
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 10, OCTOBER 2014 1517

Towards Optimal Performance-Area Trade-Off
in Adders by Synthesis of Parallel

Prefix Structures
Subhendu Roy, Student Member, IEEE, Mihir Choudhury, Member, IEEE, Ruchir Puri, Fellow, IEEE,

and David Z. Pan, Fellow, IEEE

Abstract—This paper proposes an efficient algorithm to syn-
thesize prefix graph structures that yield adders with the best
performance-area trade-off. For designing a parallel prefix adder
of a given bit-width, our approach generates prefix graph struc-
tures to optimize an objective function such as size of prefix
graph subject to constraints like bit-wise output logic level. Given
bit-width n and level (L) restriction, our algorithm excels the
existing algorithms in minimizing the size of the prefix graph.
We also prove its size-optimality when n is a power of two and
L = log2 n. Besides prefix graph size optimization and having
the best performance-area trade-off, our approach, unlike exist-
ing techniques, can 1) handle more complex constraints such as
maximum node fanout or wire-length that impact the perfor-
mance/area of a design and 2) generate several feasible solutions
that minimize the objective function. Generating several size-
optimal solutions provides the option to choose adder designs
that mitigate constraints such as wire congestion or power con-
sumption that are difficult to model as constraints during logic
synthesis. Experimental results demonstrate that our approach
improves performance by 3% and area by 9% over even a
64-bit full custom designed adder implemented in an industrial
high-performance design.

Index Terms—Bottom-up approach, logic synthesis, parallel
prefix adder, performance-area trade-off.

I. INTRODUCTION

DATAPATH logic constitutes a significant portion of a gen-
eral purpose microprocessor and frequently occurs on the

timing-critical paths in high-performance designs. Arithmetic
components, such as adders, multipliers, shifters are the basic
building blocks in datapath logic and hence, to a great extent
dictate the performance of the entire chip. Binary addition
is one of the most fundamental and widely used arithmetic
operations in microprocessors. Today, adders are designed in
two ways—either manually through full custom design or
in an automated manner using synthesis tools. In a custom
adder design methodology, a designer has to manually choose

Manuscript received December 8, 2013; revised March 26, 2014 and
June 11, 2014; accepted June 13, 2014. Date of current version September 16,
2014. This paper was recommended by Associate Editor J. Cortadella.

S. Roy and D. Z. Pan are with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, TX 78712 USA (e-mail:
subhendu@utexas.edu; dpan@ece.utexas.edu).

M. Choudhury and R. Puri are with the IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598 USA (e-mail: choudhury@us.ibm.com;
ruchir@us.ibm.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2014.2341926

between regular adder structures such as Kogge–Stone [1],
Sklansky [2], Brent–Kung [3], Han–Carlson [4], and tune
physical design parameters such as placement, gate sizing,
buffer optimization to maximize performance under power
constraints for the target technology [5], [6]. Hence, custom
adder design methodology is expensive, takes a long time
to converge to a satisfactory design, and is inflexible to late
design changes.

In contrast, automated synthesis approach is productive
and flexible to late design changes but traditionally has
lagged behind in performance as compared to custom designs.
Therefore, the prevalent design approach for high-performance
datapath logic continues to be custom design. In the past,
several algorithms have been proposed to generate parallel
prefix adders targeting minimization of the size of the pre-
fix graph (s) under given bit-width (n) and logic level (L)
constraints. A prefix graph is said to be zero deficiency if
s + L = 2n − 2. Snir [7] has proved this theoretical bound
for L ≥ 2 log2 n − 2 with uniform input profile. In [8], zero-
deficiency prefix graphs Z(L) are proposed, where Z(L) has
the provable maximum bit-width for a given depth L among
all zero-deficiency prefix circuits. The bit-width of Z(L) circuit
is given by NZ(L) = F(L + 3) − 1, (F denotes the fibonacci
function) for L > 1. Compared to [7], [8] indeed gives a
more general bound for size of the prefix graphs. For instance,
NZ(6) = 33, so for a prefix graph of bit-width 32 and level
6, the minimum achievable size smin = 32 ∗ 2 − 2 − 6 = 56,
which Snir fails to give as 6 < 2 ∗ 5− 2.

Ladner and Fischer [9] present a recursive construction of
parallel prefix graphs to obtain a trade-off between s and L,
but it could not even achieve the bound provided by [7]. Other
existing algorithms like a greedy depth-decreasing heuris-
tic [10], dynamic programming based approaches [11], [12],
or non-heuristic optimization [13] could achieve this bound
for some cases but yield sub-optimal result as logic level
constraints are reduced (for e.g., to log2 n)—which is more
relevant for high performance adders. In [12], an algorithmic
approach is proposed to achieve minimal delay at all output
bits for uniform/non-uniform input profile, although this paper
does not focus on minimizing the size of the prefix graph.
Reference [13] presents an algorithm for the generation of
parallel prefix structures for arbitrary level constraints to min-
imize the size, but it fails to get size-optimal solutions for
levels closer to log2 n. Reference [14] proposes logarithmic
adder structures with a fan-out of 2, and presents a model to
analyze the area-delay product of those structures. However,

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1518 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 10, OCTOBER 2014

the key limitation of [14] is that these parallel prefix struc-
tures have more than log2 n levels leading to a compromise
in performance. Reference [15] attempts to generate a family
of adder structures for log2 n levels, but that does not give
the size-optimal solutions. In [16], an exhaustive approach is
attempted to explore the optimal arithmetic-circuit architec-
tures through selective factorization, but it is very limited in
terms of scalability.

The most recent approach [11], that uses dynamic program-
ming (DP) on a restricted search space to generate a seed prefix
graph followed by an area-heuristic to further reduce the size
of the seed prefix graph, is the most effective in minimizing
the size of the prefix graphs. However, the quality of the area-
heuristic solution depends on the selection of seed solution
from DP, which is not unique. Furthermore, this algorithm
cannot handle fanout/wire-length constraints on nodes in the
prefix graph or arrival/required time constraints on individual
input/output bits that impact the performance, area, and power
consumption of the adder after physical design.

To tackle these issues, this paper proposes an efficient algo-
rithm to generate prefix graphs for synthesizing adders with the
best performance-area trade-off. In this approach, prefix graph
structures are constructed in bottom-up fashion by exhaus-
tively generating all possible n+1 bit prefix graphs from n bit
prefix graphs. For scalability to large adders up to 128 bits, our
approach proposes a novel compact data structure for manipu-
lating prefix graphs, efficient memory management techniques
like lazy copy for storing several prefix graph solutions, and
search space reduction strategies like level-restriction, dynamic
size pruning, repeatability pruning for targeting prefix graph
structures relevant for achieving the best performance-area
trade-off. Furthermore, we have described a method to gen-
erate size-optimal solutions for any 2m bit adder with level
restriction of m. Compared to existing algorithms our approach
has the following advantages.

1) It provides a way to generate size-optimum prefix graph
structures for 2m bit adder with level m and theoretically
proves its optimality.

2) It is more effective than all existing algorithms in mini-
mizing the size of the prefix graph for given bit-width n
and arbitrary logic level, including bitwise input/output
logic level constraints.

3) It provides greater opportunity for improving perfor-
mance of the adder because the algorithm can handle
fanout/wire-length constraints on nodes in the prefix
graph and arrival/required time constraints on individual
input/output bits.

4) It generates many candidate prefix graph structures for
a given set of constraints, which can also be evaluated
for placement and wiring congestion to yield efficient
physical and routing implementation.

The rest of the paper is organized as follows. Section II
describes binary addition as a prefix graph problem. Section III
presents our algorithm for generating prefix graph struc-
tures. Section IV presents the results of this approach with
a conclusion in Section V.

II. PRELIMINARIES

Given an ordered n inputs x0, x1,. . . , xn−1 (where xn−1 is
the most significant bit or MSB and x0 is the least significant

Fig. 1. Prefix graph representation.

bit LSB) and an associative operation o, prefix computation
of n outputs is defined as follows:

yi = xi o xi−1 o . . . o x0 ∀i ∈ [0, n− 1] (1)

where i-th output depends on all previous inputs xj (j ≤ i).
A prefix graph of width n is a directed acyclic graph (with
n inputs/outputs) whose nodes correspond to the associative
operation “o” in the prefix computation and there exists an
edge from node vi to node vj if vi is an operand of vj. Fig. 1
represents a prefix graph for 6 bit. In this example, we can
write y5 as

y5 = i1 o y3 = (x5 o x4) o (i0 o y1)

= (x5 o x4) o ((x3 o x2) o (x1 o x0)). (2)

Next, we will explain this prefix graph in the context of
binary addition.

