniques
(SAPTgp + SAPTdp) were able to further reduce the gap to
1.26×. The SAPT placer on benchmark B also significantly
outperform prior placers, with SAPTsg + FP-DP achieving
1.49×, SAPTgp + FP-DP achieving 1.48× and SAPTgp +
SAPTdp achieving 1.46× the StWL of the manually designed
solution. Fig. 11(a) displays the placement solution from
SimPL on benchmark A. In this figure, a random selection of
cells in alignment groups are plotted with a brown or blue line
connecting them. Clearly, the cell placement is not aligned. In
the manually placed solution, these cells are aligned, either
vertically or horizontally depending on the alignment group,
yielding shorter wirelength. Fig. 11(b) shows the placement
solution generated using the SAPT placer, with the same
set of alignment groups selected as Fig. 11(a), highlighting
significant improvement in the alignment of gk.

C. Wirelength Results on the Hybrid Designs

Table VIII gives the normalized total HPWL and StWL
results on the hybrid designs. All results are normalized to
the SAPT results (SAPTgp + SAPTdp). As before, SAPT
significantly improves StWL on the hybrid designs. Though
the HPWL results are similar, SAPT obtains an improvement
in StWL between 1% and 13%. For these designs, the StWL
improvement is significant, considering the fact that the per-
centage of datapath logics within the designs is less than 3%.

238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

TABLE V

Circuit Statistics

ISPD 2011 Datapath Benchmarks Industrial Hybrid Designs
Benchmark A Benchmark B Hybrid C Hybrid D Hybrid E Hybrid F Hybrid G Hybrid H

Total node count 160 416 152 668 17 922 55 387 83 802 263 906 194 271 62 133
Total pin count 637 984 653 116 64 078 94 682 130 000 397 652 343 727 21 124
Total net count 157 849 148 682 16 874 14 458 16 422 53 884 62 145 101 582
Alignment groups gk 1425 1932 35 110 60 131 82 28
Datapath ratio 0.920 0.850 0.010 0.012 0.008 0.007 0.018 0.021

Datapath ratio is calculated as the total number of datapath cells divided by the total number of cells.

TABLE VI

Total HPWL Ratio Comparison on the MISPD 2011 Datapath Benchmark A and B Variants on Legalized Placements

ISPD 2011 Datapath Benchmark A: Total HPWL ISPD 2011 Datapath Benchmark B: Total HPWL
Utilization 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79
CAPO 1.05 1.04 1.04 1.04 1.03 1.02 1.06 1.03 1.20 1.18 1.17 1.12 1.13 1.13 1.14 1.12
mPL6 1.17 1.19 1.22 1.14 1.16 1.20 1.17 1.16 1.64 1.86 1.72 1.64 1.65 1.65 1.78 1.78
NTUPlace3 1.22 1.19 1.16 1.19 1.15 1.19 1.23 1.26 1.25 1.19 1.17 1.15 1.16 1.15 1.12 1.15
Dragon 1.49 1.58 1.63 1.60 1.51 1.62 1.66 1.60 1.40 1.40 1.35 1.32 1.32 1.30 1.31 1.31
FastPlace3 1.42 1.50 1.53 1.54 1.53 1.67 1.70 1.75 1.69 1.66 1.73 1.71 1.77 1.86 1.77 1.87
Rooster 1.05 1.04 1.04 1.04 1.03 1.02 1.06 1.03 1.15 1.15 1.13 1.12 1.15 1.13 1.13 1.13
SimPL 1.08 1.07 1.06 1.07 1.05 1.06 1.05 1.04 1.23 1.22 1.21 1.20 1.17 1.16 1.16 1.15
SAPTsg + FP-DP 1.09 1.11 1.07 1.05 1.06 1.05 1.04 1.04 1.22 1.20 1.18 1.17 1.17 1.16 1.16 1.15
SAPTgp + FP-DP 1.07 1.04 1.05 1.03 1.03 1.02 1.02 1.01 1.21 1.20 1.17 1.16 1.16 1.16 1.16 1.15
SAPTgp + SAPTdp 1.06 0.99 1.03 1.02 1.02 1.01 1.01 0.98 1.21 1.19 1.17 1.16 1.15 1.15 1.14 1.15

Ratios are computed with respect to the manually placed solution.