Binary addition problem is defined as follows [17]: given
n bit augend A = an−1 . . . a1a0 and n bit addend B =
bn−1 . . . b1b0, compute the sum S = sn−1 . . . s1s0 and carry
out Cout = cn−1, where si = ai ⊕ bi ⊕ ci−1 and ci =
aibi + aici−1 + bici−1.

With bitwise (group) generate function g (G) and propagate
function p (P), n bit binary addition can be mapped to a prefix
computation problem with three components as follows [18].

1) Preprocessing: Bitwise g, p generation

gi = ai.bi and pi = ai ⊕ bi. (3)

2) Prefix-Processing: The concept of generate/propagate is
extended to multiple bits and G[i:j], P[i:j] (i ≥ j) are
defined as

P[i:j] =
{

pi if i = j
P[i:k].P[k−1:j] otherwise

G[i:j] =
{

gi if i = j
G[i:k] + P[i:k].G[k−1:j] otherwise. (4)

The computation for (G, P) is expressed in terms of
associative operation o as

(G, P)[i:j] = (G, P)[i:k] o (G, P)[k−1:j]

= (G[i:k] + P[i:k].G[k−1:j], P[i:k].P[k−1:j]).(5)

3) Post-Processing: Sum generation

si = pi ⊕ ci−1 and ci = G[i:0]. (6)

Among the three components of binary addition problem,
both preprocessing and postprocessing parts are fixed struc-
tures. However, o being an associative operator, provides the
flexibility of grouping the sequence of operations in prefix

ROY et al.: TOWARDS OPTIMAL PERFORMANCE-AREA TRADE-OFF IN ADDERS BY SYNTHESIS 1519

processing part and executing them in parallel. So the structure
of the prefix graph determines the extent of parallelism.

At the technology independent level, size of the prefix
graphs (# of prefix nodes) gives the area measure and the
logic levels of the nodes estimate roughly the timing. It is
important to note that the actual timing depends on other
parameters as well like fan-out distribution and size of the
prefix graph. Smaller sizes of prefix graph offer better flexi-
bility during post-synthesis optimizations such as gate sizing,
buffer insertion etc.

Equations (3)–(6) represent the Weinberger recurrance equa-
tion [19] for carry-propagation. Ling adders [19], [20] have
been proposed as an alternative in the past by transforming
these equations which have provided better performance. Since
there is direct mapping between Weinberger’s equations and
Ling’s equations [20], one can explore the Ling implementa-
tion of any prefix network, such as Sklansky, Kogge–Stone,
etc. As another design alternative, sparse tree-adders have also
been used in [21] for specific applications, however, it needs
conditional sum generators as additional design blocks. In (2)
or Fig. 1, we can see that the number of fan-ins for each of
the associative operation o is two and thus it is often termed
as radix-2 implementation of prefix network. However, there
exist other choices such as radix-3 or radix-4 implementation,
but the complexity is very high and not beneficial in static
CMOS circuits [22]. In [23] and [24], fast domino adders are
implemented using radix-4 Ling network, but domino logic
has been phased out due to the high power consumption.
Reference [25] demonstrates that radix-2 implementation is
indeed the most energy-efficient. An implementation of mixed-
radix Jackson adder has also been shown to be inefficient in
terms of energy/area [22].

III. OUR APPROACH

This section describes a compact data structure for storing
and manipulating a prefix graph, efficient memory manage-
ment strategies for storing several prefix graph solutions, and
pruning strategies to scale our approach up to 128 bit adders.
We also prove the size-optimality of any 2m bit prefix graph
with level m, generated by our approach, by incorporating sev-
eral additional pruning strategies and ensuring that any pruning
does not degrade the optimality of the solution. Any prefix
graph solution is said to be size-optimum under certain restric-
tions, if the size of the prefix graph is minimum with those
restrictions.

Due to the associative nature of the prefix operation o,
each output for bit-index i can be constructed by combin-
ing the previous input bits 0, 1 . . . i in any way keeping
their relative orders intact and the number of possible ways is
catalan(i), where catalan(i) = 1/(i+ 1)

(2i
i

)
. Let Gn denotes

the set of all possible prefix graphs with bit-width n. Then
size of Gn grows exponentially with n and is given by
catalan(n−1) ∗ catalan(n−2) ∗. . . catalan(0). For example,
|G8| = 332972640, |G12| = 2.29 ∗ 1024. However, we will
be exploring the set of prefix graphs with the following
restrictions.

1) One of the fan-in node of any prefix node is the most
recent node sharing the same MSB with that of the prefix
node. For instance, in Fig. 2, x can not be a fan-in node
of z. Alternatively y and c can be combined to form z. So

Fig. 2. Prefix graph restriction.

Fig. 3. Compact notation for a prefix graph.

each prefix node (p) in a prefix graph has 2 fan-in nodes.
One node is vertically above p having the same MSB
as that of p, we define it as trivial fan-in (tf) and the
other node is termed as non-trivial fan-in node (ntf). For
instance, a and c are respectively trivial and non-trivial
fan-in node of b.

2) The prefix-graph is non-overlapping, i.e., for any prefix
node, LSB(tf) −MSB(ntf) = 1. However, idempotency
property can be used to generate correct and overlapping
prefix trees [15].

But we impose these restrictions to reduce the search space
and at the same time attempt to generate the potential can-
didate prefix trees which could give best performance/area
trade-off after placement/routing. We denote this set of non-
overlapping prefix graphs as PG.

However, the search space is still huge and we require com-
pact data structure, efficient memory management, and search
space reduction techniques to scale this approach.

A. Compact Notation and Data Structure

We represent the prefix graph by a sequence of indices
(seq), where each index represents a prefix node and it is
the MSB of that node. Fig. 3 illustrates the compact nota-
tion, where the sequence is determined in topological order,
and in addition, precedence is given to higher significant
bits in the sequence of indices. Let SEQ be the set of all
sequences representing any prefix graph. Suppose VS is the
set of valid sequences in our approach, where the restriction
of left-to-right precedence is imposed in addition to topo-
logical ordering, inherent in SEQ. For instance, in Fig. 3
(right side), indices {3,1} and {3,2} occur at first and second
topological levels respectively. With only topological order-
ing, 4 sequences are possible—“3132” (N1N2N3N4), “3123”
(N1N2N4N3), “1332” (N2N1N3N4), “1323” (N2N1N4N3). Thus
all 4 sequences belong to SEQ. But since “3” is given prece-
dence over “1” and “2” at the first and second topological
levels respectively, the only valid sequence or the only ele-
ment of VS here is “3132”. So although the mapping from
SEQ to PG is many-to-one, the mapping from VS, a subset of
SEQ, to PG is 1− 1 and bijective as well (Fig. 4). Later, we
will formally prove this bijective relationship.

Algorithm 1 presents a procedure “checkValidSequence
(seq, n),” which returns “true” if seq ∈ VS representing an n bit

1520 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 10, OCTOBER 2014

Fig. 4. Bijective mapping between VS and PG.

Algorithm 1 Procedure to Check if seq ∈ VS
1: Procedure checkValidSequence(s, n);
2: for i = 0 to n− 1 do
3: bitSpan(i) = i;
4: end for
5: for all index ∈ seq from left to right do
6: if index > lastIndex and bitSpan(index)−1 	= lastIndex

then
7: return false;
8: end if
9: bitSpan(index) = bitSpan(bitSpan(index)− 1);

10: end for
11: for i = 1 to n− 1 do
12: if bitSpan(i) 	= 0 then
13: return false;
14: end if
15: end for
16: return true;
17: end Procedure

prefix graph. Here bitSpan(i) at any instant of traversing the
sequence represents the LSB of the node with index i, having
maximum logic level at that instant. So when we start travers-
ing seq, bitSpan(i) is equal to i and bitSpan(i) should be equal
to 0 when the entire sequence is traversed. Lines 2-4 initialize
bitSpan(i) with i representing the input nodes. Lines 11-14
check whether seq represents a prefix graph by ensuring
that the LSB of each output node is 0, where as Lines 6-8
check the topological left to right ordering. For instance, for
the sequence “3123,” when the second “3” is visited, then
index = 3 > 2 = lastIndex indicating right-to-left ordering. So
the node represented by this “3” should topologically depend
on the node represented by “2” and bitSpan(3)− 1 should be
equal to “2” to maintain the topological left-to-right ordering,
but bitSpan(3) − 1 = 2 − 1 	= 2. So “3123” is not a valid
sequence. On the contrary, for the example sequence “3132,”
when the second 3 is visited, index = 3 > 2 = lastIndex, but
bitSpan(3) − 1 = 2 − 1 = 1 = lastIndex. For other indices
in the same sequence, index < lastIndex. So the condition for
Line 6 in Algorithm 1 is not satisfied for any of the indices
and “3132” is determined as a valid sequence.