TABLE VII

Total StWL Ratio Comparison on the MISPD 2011 Datapath Benchmark A and B Variants on Legalized Placements

ISPD 2011 Datapath Benchmark A: Total StWL ISPD 2011 Datapath Benchmark B: Total StWL
Utilization 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79
CAPO 1.94 1.94 1.91 1.93 1.90 1.90 1.80 1.90 2.40 2.40 2.38 2.35 2.36 2.36 2.35 2.32
mPL6 2.16 2.14 2.16 2.08 2.10 2.12 2.11 2.09 2.94 3.29 3.06 3.01 2.97 2.95 3.20 3.21
NTUPlace3 2.23 2.18 2.15 2.15 2.11 2.16 2.19 2.09 2.66 2.48 2.47 2.44 2.44 2.44 2.32 2.44
Dragon 2.37 2.44 2.53 2.48 2.36 2.48 2.56 2.43 2.91 2.87 2.84 2.80 2.79 2.77 2.75 2.74
FastPlace3 2.45 2.53 2.56 2.59 2.56 2.71 2.75 2.79 3.73 3.58 3.78 3.79 3.97 4.13 3.96 4.14
Rooster 1.94 1.93 1.91 1.91 1.92 1.91 1.82 1.95 2.40 2.39 2.35 2.33 2.38 2.34 2.34 2.32
SimPL 1.82 1.83 1.80 1.81 1.78 1.78 1.78 1.75 2.27 2.30 2.25 2.24 2.23 2.19 2.24 2.22
SAPTsg + FP-DP 1.43 1.45 1.38 1.37 1.37 1.36 1.35 1.35 1.61 1.57 1.55 1.52 1.52 1.51 1.50 1.49
SAPTgp + FP-DP 1.40 1.35 1.36 1.33 1.33 1.32 1.31 1.31 1.59 1.56 1.54 1.50 1.51 1.50 1.50 1.48
SAPTgp + SAPTdp 1.35 1.28 1.31 1.31 1.28 1.28 1.26 1.28 1.58 1.55 1.52 1.49 1.49 1.48 1.48 1.46

The ratios are computed with respect to the manually placed solution. Numbers in bold are the best automated placement results published for these benchmarks.

TABLE VIII

Normalized Total HPWL and StWL Comparison on the Hybrid Designs

Hybrid C Hybrid D Hybrid E Hybrid F Hybrid G Hybrid H
Total Total Total Total Total Total Total Total Total Total Total Total

HPWL StWL HPWL StWL HPWL StWL HPWL StWL HPWL StWL HPWL StWL
CAPO 1.13 1.26 1.17 1.32 1.12 1.27 1.19 1.17 1.25 1.23 1.23 1.21
mPL6 1.05 1.15 1.02 1.14 1.20 1.32 1.37 1.30 1.21 1.19 1.09 1.10
NTUPlace3 0.95 1.10 0.95 1.13 0.99 1.19 1.30 1.30 1.02 1.05 1.00 1.01
Dragon 1.10 1.20 2.11 2.04 1.32 1.38 1.29 1.24 – – 1.22 1.20
Rooster 1.10 1.19 1.16 1.32 1.26 1.23 1.03 1.25 1.03 1.05 1.26 1.23
FastPlace3 0.95 1.04 0.96 1.16 1.22 1.30 1.17 1.14 1.11 1.10 1.04 1.03
SimPL 1.02 1.10 0.97 1.16 1.03 1.12 1.04 1.04 1.01 1.01 1.02 1.02
SAPTsg + FP-DP 1.05 1.08 1.06 1.07 1.07 1.05 1.04 1.05 1.05 1.08 1.08 1.06
SAPTgp + FP-DP 1.02 1.06 1.03 1.03 1.04 1.02 1.03 1.02 1.02 1.04 1.02 1.03
SAPTgp + SAPTdp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The wirelengths are normalized to the SAPT results. The dragon placer was unable to complete for hybrid G.