On the other hand, we can construct a prefix graph by
traversing the sequence of indices from left to right in the
following way: for each index i in the sequence, we add a
node p which is derived from 2 nodes—the most recent node
r with index i (or input bit i) and the node just before p in
the sequence (or the input bit LSB(r) − 1). For instance, in
the sequence “3132” in Fig. 3, the node for first “3” is con-
structed from input bits 3 and 2, where as that for second “3”
is constructed from the node for first “3” and the node (with
index 1) just before it.

Fig. 5. Bit slicing.

Lemma 1: The mapping from VS to PG is 1− 1, i.e., if s1,
s2 ∈ VS represent the same prefix graph in PG, then s1 = s2

Proof: First, we will show that if we enumerate the prefix
nodes of a prefix graph in a topological order from left to
right, then the order of the list of the prefix nodes is fixed. For
instance, in Fig. 3 (right side), this fixed order is N1N2N3N4.
Once we prove this, the sequence representation is guaranteed
to be unique as each index in the sequence corresponds to the
MSB of each prefix node. We will prove this by induction.
We consider that the order of the prefix nodes is fixed till
some node xn in the list. At this point, we will have a set
of topologically dependent prefix-nodes (St) for which both
trivial and non-trivial fan-in are either any node in the list till
xn or any input node. So the next node in the list will be any
one node in St and this node will be shown unique. Since the
trivial fan-in of any prefix node is the most recent node with
the same MSB as that of the prefix node, for any two nodes
xi, xj ∈ St, MSB(xi) 	= MSB(xj), otherwise either xi would
topologically depend on xj or xj on xi which is not possible.
This implies that there exists a unique prefix node xu ∈ St,
such that MSB(xu) is maximum and the next node in the list
is xu. Note that for the base case of induction, i.e., when the
list is empty, the first node corresponding to the first element
in the sequence is the node in the sequence having highest
MSB with logic level 1 and thus unique as well.

Corollary 1: There exists a bijective mapping between VS
and PG.

Proof: For any prefix graph in PG there exists a sequence
representation following topological ordering from left to
right. So the mapping is surjective. Also, it follows from
Lemma 1 that the mapping from VS to PG is injective. Hence
the Corollary is proved.

Apart from storing the index, we also need to track the LSB,
level, fanout for each node in the prefix graph. We store all this
information using a single integer for each node, and represent
a prefix graph by a list/sequence of integers. Since we want
to explore adders up to 128 bits and provision a carry-in as
the 129th bit, we reserve 8 bits (
log2(129)�) for index, level,
fanout, and LSB. Thus, all information for a node can be stored
in a single integer as shown in Fig. 5.

This compact data structure helps in reducing memory usage
and runtime (due to faster copy/delete operation for a prefix
node) as compared to using a structure to store index, LSB,
level, and fanout as individual integers.

B. Exhaustive Bottom-Up Enumeration

We start from a prefix graph of 2 bits (represented by a
single index sequence “1”) and construct the prefix graph
structures for higher bits in an inductive way, i.e., given all
possible prefix graphs (Gn) for n bit, we construct all possible
prefix graphs (Gn+1) of n + 1 bit. The process of generating
such graphs of n+1 bit from an element of Gn by inserting n at

ROY et al.: TOWARDS OPTIMAL PERFORMANCE-AREA TRADE-OFF IN ADDERS BY SYNTHESIS 1521

Fig. 6. Illustrative example.

appropriate positions is a recursive procedure. Fig. 6 explains
this for an element “12” of G3 with the help of a recursion tree.

At the beginning of this recursive procedure (RP), we have a
sequence “12” (node 1) with an arrow on “1.” The arrow points
to the index before which “3” can be inserted. At any stage,
there are two options, either insert “3” and call RP, or move
the arrow to a suitable position and then call RP. This position
is found by iterating the list/sequence in forward direction
until searchIndex (= LSB(recentNode(3))−1) is found, where
recentNode(i) signifies the most recent node with index i in the
sequence. The left subtree denotes the first option and the right
subtree indicates the second option. So the procedure either
inserts “3” at the beginning of “12” and goes to node 2 or it
goes to node 7 by moving the arrow to the appropriate position.
We can see that, searchIndex = LSB(recentNode(3)) − 1 =
3− 1 = 2 for this case. Similarly, for node 2, the searchIndex
has become 2 − 1 = 1, and so this procedure either inserts
“3” (in node 3) or shifts the pointer after “1” (in node 5). The
traversal is done in preorder and this recursion is continued
until LSB(recentNode(3)) becomes “0” or alternatively, a 4 bit
prefix graph is constructed. The right subtree of a node is not
traversed if a prefix graph for 4 bits has been constructed at
the left child of the node. For example, we do not traverse the
right subtree of node 3 and node 5.

Algorithm 2 illustrates the steps of this exhaustive enumera-
tion technique. The algorithm preserves the uniqueness of the
solutions by inserting the indices at appropriate positions. In
the “buildRecursive” procedure, nodeList is an STL list (insert
and erase operations are thus O(1) operations), recentNode is
passed as a parameter which is used to find searchIndex and to
track if a solution has been generated. currIter is the iterator
corresponding to ↓ in Fig. 6. The return value of the procedure
is true, when nodeList is a solution of Gn+1, thereby indicating
that the right subtree of parent of nodeList does not require
traversal.

Theorem 1: The bottom-up enumeration in Algorithm 2 is
exhaustive and non-repetitive.

Proof: We construct all possible prefix graphs of bit-width
n + 1 from any element of Gn, by inserting n at appropriate
positions. At any instant, say the arrow is pointed to a node

Algorithm 2 Exhaustive Bottom-Up Enumeration
1: // Given Gn construct Gn+1. . .
2: Procedure buildBottomUp(Gn)
3: for all g ∈ Gn do
4: buildRecursive(g, null, g.begin, n);
5: end for
6: end Procedure
7: Procedure buildRecursive(nodeList, recentNode, currIter,

index)
8: if recentNode 	= null and LSB(recentNode) = 0 then
9: save solution nodeList in Gn+1;

10: return true;
11: end if
12: searchIndex← LSB(recentNode)− 1;
13: newIter← nodeList.insert(currIter, index);
14: newNode← value at newIter;
15: flag ← buildRecursive(nodeList, newNode, currIter,

index);
16: if flag = true then
17: return false;
18: end if
19: nodeList.erase(newIter);
20: repeat
21: node← value at currIter;
22: currIter← currIter + 1;
23: until MSB(node) 	= searchIndex and currIter 	=

nodeList.end
24: buildRecursive(nodeList, recentNode, currIter, index);
25: end Procedure

xi and either we insert n before xi or we forward the pointer
in the sequence for next possible insertion point, and suppose
the next insertion position be after xp, i.e., xp is the first node
in the sequence after xi, such that searchIndex = MSB(xp).
If we can prove the proposition that inserting n at any other
intermediate position does not follow the topological left-to-
right ordering, then we are generating all sequences following
the topological left-to-right ordering (VS), and since the map-
ping from VS to any prefix graph of our consideration (PG) is
bijective (by Corollary. 1), it would be sufficient to infer that
Algorithm 2 is exhaustive. Also, this bijective mapping from
VS to PG ensures that we are generating non-repetitive prefix
graph solutions of Gn+1.

Suppose, for contradiction, we insert n after xq which is an
intermediate node between xi and xp, and the inserted node
be xn. But MSB(xn) = n > MSB(xq), so xq would be at right
to xn. Since xn comes after xq, xn should be topologically
dependent on xq, which means the non-trivial fan-in node of xn
should depend on xq. But xn is just the next node to xq, which
means xq is the non-trivial fan-in node of xn. So MSB(xq) =
LSB(recentNode(n)) − 1, which is the searchIndex. As xp is
the first node in the sequence after xi, for which MSB(xp) =
searchIndex, xq = xp. Hence the bottom-up enumeration in
Algorithm 2 is exhaustive and non-repetitive.

C. Efficient Recursion Implementation

The key step of Algorithm 2 is the recursive procedure as
explained in Fig. 6. In a preorder traversal of typical recursion
tree implementation, when we move from root node to its

1522 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 10, OCTOBER 2014

left subtree, a copy of the root node is stored to traverse
the right subtree at later stage. In our approach, we copy
the sequence only when we get a valid prefix graph, other-
wise keep on modifying the sequence. As for example, we
do not store the sequences (“312,” “3312”) in Fig. 6, i.e.,
when we move to the left subtree of a node in the recur-
sion tree, we insert the index and delete it while coming back
to the node in the preorder traversal, and store only the leaf
nodes. This notion of late copy is motivated by a concept in
object-oriented-programming, known as lazy copy or copy-on-
write [26] which is a combination of deep copy and shallow
copy. In lazy-copy, when an object is copied initially, a shal-
low copy (fast) is used and then deep copy (slow) is performed
when it is absolutely necessary (for example, modifying a
shared object). Lazy copy helps to significantly reduce run
time by replacing list copy and delete operations with list entry
insertion and deletion operations at a given position (iterator)
which are O(1) operations and thus improves the runtime. For
the simple example shown in Fig. 6, an implementation with-
out lazy copy needs five list copy and two list delete operations
whereas an implementation with lazy copy only needs three
list copy operations and no list delete operations. The benefits
of lazy copy increase exponentially with bit-width.

D. Search Space Reduction

As the size of the solution space of all prefix graphs is huge,
it is not feasible to generate all possible prefix graphs. Many
prefix graphs are also not relevant because they do not have
a good performance-area trade-off. We are interested only in
generating candidate solutions to optimize performance (pre-
fix graphs with minimum logic levels) and area (prefix graphs
with minimum number of prefix nodes). Hence, the follow-
ing search space reduction techniques are employed to scale
this approach, however, the details of these techniques are not
shown in Algorithm 2.

1) Level Pruning: The performance of an adder depends
directly on the number of logic levels of the prefix graph. Our
approach intends to minimize the number of prefix nodes with
given bit-width and logic level (L) constraints. In Algorithm 2,
we keep track of the levels of each prefix node and solu-
tions are discarded if the level of the inserted node (or index)
becomes greater than L.

2) Dynamic Size Pruning: As discussed in Section III-B,
we construct the set Gn+1 from Gn. While doing this, we
prune the solution space based on size (# of prefix nodes) of
elements in Gn. Let smin be the size of the minimum sized
prefix graph(s) of Gn. Then we prune the solutions (g) for
which size(g) > smin +�. For example, suppose the sizes of
the solutions in Gn = [9 10 11] and � = 2. To construct
Gn+1, we select the graphs of Gn in increasing order of sizes
and build the elements of Gn+1. Let the graphs with sizes
X1 = [12 13 14 15], X2 = [11 14] and X3 = [13 16]
be respectively constructed from the graphs of sizes 9, 10, 11
in Gn. In this case, the minimum size solution is the solu-
tion with size 11 and so the sizes of the solutions stored in
Gn+1 = [[12 13], [11], [13]]. This pruning is done to choose
the potential elements of Gn+1, which can give minimum size
solution for the higher bits. The selection of � is critical to
reduce the search space and we found empirically that � = 3
is sufficient to get minimum size solutions for log2 n level till

Fig. 7. 3132 is better prefix structure than 33312.

128 bit. But any kind of restriction (like fanout) on the graph
structure requires higher � to achieve feasible solutions. In
that case, we store a fixed number of solutions of Gn for each
size s (smin ≤ s ≤ smin +�), which allows higher � without
increasing memory usage too much.

However, pruning the superfluous solutions after construct-
ing the whole set Gn+1 can cause peak memory overshoot.
So we employ the strategy “Delete as early as possible,” i.e.,
we generate solutions on the basis of current minimum size
scurrent

min . Let us take the same example to illustrate this. In X1,
scurrent

min = 12 and so we do not construct the graph with size 15,
as 15 > 12+ 2. Similarly, when we get the solution with size
11 in X2, we delete the graph with size 14 from X1 and do not
construct the graph with size 14 in X2 and 16 in X3. Indeed,
whenever the size of the list/sequence in Algorithm 2 exceeds
scurrent

min by � + 1, the flow is returned from RP. Apart from
reducing the peak memory usage, this dynamic pruning of
solutions helps in improving run time by reducing copy/delete
operations.

3) Repeatability Pruning: The sequence (in our notation)
denoting a prefix graph can have consecutive indices. We
denote the maximum number of consecutive indices in a
sequence by R. For instance, “33312” in Fig. 6 has 3 con-
secutive 3’s in the sequence so R = 3. We have observed
that R = 1 does not degrade the solution quality, but signifi-
cantly reduces the search space at an early stage. For instance,
in Fig. 7, “3132” is a better solution than “33312” both in
terms of logic level and size. Algorithm 2 is modified to track
repeatability and prune solutions with R > 1.

Lemma 2: If R > 1, the non-trivial fan-in node of the prefix
node represented by the repetitive index is an input node. For
instance, N1, N2, and N3 in Fig. 7 are represented by the index
3 consecutively. Among them, N2 and N3 are the nodes where
repetition of the index 3 occurs. By this lemma, the non-trivial
fan-in nodes of N2 and N3 would be input nodes. Please note
that, the non-trivial fan-in node of N1 (represented by first
occurring index) is also an input node in this example, but it
is not necessarily true always.

Proof: Let p and x be 2 consecutive prefix nodes in a
sequence and they have the same MSB as shown in Fig. 8.
Then the trivial fan-in node of x is p and suppose the non-
trivial fan-in node of x be y. We need to prove that y is an
input node. We shall prove this by contradiction. Let us con-
sider that y is a prefix node, then the relative order of the
prefix nodes must be p→ x→ y or y→ p→ x, since p and
x are consecutive. p→ x→ y is not possible as it violates the
topological ordering and y→ p→ x violates the left-to-right
ordering (since y must be right to p). So y must be an input
node.

ROY et al.: TOWARDS OPTIMAL PERFORMANCE-AREA TRADE-OFF IN ADDERS BY SYNTHESIS 1523

Fig. 8. Proof of Lemma 2.

Fig. 9. Prefix structure restriction.

4) Prefix Structure Restriction: This is a special restriction
in prefix graph structure for 2m bit adders with m logic levels.
For instance, if we need to construct an 8 bit adder with logic
level 3, the only possible way to realize output bit 7 using the
same notation as (2) is given by

y7 = ((x7 o x6) o (x5 o x4)) o((x3 o x2) o (x1 o x0)). (7)

So 2m−1 prefix nodes are fixed and must be present in any
2m bit adder with m level. These fixed prefix nodes form a
binary-tree structure as illustrated for 8 bit in Fig. 9. Among
these fixed nodes, we define the bottom-most node (or the
node with highest topological level) in each bit-column of this
binary-tree prefix structure to be the base node for that bit. For
instance, b3 is the base node for bit-index x3. Please note that,
we have used the terms bit-width and bit-index interchange-
ably. As bit-index starts from 0, the prefix graph of bit-width
n is same as that for bit-index n− 1.

Lemma 3: Let lv(bi) denotes the level of base-node of bit-
index i and j = i− 2lv(bi). Then ∀j, s.t. j > 0, lv(bj) > lv(bi).

Proof: Let a bit-index i be represented as i + 1 = 2a0 +
2a1 + · · · + 2ak−1 + 2ak , where a0 > a1 > . . . ak−1 > ak.
Then lv(bi) = ak (bit-index starting from 0). For example,
lv(b5) = 1, since 5 + 1 = 6 = 22 + 21. Therefore, j + 1 =
2a0 + 2a1 + · · · + 2ak−1 , which implies that lv(bj) = ak−1 >

ak = lv(bi).
Next, we will prove several lemmas/theorems which will

hold good under this prefix structure restriction and provide
a basis of generating size-optimum solutions for 2m bit pre-
fix graph with level m. Please note that, we are not claiming
that our approach with the restrictions imposed by these lem-
mas/theorems will provide all size-optimum solutions. Instead,
we will prove theoretically that our approach with each of
these restrictions does not hamper the optimality and we will
be able to obtain at least one optimum solution. In practice,
our approach provides more than one optimum solution (to be
discussed in Section III-E).

Any node N1 is said to be above (or below) another node
N2 if MSB (N1) = MSB (N2) and level (N1) < (or >) level
(N2). For example, node nb2 is above the node b7 in Fig. 9.

Lemma 4: There exists an optimum solution even when a
restriction is imposed in search space by not allowing non-
trivial fan-in from the nodes which are above the base nodes.

Fig. 10. Proof of Theorem 2 (2).

For example, if we do not allow non-trivial fan-in from nb1,
nb2, nb3 (Fig. 9) for constructing any prefix graph of bit-width
2m with level m, we will still get a size-optimum solution.

Please refer to Appendix for proof.
Corollary 2: ∀m, there exists an optimum solution when all

non-trivial fan-ins from bit-index (2m − 1) are taken from its
base-node, b2m−1.

Proof: Since the base-node for any bit index (2m − 1) is
the output node for that bit-index as well, the proof directly
follows from Lemma 4.

Theorem 2: Let Gopt
2m be an optimum prefix graph of bit-

width 2m and level m with the imposed restriction mentioned
in Lemma 4. Suppose Gx be the prefix graph of bit-width x,
embedded in Gopt

2m . Then Gx is an optimum prefix graph of
bit-width x and level m under prefix structure restriction, if
either of the following conditions are satisfied for x.