TABLE IX

Total Overflow (×1e+5) Using the Router and Evaluation Script From the ISPD 2011 Routability-Driven Placement Contest on

the MISPD 2011 Datapath Benchmark A and B Variants on Legalized Placements

ISPD 2011 Datapath Benchmark A: Routing Overflow ISPD 2011 Datapath Benchmark B: Routing Overflow
Utilization 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79
CAPO 2.29 2.17 1.72 1.83 1.84 1.68 1.10 2.18 9.16 7.28 7.05 6.68 7.17 7.01 7.13 6.98
mPL6 4.66 4.38 4.44 3.40 3.38 3.65 6.03 5.02 12.7 16.4 14.0 13.6 12.8 12.6 15.3 15.3
NTUPlace3 5.54 5.12 4.63 5.19 4.92 5.63 6.03 5.02 10.2 8.41 8.3 8.09 8.92 9.07 8.21 9.92
Rooster 0.79 1.08 1.22 1.02 1.07 1.64 1.31 1.16 8.11 7.28 6.88 6.72 – – – –
FastPlace3 7.23 8.10 8.72 9.08 8.80 10.4 11.8 12.1 20.8 19.3 21.6 21.7 23.7 25.5 23.5 25.6
SimPL 1.28 1.28 1.22 0.98 0.87 0.87 0.85 0.77 5.98 6.24 5.65 5.49 5.26 4.85 5.21 5.25
SAPTgp + SAPTdp 0.0014 0.038 0.0 0.0 0.0 0.0 0.0 0.0 0.88 0.70 0.55 0.43 0.67 0.58 0.60 0.58

Routing resources are extracted from current 22 nm technology node.

WARD et al.: SAPT FOR DESIGNS WITH DATAPATHS 239

TABLE X

Peak Weighted Congestion (PWC) Using the BFG-R [30] Router and Evaluation Script From the DAC 2012 Routability-Driven

Placement Contest on the MISPD Datapath Benchmark A and B Variants on Legalized Placements

ISPD 2011 Datapath Benchmark A: Average PWC ISPD 2011 Datapath Benchmark B: Average PWC
Utilization 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79
CAPO 123.4 123.5 121.3 121.1 121.4 120.3 118.5 128.4 237.4 222.4 222.5 217.4 222.3 220.1 224.3 219.6
mPL6 170.2 188.2 187.3 149.1 145.3 159.9 149.6 139.9 278.2 325.2 313.2 300.0 275.0 315.9 302.9 361.4
NTUPlace3 171.1 170.3 152.1 170.8 166.7 176.9 189.9 173.4 262.5 237.4 239.4 241.4 247.2 247.1 238.6 259.2
Rooster 136.6 163.0 156.5 147.4 152.8 169.4 162.7 174.2 256.2 224.1 217.3 215.1 231.5 221.8 228.7 225.2
FastPlace3 211.9 236.1 237.3 234.7 222.2 224.7 240.2 284.9 341.8 316.2 331.6 334.1 397.6 347.0 341.4 341.7
SimPL 124.7 118.8 117.8 116.2 115.1 114.8 114.1 119.5 207.8 211.3 205.2 205.0 212.5 209.3 204.6 209.2
SAPTgp + SAPTdp 100.4 100.1 100.1 100.1 100.1 100.1 100.1 100.1 151.9 150.7 149.0 148.5 147.9 148.1 149.2 150.1

Routing resources are extracted from current 22 nm technology node.

TABLE XI

Total Overflow (TOF) Using the ISPD 2011 Contest Router (CoalesCgrip [20]) and the Peak Weighted Congestion (PWC) Using the

DAC 2012 Contest Router (BFG-R [30]) for the Hybrid Designs

Hybrid C Hybrid D Hybrid E Hybrid F Hybrid G Hybrid H
Routing Metrics TOF PWC TOF PWC TOF PWC TOF PWC TOF PWC TOF PWC
CAPO 1458 107.34 3024 110.46 26 504 117.29 41 520 114.73 131 543 155.56 1186 115.52
mPL6 1360 106.90 940 101.88 23 838 117.02 17 801 111.17 45 904 122.08 490 106.51
NTUPlace3 626 103.66 558 95.92 32 545 133.99 114 843 141.76 42 917 121.33 98 101.36
Rooster 48 100.38 1419 105.22 32 157 122.32 61 731 118.80 134 434 149.26 918 111.49
FastPlace3 372 102.25 722 99.52 77 774 165.88 34 189 118.21 33 723 115.24 30 100.40
SimPL 650 103.31 475 94.60 19 713 118.73 29 524 113.67 37 884 120.33 100 101.11
SAPTgp + SAPTdp 534 103.49 322 93.21 11 276 114.82 28 736 113.66 40 275 119.12 28 100.34

Dragon results omitted as routing was unable to complete. Routing resources are extracted from current 22 nm technology node.

By providing alignment constraints to portions of the data-
path, it is observed that other neighboring cells also become
aligned during the iterative placement process. The alignment
constraints provide hints, directing the placer in the correct
gradient. These hints help to overcome local optima, driving
placement toward a more globally optimal solution.

D. Routing Congestion Results

To empirically validate the claim that StWL accurately
approximates routability, two congestion metrics are reported
on all benchmark circuits. It is noteworthy that the SAPT
placer is congestion unaware, and that the advantage in routing
congestion is simply a by-product of improved placement
solutions.

Table IX displays the total overflow (TOF)×(1e + 5), as
defined in the ISPD 2011 routability-driven placement con-
test [30] for the datapath benchmark circuits. All reported
overflow values are from the official contest evaluation script.
As seen in Table IX, SAPT produces the smallest overflow
across all testcases. For benchmark A, SAPT produced a
routable placement solution with zero overflow for all but
two of the variations. For benchmark B, SAPT improves
total overflow by 6.7×, 23.54×, 14.44×, 11.56×, 14.3×,
and 10.36× versus SimPL, FastPlace3.0, Dragon, NTUPlace3,
mPL6, and CAPO respectively. The second congestion metric
is the peak weighted congestion (PWC) as used in the DAC
2012 routability-driven placement contest [31]. This metric
calculates the weighted average ACE(x) congestion [32], of
the top x% congested g-edges. The smaller the PWC value,
the more routable the design. As with the overflow metric, in
designs with significant structure, SAPT produces significantly
more routable placements than the compared placers.

Table XI displays the TOF using the ISPD 2011 contest
router (coalesCgrip [20]) and the PWC using the DAC 2012
contest router (BFG-R [33]) for the hybrid designs. SAPT
generated the best PWC results for Hybrids D, E, and G,
and was comparable to the best results on the remaining
designs. Additionally, SAPT generated the best TOF solution

TABLE XII

Comparison of Runtime on the Hybrid Designs

Hybrid C D E F G H
CAPO 94.6 74.0 83.4 480.3 482.7 65.9
mPL6 48.5 32.4 36.2 161.7 148.5 35.9
NTUPlace3 13.0 30.0 70.0 278.0 269.0 54.0
Dragon 425.9 193.0 283.9 927.4 – 154.9
Rooster 98.8 84.1 101.1 560.7 455.1 80.9
FastPlace3 13.0 10.7 17.4 55.3 32.93 7.2
SimPL 9.2 12.6 27.1 59.2 40.4 9.2
SAPTgp + SAPTdp 15.9 16.7 38.2 70.9 43.1 10.8

for three Hybrid designs D, E, and H. Though SAPT is
not a congestion-aware placer, the significant improvement
in routing congestion indicates the strong correlation between
StWL quality and congestion.

E. Runtime Results

Runtime results on the Hybrid designs are shown in Ta-
ble XII. Both SimPL and FastPlace3.0 were similar with
FastPlace3.0 faster on larger designs. Our SAPT placer per-
formed very competitively compared to the other state-of-the-
art placers with the largest design, Hybrid F, taking under 71
seconds to place.

IX. Conclusion

Datapath layout was a long-standing challenge in physical
design. Many attempts have been made in the last 40 years to
close the quality gap between manual and automated place-
ment of datapaths and other regular structures. Nevertheless,
a common assumption still prevails among IC designers that
circuits with high regularity require manual placement. Our
key observation was that the primary optimization objective
of modern state-of-the-art placement algorithms–HPWL can
mislead placers on datapath-oriented designs. In particular,
compressing placement of high-fanout nets to lower the overall
HPWL can disrupt the regularity of placement and undermine
its Steiner wirelength, which is known to better correlate with

240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2013

routed wirelength. Based on this observation, a unified frame-
work was developed to enhance current random-logic placers
to better handle designs containing datapath logic seamlessly
integrating alignment constraints into a state-of-the-art place-
ment engine. Experimental results showed at least a 28%
improvement in total StWL compared with the state-of-the-art
academic placers for the ISPD 2011 datapath benchmark suite
and a 5.8% average improvement in total StWL for industrial
hybrid designs. In addition, though not a congestion-aware
placer, the techniques showed that significant improvement in
routability was achievable through datapath alignment.