1) x = 2p.
2) x = 2p + 2q.

p, q ∈ Z+ and p, q < m.
Proof: Suppose, G2p is not an optimum prefix graph of bit-

width 2p and level restriction m. By Corollary 2, all non-trivial
fan-ins from bit-index 2p−1 are from its base-node b2p−1 (this
is the output node for bit-index 2p−1 as well), which implies
that any prefix node, which is at the right-side of the bit-index
2p−1 (or alternatively bit-indices lesser than 2p−1), will not
be used for constructing higher output bits (i > 2p − 1). So
if G2p is not optimum, then we should be able to reduce the
size of G2p keeping the rest of the prefix-structure, which is
at the left side of bit-index (2p − 1), intact. But that reduces
the size of Gopt

2m , leading to contradiction.
Without any loss of generalization, we can assume p > q

(p = q leads to condition 1) and suppose Gx is not optimum,
where x = 2p + 2q. Therefore, lv(bx−1) = q and q prefix
nodes, in the column corresponding to bit-index x − 1, are
fixed under prefix structure restriction. The optimal way to
generate the output for bit-index x − 1 is by combining the
base nodes b2p−1 (2p − 1:0) and bx−1 (x− 1:2p) as shown in
Fig. 10, because it adds only 1 node N3 and increases its level
to its minimum possible value p + 1 (output bit for bit-index
x−1 can not be realized in less than p+1 levels as x−1 > 2p).
By Lemma 4, the non-trivial fan-in from bit-index x − 1 can
only come from b2p−1 or N3, which signifies that for any prefix
node of bit-index i > x−1, there is no non-trivial fan-in from
the bits Y for optimality, where y ∈ Y if x− 1 < y < 2p − 1.
Moreover, G2p is optimum. Now, if Gx is not optimum, then
we should be able to reduce the size of Gx restoring the prefix
structure between the bit-ranges 2m − 1:x and 2p − 1:0, but
that reduces the size of Gopt

2m , leading to contradiction.
Let us denote the bit-indices 0, 2, . . . be even indices (E)

and 1, 3, . . . be odd indices (O). In our approach, we construct
the prefix-graphs of higher bits in a bottom-up fashion.

1524 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 10, OCTOBER 2014

Fig. 11. Proof of Lemma 5.

Fig. 12. Proof of Theorem 4.

Lemma 5: Under prefix structure restriction there exists an
optimum solution without allowing any non-trivial fan-in from
a prefix node corresponding to bit-index ie ∈ E.

Proof: ∀io ∈ O, lv(bio) ≥ 1, which means there exists an
optimum solution where any input node corresponding to odd
indices is not a non-trivial fan-in node (by Lemma 4) implying
that it is not essential to have any prefix node with LSB lsb ∈
O to get an optimum solution. But to have a non-trivial fan-in
from a prefix node of bit-index ie ∈ E we need to have at least
one prefix node whose LSB lsb = ie+1 ∈ O (Fig. 11). Hence
the Lemma is proved.

Theorem 3: There exists an optimum solution under prefix
structure restriction when prefix-graph of bit-index io + 1 is
constructed from a prefix graph (gio) of bit-index io, by adding
minimum number of prefix nodes, where io ∈ O.

Proof: It follows from Lemma 5 that there exists an opti-
mum solution where no non-trivial fan-in is taken from any
prefix node of bit ie ∈ E. So addition of minimum number
of prefix nodes to construct a prefix-graph of bit-index io + 1
from gio restores the optimality.

Theorem 4: There exists an optimum solution when search
space is restricted by setting R = 1.

Proof: Let R > 1. By Lemma 2, the non-trivial fan-in node
for the corresponding node is an input node. Since ∀io ∈ O,
lv(bio) ≥ 1, there exists an optimum solution where any input
node corresponding to odd indices is not a non-trivial fan-
in node (by Lemma 4). Now it remains to prove that we do
not need such non-trivial fan-in input node to be of bit-index
ie ∈ E either. For contradiction, let us consider that input
node corresponds to ie. But, this will require a non-trivial fan-
in from an input node of io = ie + 1 (Fig. 12), which is not
essential to get an optimum solution. So R = 1 will provide
an optimum solution.

E. Method to Generate Size Optimum Solution for
2m Bit Adder With Level m

Procedure “buildBottomUp” in Algorithm 2 generates Gn+1
from Gn exhaustively and we call this procedure for bit-indices
2 to 2m−1 to generate the solutions for G2m . We apply certain
pruning strategies to this approach, and each pruning strategy

is proven not to degrade the optimality of the solution. These
strategies are as follows.

1) Enabling prefix-structure restriction, which is a con-
straint for generating any 2m bit adder with level m.

2) Not allowing any non-trivial fan-in from any node above
base-nodes. (Lemma 4 ensures the optimality in this
case).

3) Set � = 0 for any bit-index x−1, such that x = 2p + 2q

(p, q ∈ Z). We have proved in Theorem 2 that prefix
graphs of bit-width x embedded in an optimum pre-
fix graph (with the restriction imposed by Lemma 4)
for 2m bit adder with level m is also optimum for x
bit adder with level m under prefix structure restriction.
So keeping only the minimum size solutions at each
bit-index x− 1 is not going to hamper the optimality of
the solution.

4) Greedy construction of prefix graph of even bit-index by
adding the minimum prefix node to the prefix graph of
its immediate next lower bit-index (Theorem 3).

5) Set R = 1. (Theorem 4 ensures optimality).
With this approach, we are able to generate the size-

optimum solutions for 32, 64, and 128 bits (optimum sizes are
74, 167, and 364 respectively). The total number of size-
optimum solutions for them are respectively 2, 8, and 768.
It is interesting to note that we also get exactly these many
size-optimum solutions without using the restriction imposed
by Lemma 4, Theorems 2 and 3, rather by setting � = 0, 1, 2
for n = 32, 64, 128 respectively and enabling prefix structure
restriction (note that without this prefix structure restriction, �

needs to be 3 to achieve the optimum size for n = 128). This is
intuitive as we need higher � (i.e., more exploration of search
space) to get optimum solutions for higher bits. Increasing �

beyond that does not reduce the size further, and this reinforces
our claim of theoretical size-optimality for 2m bit adders with
level m. The run-time for generating the size-optimum solu-
tions for 128 bit is 5.8 s, where as the same for 64 bit adder
is 0.04 s.

We denote the pruning strategies 1 to 4 as the set of
special pruning strategies (Sbin

pruning) which is effective under
binary prefix structure restriction and without any other restric-
tions, such as fan-out. However, we will be using Sbin

pruning for
more general cases to be illustrated later. Please note that,
we have kept the restriction R = 1 outside this set, as we
will be using this pruning strategy more extensively and in all
situations.

F. Generating Solutions for More General Case

In the earlier section, we have described a method to gener-
ate size-optimum solutions for n = 2m bit adder with level
m. We have extended our approach for bit-width n 	= 2m

and levels other than log2 n. We impose the pruning strate-
gies Sbin

pruning till 2
log2(n)�−1 and then remove that restriction.
For example, while we run our algorithm to generate 64 bit
prefix graphs with level > 6, we remove the prefix struc-
ture restriction after 32 bit. The notion behind this heuristic is
that keeping the balanced structure till some point would help
in getting minimum-size solutions for higher bits. In addition
to this, we set � = 3 and R = 1 to scale the approach in
general case.

ROY et al.: TOWARDS OPTIMAL PERFORMANCE-AREA TRADE-OFF IN ADDERS BY SYNTHESIS 1525

TABLE I
PREFIX GRAPH SIZE FOR log2 n LEVEL

IV. EXPERIMENTAL RESULTS

We have implemented our approach in C++ and integrated
our approach to a placement driven synthesis (PDS) [27]
tool in IBM. It has been executed on a linux machine with
72GB RAM and 2.8GHz CPU. First, we present our results
at the logic synthesis (technology independent) level. As
the dynamic programming based area-heuristic approach pre-
sented in [11] has achieved better results compared to the
other existing techniques [12], [13], we have implemented this
approach as well to compare with our experimental results.
Table I presents the comparison of minimum number of pre-
fix nodes for adders with different bit-width (n) with log2 n
logic level constraint for all output bits. The number of pre-
fix nodes for Sklansky adders are also mentioned in Table I
for adders of bit-widths which are power of 2. For 128 bit
adder, our approach improves Sklansky adder by 18.8% in
terms of the size of the prefix graph. Table II compares
the result of our algorithm with [11] for levels greater than
log2 n. We can see that we have achieved theoretically pos-
sible minimum size solutions for most of the cases, where
the bound is known. Prefix graph solutions for 32 bit adders
with level 5 and 6 generated by our approach are shown
in Fig. 13.