A number of open challenges remain with fully automating
datapath placement. First, though our comparisons do not
report the timing impact because the current implementation
is limited to reading the Bookshelf format, significant im-
provements in wirelength are generally observed to improve
timing. Therefore, quantifying timing improvement is an im-
portant step for full datapath automation and its evaluation.
Second, though this paper shows significant improvements in
StWL, only one component of datapath placement (specifically
alignment) is addressed. Many datapath styles do not adhere
to simple alignment. Other enhancements such as datapath
compression could reduce the quality gap between automatic
placers and manual placement. Given the assumption that
alignment nets and their preferred directions are given in
this paper, another important future direction is the automatic
extraction of generic datapath logic from a netlist.

Acknowledgment

The authors would like to thank Prof. I. Markov, University
of Michigan, and his team for providing the SimPL binary and
helpful discussions.

References

[1] R. X. T. Nijssen and J. A. G. Jess, “Two-dimensional datapath regularity
extraction,” in Proc. ACM/IFIP Workshop Logic Architecture Synthesis,
1996, pp. 110–117.

[2] P. Ienne and A. GrieBing, “Practical experiences with standard-cell
based datapath design tools,” in Proc. ACM/IEEE Des. Autom. Conf.,
Jun. 1998, pp. 396–401.

[3] S. I. Ward, D. A. Papa, Z. Li, C. N. Sze, C. J. Alpert, and E. E. Swart-
zlander, Jr., “Quantifying academic placer performance on custom
designs,” in Proc. ACM Int. Symp. Phys. Des., 2011, pp. 91–98.

[4] D. A. Papa, S. N. Adya, and I. L. Markov, “Constructive benchmarking
for placement,” in Proc. ACM Great Lakes Symp. VLSI, 2004, pp.
113–118.

[5] A. B. Kahng and Q. Wang, “Implementation and extensibility of an
analytic placer,” in Proc. ACM Int. Symp. Phys. Des., 2004, pp. 18–25.

[6] S. I. Ward, M.-C. Kim, N. Viswanathan, Z. Li, C. Alpert, E. E. Swart-
zlander, Jr., and D. Z. Pan, “Keep it straight: Teaching placement how
to better handle designs with datapaths,” in Proc. ACM Int. Symp. Phys.
Des., 2012, pp. 79–86.

[7] T. Serdar and C. Sechen, “Automatic datapath tile placement and
routing,” in Proc. IEEE Des. Autom. Test Eur., Mar. 2001, pp. 552–559.

[8] T. Ye, S. Chaudhuri, F. Huang, H. Savoj, and G. D. Micheli, “Physical
synthesis for ASIC datapath circuits,” in Proc. IEEE Int. Symp. Circuits
Syst., vol. 3. May 2002, pp. 365–368.

[9] S. Chou, M.-K. Hsu, and Y.-W. Chang, “Structure-aware placement for
datapath-intensive circuit designs,” in Proc. ACM/IEEE Des. Autom.
Conf., Jun. 2012, pp. 762–767.

[10] S. Goto, “An efficient algorithm for the two-dimensional placement
problem in electrical circuit layout,” IEEE Trans.Circuits Syst., vol. 28,
no. 1, pp. 12–18, Jan. 1981.

[11] C. Yang, X. Hong, Y. Cai, W. Hou, T. Jing, and W. Wu, “Standard-cell
based data-path placement utilizing regularity,” in Proc. IEEE Int. Conf.
ASIC, vol. 1. Oct. 2003, pp. 97–100.

[12] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F.
Lu, and I. L. Markov, “Capo: robust and scalable open-source min-cut
floorplacer,” in Proc. ACM Int. Symp. Phys. Des., 2005, pp. 224–226.