Next, we run our algorithm to generate the zero-deficiency
prefix graphs. For example, we can build a zero-deficiency
prefix graph with L = 7 till 54 bit and the minimum achiev-
able size is 99. So we ran our algorithm for 54 bit graph
with level restriction of 7, and got the minimum size (smin)
as 99 which is the theoretical minimum indeed. With same
constraints, the minimum size solutions for [11] is 109 and
for [13] it is 104 [8]. Table III presents the result for L = [3, 8]
and our approach is able to achieve the theoretically possible
minimum prefix graph sizes.

In Tables I–III, the input profile is uniform, i.e., the arrival
times of all input bits are assumed to be the same. In Table IV,
we have compared the result for non-uniform input profile.
The required time of arrival for all output bits are set to 9
and the input arrival levels have been randomly generated
between 0–4. Finally, we run our algorithm for 32 bit adders
with non-uniform input/output profiles appeared in [13]. In
these examples, the input arrival times are correlated, for
example late higher words or monotonically increasing inputs,
which are more common in practical situations like multipli-
cations etc. Table V compares the result with [11] and [13]
for those profiles. We can see that we have obtained compa-
rable/better results than [11] and [13] in all cases.

As mentioned earlier, the existing automated synthesis
approaches ([11], [12], [13], etc.) are not flexible in restrict-
ing parameters like fan-out, which is a critical parameter to

TABLE II
PREFIX GRAPH SIZE FOR OTHER THAN log2 n LEVEL

TABLE III
PREFIX GRAPH SIZE FOR ZERO-DEFICIENCY PREFIX GRAPHS

TABLE IV
PREFIX GRAPH SIZE FOR NON-UNIFORM INPUT PROFILE

IN A 32 BIT ADDER

TABLE V
COMPARISON ON ZIMMERMANN’S EXAMPLES

optimize post-synthesis design performance. Usually, electri-
cal violations at high-fanout points are mitigated by buffer-
insertion and gate-sizing, but at the cost of performance. We
study the impact of the parameter maximum fan-out (MFO) by
plotting the worst negative slack (WNS) against the size of the
prefix graph for 16 bit adders (Fig. 14). We observe that the
prefix graphs of higher node count and smaller MFO are better
for timing. For high-performance designs, Kogge–Stone [1] is
the most effective adder structure due to the special property

1526 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 10, OCTOBER 2014

Fig. 13. 32 bit prefix graphs generated by our approach with level 5 and 6.

Fig. 14. # of prefix nodes versus. WNS for 16 bit adder.

TABLE VI
COMPARISON WITH KOGGE–STONE ADDER

that maximum fan-out (MFO) of a n bit adder is less than
log2 n (without any buffer insertion) and the fan-out for prefix
nodes at logic level log2 n− 1 is 2. Table VI shows that, even
with a fan-out restriction of 2 for all prefix nodes, the pre-
fix graph generated by our approach has fewer prefix nodes
than the prefix graph for a Kogge–Stone adder. Fig. 15 shows
such an example for 16 bit. As mentioned in Section III-D2,
� needs to be set to a higher value in this case. For instance,
the parameters used to generate the 64 bit adder solution with
a fan-out restriction of 2 is � = 20, R = 1, and MFO = 2.
However, it should be noted that although our approach scales
with fan-out restriction and logic level log2n, it does not scale
well with fan-out restriction and levels higher than log2n for
adders of higher bit-width (n > 32).

We run our approach, integrated in PDS tool, on the
minimum size solutions of 8, 16, 32, 64 bit adders under tight
timing constraints. A cutting-edge technology node (CMOS
SOI 22nm) is used for technology mapping. In addition to this,

Fig. 15. Size of a 16 bit prefix graph with level 4 and fanout 2 generated
by our approach is less than that of Kogge Stone by 7.

TABLE VII
POST PLACEMENT COMPARISON

other optimization techniques such as buffer-insertion, gate-
sizing etc., which are inherent in the tool are applied followed
by placement. However, we have prevented Vth-swapping
in the placement tool so that the leakage power becomes
proportional to area. We present the various metrics like area,
WNS, wire-length, total-negative-slack (TNS) after placement
in Table VII for the solution having best WNS. The target
delay specified for 8, 16, 32, and 64 bit adders are respectively
35ps, 45ps, 65ps, and 75ps. So we can calculate the critical

ROY et al.: TOWARDS OPTIMAL PERFORMANCE-AREA TRADE-OFF IN ADDERS BY SYNTHESIS 1527

Fig. 16. Area versus worst negative slack plot for 16 and 32 bit adders.

Fig. 17. 64 bit adder after placement.

path delay by adding the target delay and the absolute value
of the WNS. For instance, the critical path delay for 64 bit
Kogge–Stone adder is 75 + 84.5 = 159.5ps. Both wirelength
and area are unitless. Area is reported as the number of icells
and wirelength as the number of tracks. An icell has a constant
area based on pitch. Our approach is compared against regu-
lar adders like Brent–Kung (BK), Kogge–Stone (KS) adders,
adders generated by dynamic programming (DP) [11], and
64 bit full custom adder (CT).

Fig. 16 represents the plot of area versus WNS for the solu-
tions provided by our approach along with those provided by
other methods. We can draw a pareto curve with the solution
points obtained using our approach, which gives the option
to select the individual points on the pareto curve based on
area/power budget. We see that the solution points of the other
methods are above and/or to the right of this curve, which indi-
cates that we can always get some solution on the pareto-front,
which is better in terms of performance and/or area than each
of the other methods. For a 16 bit adder, the total number of
pareto-optimal points is 4 and the single point p1 provides bet-
ter solution than DP, KS, and BK. For a 32 bit adder, the points
p1, p2, p3 are better solutions than BK, DP, KS respectively.

Fig. 17 compares these metrics for single solution (with best
WNS) of 64 bit adder with other approaches. Our approach
improves performance by 19% with 2% higher area over a
Brent-Kung adder, improves performance and area by 0.4%
and 33%, respectively, over a Kogge–Stone adder, improves
performance and area by 3% and 6.7%, respectively over
Dynamic Programming [11], and improves performance and

Fig. 18. Delay versus power plot for 64 bit adder.

area by 3.2% and 8.5% over a full custom adder design. Note
that the performance improvement was computed based on
the actual critical path delay value and not the worst negative
slack. Our approach also improves wire-length and TNS over
both Kogge–Stone and full custom adder design.

Since most adders today are synthesized in Design Compiler
(DC) using Synopsys DesignWare, the adder architectures pro-
vided by our approach are also synthesized in DC (Version
G-2012.06-SP4) and placed, routed and timed by IC Compiler
(ICC) to compare with the behavioral adder implementation
(Y = A + B) by DC. To generate high-performance adders,
DC produces modified Sklansky adders consisting of alternat-
ing AOI21 and OAI21 gates, and employing gate-sizing or
buffer insertion to handle the high-fanout nodes. This gener-
ally gives delay almost close to Kogge–Stone at much lower
area/power and competitive power/performance/area with even
custom adders. 32 nm SAED LVT cell-library [28] (avail-
able through Synopsys University Program) has been used for
technology-mapping. All experimental results for DC/ICC are
in “tt1p05v125c” corner, in which the supply voltage is 1.05 V
and temperature is 125◦C. The FO4 delay of a unit-sized
inverter in this corner is 36 ps and the area of the unit-sized
inverter is 1.27 μm2.

Fig. 18 shows the delay versus power (total power i.e.,
leakage + switching + internal power) plot for minimum
size solutions of 64 bit adder architectures provided by our
approach after synthesis by DC and placed, routed by ICC.
For all these runs (including those for Sklansky, Kogge–Stone
and behavioral adder synthesis by DC), the target delay is

1528 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 10, OCTOBER 2014

TABLE VIII
COMPARISON FOR 64 BIT ADDERS, SYNTHESIZED BY DC AND

PLACED/ROUTED BY ICC

set to 200 ps, the operating frequency is 1 GHz, activ-
ities at the primary inputs are 0.1, and the adders are
synthesized by the command “compile_ultra.” Please note that,
the option “-area_high_effort_script” is on by default. We also
perform some experiments by: 1) switching on the option
“-timing_high_effort_script” which can further optimize at the
expense of run time and 2) altering the target delay (180 ps
or 220 ps), but observe that the change in delay value remains
within a range of 5–10 ps. We can draw the pareto-optimal
curve of delay versus power with those solutions and see that
the solution provided by Sklansky adder, Kogge–Stone adder
and that by behavioral adder implementation of DC are above
and/or to the right side of the pareto-front. For instance, the
solution p2 in Fig. 18 improves Sklansky adder in all metrics,
i.e., delay (1.8%), area (2.4%), and power (2.8%) or solu-
tion p1 in Fig. 18 improves Kogge–Stone adder in area by
30.6% and power by 29.6% with 3.8 ps or 1.1% overhead
in delay. Compared to DC behavioral adder implementation,
our approach (point p1) provides competitive delay (5 ps bet-
ter) with significant area (26%) and power (18%) reduction.
Table VIII compares our approach with other approaches in
terms of delay, power, and area. Note that the solution with
best delay is considered for this comparison.