[13] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: An effective placement
algorithm,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 31, no. 1, pp. 50–60, Jan. 2012.

[14] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie, “mPL6:
Enhanced multilevel mixed-size placement,” in Proc. ACM Int. Symp.
Phys. Des., 2006, pp. 212–214.

[15] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, “A
high-quality mixed-size analytical placer considering preplaced blocks
and density constraints,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., Nov. 2006, pp. 187–192.

[16] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. Asia South Pacific Des. Autom. Conf., 2007, pp. 135–140.

[17] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-cell
placement tool for large industry circuits,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Nov. 2000, pp. 260–263.

[18] T. Kutzschebauch and L. Stok, “Regularity driven logic synthesis,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., Nov. 2000, pp.
439–446.

[19] S. I. Ward, D. Z. Pan, and E. E. Swartzlander, Jr. (2011).
ISPD Datapath Benchmark Suite [Online]. Available:
http://www.cerc.utexas.edu/utda/download/DP/

[20] H. Shojaei, A. Davoodi, and J. Linderoth, “Congestion analysis for
global routing via integer programming,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Nov. 2011, pp. 256–262.

[21] J. A. Roy and I. L. Markov, “Seeing the forest and the trees: Steiner
wirelength optimization in placement,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 26, no. 4, pp. 632–644, Apr. 2007.

[22] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Kraftwerk2: A
fast force-directed quadratic placement approach using an accurate net
model,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 27,
no. 8, pp. 1398–1411, Aug. 2008.

[23] M. Pan, N. Viswanathan, and C. Chu, “An efficient
and effective detailed placement algorithm,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des., Nov. 2005,
pp. 48–55.

[24] S. I. Ward, D. Ding, and D. Z. Pan, “PADE: A high-performance mixed-
size placer with automatic datapath extraction and evaluation through
high-dimensional data learning,” in Proc. ACM/IEEE Des. Autom. Conf.,
Jun. 2012, pp. 768–773.

[25] A. Chowdhary, S. Kale, P. Saripella, N. Sehgal, and R. Gupta, “Extrac-
tion of functional regularity in datapath circuits,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 18, no. 9, pp. 1279–1296, Sep.
1999.

[26] A. Rosiello, F. Ferrandi, D. Pandini, and D. Sciuto, “A hash-based
approach for functional regularity extraction during logic synthesis,” in
Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Mar. 2007, pp. 92–97.

[27] M.-C. Kim and I. L. Markov, “ComPLx: A competitive primal-dual
Lagrange optimization for global placement,” in Proc. ACM/IEEE Des.
Autom. Conf., Jun. 2012, pp. 747–752.

[28] A. B. Kahng, S. Reda, and Q. Wang, “Architecture and details of a
high quality, large-scale analytical placer,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Nov. 2005, pp. 890–897.

[29] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 1, pp. 291–307,
1970.

[30] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam, and J. A. Roy,
“The ISPD-2011 routability-driven placement contest and benchmark
suite,” in Proc. ACM Int. Symp. Phys. Des., 2011, pp. 141–146.

[31] N. Viswanathan, C. J. Alpert, C. C. N. Sze, Z. Li, and Y. Wei, “The
DAC 2012 routability-driven placement contest and benchmark suite,”
in Proc. ACM/IEEE Des. Autom. Conf., Jun. 2012, pp. 774–782.

[32] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. J. Alpert, L. N. Reddy, A. D.
Huber, G. E. Tellez, D. Keller, and S. S. Sapatnekar, “Glare: Global
and local wiring aware routability evaluation,” in Proc. ACM/IEEE Des.
Autom. Conf., Jun. 2012, pp. 768–773.

[33] J. Hu, J. A. Roy, and I. L. Markov, “Completing high-quality global
routes,” in Proc. ACM Int. Symp. Phys. Des., 2010, pp. 35–41.

Samuel I. Ward (S’06) received the B.S. and M.S.
degrees in electrical engineering from the University
of Texas, Austin, in 2004 and 2007, respectively.
He is currently pursuing the Ph.D. degree with the
University of Texas.

From 2005 to 2012, he was a Circuit Design
Engineer with IBM, Austin, TX, working on high-
performance microprocessor cores specializing in
high-speed datapath circuits. While with IBM, he
filed over 20 patents with nine issued, and in 2011
he was named the IBM Master Inventor. His current

research interests include physical synthesis of structured nanometer-scale
datapaths.