It should be stressed that our approach generates several
candidate prefix graphs for performance/area trade-off and
prefix networks, which would give best performance, are not
the same across different technology node and libraries. For
instance, we have run our approach in PDS (IBM) with CMOS
SOI 22 nm and in Synopsys DesignWare (DC + ICC) with
32 nm SAED library, and the prefix trees which have given
the best performance in the two cases differ one from another.
Ling transformations [20] can also be applied to the pre-
fix graphs generated in our approach to further optimize the
performance. Also, since the solutions for regular adders are
located above and/or to the right side of the pareto-front, we
believe that the solutions on the pareto-front can be used as
alternatives for regular adders for use in custom designs.

V. CONCLUSION

In this paper, a highly efficient parallel prefix graph gen-
eration driven high performance adder synthesis technique is
presented. The complexity of parallel prefix graph generation
problem for adders is exponential in the number of bits. We
present efficient pruning strategies and implementation tech-
niques to scale this approach up to 128 bit adders. We have
demonstrated a way to generate size-optimum prefix graphs
for 2m bit adders with level m and proved its optimality. The
results, both at the technology-independent level and after
physical synthesis (post placement) show that this approach
significantly improves over existing techniques by yielding
better quality of results in terms of both timing and wire length

Fig. 19. xp : xr 	∈ RBR =⇒ non-trivial fan-in from node above bq.

for high performance adders in state of the art microproces-
sor designs. The proposed approach improves over even the
manually designed custom adders yielding, up to 3% better
delay and 9% better area. As our approach can generate mul-
tiple prefix graph structures for given constraints, it provides
a framework for further exploration to identify structures that
can account for practical design issues like wire congestion
and power consumption.

APPENDIX

Proof (Lemma 4): Let us denote any node by a triplet, viz.
bit-range of the node (MSB and LSB) and level. We consider
a node M1 (msb1, lsb1, level1) to be no worse than another
node M2 (msb2, lsb2, level2) iff msb1 = msb2, lsb1 = lsb2
(i.e., bit-ranges of M1 and M2 are equal) and level1 ≤ level2.
We define a restricted set of bit-range (RBR) as any bit-range
msb:lsb ∈ RBR, if ∀i, such that msb > i ≥ lsb, LSB(bi) ≥ lsb.
For instance, 7:4 ∈ RBR, since LSB(b6) = 6 ≥ 4, LSB(b5) =
LSB(b4) = 4 ≥ 4, where as 4:2 	∈ RBR, since LSB(b3) =
0 < 2. It is easy to notice that if there is no non-trivial fan-in
from nodes above base-nodes, then there does not exist any
node in the prefix graph, for which the bit-range is not in
RBR, because for any bit-range msb:lsb 	∈ RBR, ∃q, such that
msb > q ≥ lsb and LSB(bq) < lsb, which is not possible
unless there is a non-trivial fan-in from any node above bq
(black node marked in Fig. 19).

The structure of the proof is as follows. We will first prove
the proposition (by induction) that by not allowing any non-
trivial fan-in from the nodes above base-nodes, we can still
realize any bit-range br ∈ RBR with same (or less) level
restriction and size, compared to allowing non-trivial fan-in
from nodes above base-nodes. Once we prove this for any such
bit-range, it directly follows that we can get the size-optimum
solutions of 2m bit prefix graph with level m by not allow-
ing any non-trivial fan-in from the nodes above base-nodes,
because the bit-ranges of all output bit nodes ∈ RBR.

Let bx (x, z + 1, r) be a base-node for bit-index x and N1
(x, y+ 1, l1) be any node above bx, where l1 < r (Fig. 20). We
assume that this proposition holds for bit-ranges with MSB ≤ x
and then prove its validity for any bit-range with MSB = x+1
(by induction). Please note that, the proposition holds for x = 1
(Bit-range 1:0 can be constructed only by adding input bits for
bit-index 0 and 1). The node N1 may be used for constructing
any bit-range with MSB x + 1 by taking a non-trivial fan-in
from N1. But if we can show that there is always an alternative
way by taking non-trivial fan-in from or below bx (which is
no worser than allowing the non-trivial fan-in from N1) to
construct the bit-range with MSB x + 1, then we are done.
Let we combine the node N1 with the input node for bit-index
x+1 to get N5 (x+1, y+1, l1+1). Let N2 (z, u, l2) be the node
for bit z, which is used for realizing any arbitrary bit-range

ROY et al.: TOWARDS OPTIMAL PERFORMANCE-AREA TRADE-OFF IN ADDERS BY SYNTHESIS 1529

(a)

(b)

(c)

Fig. 20. Proof of lemma 4. (a) Option 1. (b) Option 2. (c) Alternative option.

x+1:u ∈ RBR with MSB x+1. By our assumption of induction,
l2 ≥ lv(bz) and lv(bz) > lv(bx) = r (by Lemma 3). Therefore,
l2 > r.

Now, there are 2 options to get x + 1 : u by using nodes
N5 and N2. Firstly, we can combine N5 and some node N3
(y, z+ 1, l3) to generate N6 (x + 1, z + 1, l6) and then com-
bine with N2 to generate N7 (x + 1, u, l7) [Fig. 20(a)].
l6 = max(l1 + 2, r + 1) (since x + 1 − z > 2r). Therefore,
l7 = max(l1 + 3, r + 2, l2 + 1) = max(l1 + 3, l2 + 1) (since
l2 > r). In the second case [Fig. 20(b)], we combine N4 and
N5 to generate N8 (x+1, u, l8), where l8 ≥ max(l1+2, l2+2).
But we can always have an alternative choice to construct the
bit-range x+1 : u by combining bx and the input node for bit-
index x+1 and then combine with N2 [Fig. 20(c)] to generate
N10 (x + 1, u, l10) where l10 = max(r + 2, l2 + 1) = l2 + 1.
Compared to both option 1 and option 2, the alternative choice
adds less or equal number of nodes and still realize the same
bit-range with less or same level restriction (l10 < l8 and
l10 ≤ l7).

Hence the proposition holds for any bit-range ∈ RBR with
MSB = x + 1, given it holds for any bit-range ∈ RBR with
MSB ≤ x. This proves the lemma.

ACKNOWLEDGMENT

The authors would like to thank R. Chhabra, currently with
Broadcom, for his help in setting up DC/ICC run.

REFERENCES

[1] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solu-
tion of a general class of recurrence equations,” IEEE Trans. Comput.,
vol. C-22, no. 8, pp. 786–793, Aug. 1973.

[2] J. Sklansky, “Conditional sum addition logic,” IRE Trans. Electron.
Comput., vol. EC-9, no. 2, pp. 226–231, Jun. 1960.

[3] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Trans. Comput., vol. C-31, no. 3, pp. 260–264, Mar. 1982.

[4] T. Han and D. Carlson, “Fast area-efficient VLSI adders,” in Proc.
IEEE 8th Symp. Comput. Arith. (ARITH), Como, Italy, May 1987,
pp. 49–56.

[5] C. Zhou, B. M. Fleischer, M. Gschwind, and R. Puri, “64-bit pre-
fix adders: Power-efficient topologies and design solutions,” in Proc.
IEEE Custom Integr. Circuit Conf., San Jose, CA, USA, Sep. 2009,
pp. 179–182.

[6] J. Liu, Y. Zhu, H. Zhu, C. K. Cheng, and J. Lillis, “Optimum prefix
adders in a comprehensive area, timing and power design space,” in
Proc. Asia South Pac. Des. Autom. Conf., Yokohama, Japan, Jan. 2007,
pp. 609–615.

[7] M. Snir, “Depth-size trade-offs for parallel prefix computation,”
J. Algorithms, vol. 7, no. 2, pp. 185–201, Jun. 1986.

[8] C. K. Cheng, H. Zhu, and R. Graham, “Constructing zero-deficiency
parallel prefix adder of minimum depth,” in Proc. Asia South Pacific
Des. Autom. Conf., Jan. 2005, pp. 883–88.

[9] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, Oct. 1980.

[10] J. P. Fishburn, “A depth decreasing heuristic for combinational logic;
or how to convert a ripple-carry adder into a carry-lookahead adder or
anything in-between,” in Proc. Des. Autom. Conf., Orlando, FL, USA,
Jun. 1990, pp. 361–364.

[11] T. Matsunaga and Y. Matsunaga, “Area minimization algorithm for par-
allel prefix adders under bitwise delay constraints,” in Proc. Great Lakes
Symp. VLSI, 2007, pp. 435–440.

[12] J. Liu, S. Zhou, H. Zhu, and C. K. Cheng, “An algorithmic approach
for generic parallel adders,” in Proc. Int. Conf. Comput. Aided Des.,
San Jose, CA, USA, Nov. 2003, pp. 734–740.

[13] R. Zimmermann, “Non-heuristic optimization and synthesis of paral-
lel prefix adders,” in Proc. Int. Workshop Logic Archit. Synth., 1996,
pp. 123–132.

[14] M. Ziegler and M. Stan, “Optimal logarithmic adder structures with a
fanout of two for minimizing the area-delay product,” in Proc. Int. Symp.
Circuit. Syst., Sydney, NSW, Australia, May 2001, pp. 657–660.

[15] S. Knowles, “A family of adders,” in Proc. 15th IEEE Symp. Comput.
Arithmetic, Vail, CO, USA, 2001, pp. 277–284.

[16] A. K. Verma and P. Lenne, “Towards the automatic exploration
of arithmetic-circuit architectures,” in Proc. Des. Autom. Conf.,
San Francisco, CA, USA, 2006, pp. 445–450.

[17] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Towards optimal
performance-area trade-off in adders by synthesis of parallel prefix struc-
tures,” in Proc. 50th ACM/EDAC/IEEE Des. Autom. Conf., Austin, TX,
USA, May/Jun. 2013, pp. 1–8.

[18] D. Harris, “A taxonomy of parallel prefix networks,” in Proc. 37th
Asilomar Conf. Signals Syst. Comput., Nov. 2003, pp. 2213–2217.

[19] B. R. Zeydel, T. T. J. H. Kluter, and V. G. Oklobdzija, “Efficient mapping
of addition recurrence algorithms in CMOS,” in Proc. 17th IEEE Symp.
Comput. Arithmetic, Jun. 2005, pp. 107–113.

[20] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix VLSI
ling adders,” IEEE Trans. Comput., vol. 54, no. 2, pp. 225–231,
Feb. 2005.

[21] S. Mathew, M. Anders, R. K. Krishnamurthy, and S. Borkar, “A 4-
GHz 130 nm address generation unit with 32-bit sparse-tree adder
core,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 689–695,
May. 2003.

[22] M. Ketter et al., “Implementation of 32-bit Ling and Jackson adders,” in
Proc. 45th Asilomar Conf. Signals Syst. Comput. (ASILOMAR), Pacific
Grove, CA, USA, Nov. 2011, pp. 170–175.

[23] S. Kao, R. Zlatanovici, and B. Nikolic, “A 240ps 64b carry-lookahead
adder in 90nm CMOS,” in Proc. Int. Solid-State Circuits Conf.,
San Francisco, CA, USA, Feb. 2006, pp. 1735–1744.

[24] S. Naffziger, “A subnanosecond 0.5 um 64b adder design,” in Proc. IEEE
Int. Solid-State Circuits Conf., San Francisco, CA, USA, Feb. 1996,
pp. 362–363.

[25] D. Patil, M. Horowitz, R. Ho, and R. Ananthraman, “Robust energy-
efficient adder topologies,” in Proc. IEEE Symp. Comput. Arithmetic,
Montepellier, France, Jun. 2007, pp. 16–28.

1530 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 10, OCTOBER 2014

[26] H. Sutter, More Exceptional C++. Addison Wesley, 2002 [Online].
Available: http://www.gotw.ca/publications/mxc++.htm

[27] H. Ren, D. Z. Pan, and D. S. Kung, “Sensitivity guided net weighting for
placement driven synthesis,” in Proc. Int. Symp. Phys. Des., Apr. 2004,
pp. 10–17.

[28] (2014, Mar. 14). [Online]. Available: http://www.synopsys.com/
Community/UniversityProgram/Pages/32-28nm-generic-library.aspx

Subhendu Roy (S’13) received the B.E. degree in
electronics and telecommunication engineering from
Jadavpur University, Kolkata, India, in 2006, and the
M.Tech. degree in electronic systems from the Indian
Institute of Technology, Bombay, Mumbai, India,
in 2009. He is currently pursuing the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin,
TX, USA.

His current research interests include design
automation for logic synthesis, physical design, and

cross-layer reliability. He has 3 years of full-time industry experience at EDA
company, Atrenta, where he was involved in developing tools in the architec-
tural power domain and RTL domain. He also did internships at IBM T. J.
Watson Research Center in 2012 and Mentor Graphics in 2013 and 2014.

Mr. Roy received the Best Paper Award from ISPD’14.

Mihir Choudhury (S’05–M’12) received the
B.Tech. degree in computer science and engineering
from the Indian Institute of Technology, Bombay,
Mumbai, India, and the M.S. and Ph.D. degrees
in computer engineering from Rice University,
Houston, TX, USA.

He is a Research Staff Member at the IBM
T. J. Watson Research Center, Yorktown Heights,
NY, USA. His current research interests include
advanced logic synthesis algorithms and high-level
synthesis.

Ruchir Puri (F’07) received the bachelor’s degree in
electronics and communication engineering from the
National Institute of Technology, Kurukshetra, India,
in 1988, the master’s degree in electrical engineer-
ing from the Indian Institute of Technology, Kanpur,
Kanpur, India, in 1990, and the Ph.D. degree in elec-
trical and computer Engineering from the University
of Calgary, Calgary, AB, Canada, in 1994.

He is currently an IBM Fellow at IBM
T. J. Watson Research Center, Yorktown Heights,
NY, USA, where he leads high performance design

and methodology solutions for all of IBM’s enterprise server and system chip
designs. He is an Inventor of over 50 U.S. patents (both issued and pending)
and has authored over 120 publications on the automated design of low-power
and high-performance circuits with several Best Paper awards. He is very pas-
sionate about technology among school children and has been evangelizing
fun with electronics and FIRST LEGO LEAGUE Robotics in community
schools.

Dr. Puri is a member of the IBM Academy of Technology and is an IBM
Master Inventor. In addition, he has received the Best of IBMİ awards in both
2011 and 2012. He is a recipient of Semiconductor Research Corporation
Mehboob Khan outstanding Mentor Award and has been an Adjunct Professor
at the Department of Electrical Engineering, Columbia University, New York,
NY, USA. In 2011, he was honored with the John Von-Neumann Chair at the
Institute of Discrete Mathematics at Bonn University, Bonn, Germany, for his
scientific contributions and their impact on broader society. He has received
numerous accolades including the highest technical position at IBM, the IBM
Fellow, which was awarded for his transformational role in microprocessor
design methodology. He is also an ACM Distinguished Speaker and has been
an IEEE Distinguished Lecturer. He also received the 2014 Asian American
Engineer of the Year Award. He has delivered numerous keynotes and invited
talks at major VLSI Design and Automation conferences, National Science
Foundation and U.S. Department of Defense Research panels and has been
an Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS.

David Z. Pan (S’97–M’00–SM’06–F’14) received
the B.S. degree from Peking University, Beijing,
China, and the M.S. and Ph.D. degrees from the
University of California, Los Angeles (UCLA),
Los Angeles, CA, USA.

From 2000 to 2003, he was a Research Staff
Member at IBM T. J. Watson Research Center. He
is currently a Full Professor and Brasfield Endowed
Faculty Fellow at the Department of Electrical
and Computer Engineering, University of Texas at
Austin, Austin, TX, USA. He has published over

200 papers in refereed journals and conferences, and is the holder of eight
U.S. patents. His current research interests include nanoscale design for man-
ufacturability and reliability, physical design, vertical integration design and
technology, and design/CAD for emerging technologies.

Prof. Pan has served as a Senior Associate Editor for ACM Transactions
on Design Automation of Electronic Systems, an Associate Editor for the
IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, the IEEE TRANSACTIONS ON VERY LARGE

SCALE INTEGRATION SYSTEMS, the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART I, the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART II, Science China Information Sciences, Journal of
Computer Science and Technology, and the IEEE CAS Society Newsletter.
He has served as the Chair of the IEEE CANDE Committee and the
ACM/SIGDA Physical Design Technical Committee, Program/General Chair
of ISPD, TPC Subcommittee Chair for DAC, ICCAD, ASPDAC, ISLPED,
ICCD, ISCAS, VLSI-DAT, ISQED, and Tutorial Chair for DAC 2014, among
others. He received a number of awards for his research contributions and
professional services, including the SRC 2013 Technical Excellence Award,
DAC Top 10 Author in Fifth Decade, DAC Prolific Author Award, 11 Best
Paper Awards at premier venues (ISPD 2014, ICCAD 2013, ASPDAC 2012,
ISPD 2011, IBM Research 2010 Pat Goldberg Memorial Best