WARD et al.: SAPT FOR DESIGNS WITH DATAPATHS 241

Myung-Chul Kim (M’13) received the Ph.D. de-
gree in electrical engineering from the University of
Michigan, Ann Arbor.

He is currently an Advisory Engineer with IBM,
Austin, TX. His current research interests include
very large scale integration physical design and
synthesis automation with an emphasis on floorplan-
ning, placement, routing, and timing analysis.

Dr. Kim was the winner of the ISPD 2010 Clock-
Network Synthesis Contest and the ICCAD 2012
Routability-Driven Placement Contest. He was a

recipient of the IEEE/ACM William J. McCalla Best Paper Award at ICCAD
2010.

Natarajan Viswanathan (M’10) received the Ph.D.
degree in computer engineering from Iowa State
University, Ames, in 2009.

He is currently an Advisory Engineer with the
Systems and Technology Group, IBM Corporation,
Austin, TX. His current research interests include
developing algorithms and methodologies for physi-
cal synthesis of nanometer-scale integrated circuits.

Dr. Viswanathan serves on the technical program
committees of IEEE ISoCC, IEEE/ACM IWSLIP,
and ACM SIGDA Ph.D. Forum at DAC. He was a

recipient of the ISPD Best Paper Award, and three Best Paper nominations
at DAC and ISPD for his work on integrated circuit placement. He was a
recipient of the ACM SIGDA Technical Leadership Award in 2011 for his
contributions to the ISPD physical design contests.

Zhuo Li (S’01–M’05–SM’09) received the B.S.
and M.S. degrees in electrical engineering from
Xi’an Jiaotong University, Xi’an, China, in 1998 and
2001, respectively, and the Ph.D. degree in computer
engineering from Texas A&M University, College
Station, in 2005.

He is currently a Research Staff Member with the
IBM Austin Research Laboratory, Austin, TX. He
was one of the co-founders of Pextra Corporation,
which was a startup specializing in parasitic extrac-
tion and acquired by Mentor Graphics Corporation

in 2009. His current research interests include physical synthesis, parasitic
extraction, circuit modeling and simulation, and design and analysis of general
large-scale algorithms.

Dr. Li is a Committee Member for various conferences in the computer-
aided design (CAD) area. He was the Guest Editor of the VLSI Design Journal
Special Issue CAD for Gigascale SoC Design and Verification Solutions. He
was the Contest Chair of the 2011 and 2012 TAU Power Grid Simulation
Contest and is the Co-Chair of the 2012 CAD Contest at ICCAD. He is
currently the Secretary of the IEEE Central Texas Section and the Chair of the
IEEE CAS/SSC Joint Society Chapter of the Central Texas Section. Recently,
the chapter won the IEEE Circuits and Systems Society 2011 Regions 1–
7 Chapter of the Year Award and the IEEE Solid State Circuits Society
2011 Outstanding Chapter Award. He is also the Founding Chair of the IEEE
CTS CEDA Chapter. He was a recipient of several IBM Technical/Invention
Awards, including three IBM Outstanding Technical Achievement Awards.
He has filed 35 patents with 8 issued. He has published over 50 conference
and journal papers. He was a recipient of the ASPDAC Best Paper Award in
2007, the IEEE Circuits and System Society Outstanding Young Author Award
in 2007, the Technical Leadership Award from ACM SIGDA in 2011 for
organizing the Power Grid Simulation Contest, and the SRC 2012 Mahboob
Khan Outstanding Industry Liaison/Associate Award.

Charles J. Alpert (F’05) received two undergradu-
ate degrees from Stanford University, Stanford, CA,
in 1991, and the Doctorate degree in computer sci-
ence from the University of California, Los Angeles
(UCLA) in 1996.

After graduation, he joined the IBM’s Austin
Research Laboratory, where he currently manages
the Design Productivity Group whose mission is to
architect design automation tools and methodologies
to improve designer productivity and reduce design
cost. He has published over 100 conference and

journal papers.

Dr. Alpert was a recipient of the Best Paper Award thrice from the
ACM/IEEE Design Automation Conference. He has been active in the
academic community, serving as the Chair for the Tau Workshop on Timing
Issues and the International Symposium on Physical Design. In the last
decade, he has served as an Associate Editor of the IEEE Transactions on

Computer-Aided Design before stepping down in 2012. He was a recipient
of the Mahboob Khan Mentor Award for his work in mentoring in 2001 and
2007.

Earl E. Swartzlander, Jr. (S’64–M’72–SM’79–
F’88–LF’11) received the B.S. degree from Purdue
University, West Lafayette, IN, in 1967, the M.S.
degree from the University of Colorado, Boulder, in
1969, and the Ph.D. degree from the University of
Southern California, Los Angeles, in 1972, all in
electrical engineering.

He is currently a Professor of electrical and com-
puter engineering with the University of Texas,
Austin. He and his students conduct research
in application-specific processor design, including

high-speed computer arithmetic, embedded processor architectures, and nan-
otechnology. From 1975 to 1990, he held a variety of positions with TRW,
including the Director of independent research and development with the TRW
Defense Systems Group. He has written one book and edited seven books.
He has authored or co-authored 72 refereed journal papers, 35 book chapters,
and 282 conference papers.

Dr. Swartzlander was the Editor-in-Chief of the IEEE Transactions on

Computers from 1990 to 1994. He was the Founding Editor-in-Chief of
the Journal of VLSI Signal Processing. He has served as an Associate Editor
for the IEEE Transactions on Computers, the IEEE Transactions on

Parallel and Distributed Systems, and the IEEE Journal of Solid-
State Circuits. He has been a member of the Board of Governors of the
IEEE Computer Society from 1987 to 1991, the IEEE Signal Processing
Society from 1992 to 1994, and the IEEE Solid-State Circuits Council/Society
from 1986 to 1991. He has chaired a number of conferences. He was a
recipient of the IEEE Third Millennium Medal, the Distinguished Engineering
Alumnus Award from the University of Colorado, the Outstanding Electrical
Engineer and Distinguished Engineering Alumnus Award from Purdue Uni-
versity, and the IEEE Computer Society Golden Core Award.

David Z. Pan (S’97–M’00–SM’06) received the
Ph.D. degree (Hons.) in computer science from the
University of California (UCLA), Los Angeles, in
2000.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Texas, Austin. From 2000 to 2003, he
was a Research Staff Member with the IBM T. J.
Watson Research Center. He has published over 170
technical papers in refereed journals and conference
proceedings. He holds eight U.S. patents.

Dr. Pan has served in the editorial boards of the IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,
the IEEE Transactions on Very Large Scale Integration Systems,
the IEEE Transactions on Circuits and Systems (CAS) I and II,
Science China Information Sciences, the Journal of Computer Science and
Technology, and IEEE CAS Society Newsletter. He has also served as the
IEEE CAS/CEDA CANDE Committee Chair and the ACM/SIGDA Technical
Committee Chair on physical design. He was the General Chair of ISPD 2008
and the Steering Committee Chair of ISPD 2009. He has served on technical
program committees of many premier conferences, including the Program
Chair of ISPD and the Subcommittee Chair of ASPDAC, DAC, ICCAD,
ISLPED, among others. He was a recipient of a number of awards for his
research contributions and professional services, including the ACM/SIGDA
Outstanding New Faculty Award in 2005, the NSF CAREER Award in
2007, the UCLA Engineering Distinguished Young Alumnus Award in 2009,
the SRC Inventor Recognition Award three times, the IBM Faculty Award
four times, and nine Best Paper Awards (ASPDAC 2012, ISPD 2011, IBM
Research 2010 Pat Goldberg Memorial Best Paper Award in CS/EE/Math,
ASPDAC 2010, DATE 2009, ICICDT 2009, and SRC Techcon in 1998,
2007, and 2012). He was a recipient of the Dimitris Chorafas Foundation
Research Award in 2000, the eASIC Placement Contest Grand Prize in 2009,
the ICCAD’12 CAD Contest Award, the ISPD Routing Contest Award in
2007, and the ACM Recognition of Service Award in 2007 and 2008. He was
an IEEE CAS Society Distinguished Lecturer from 2008 to 2009.

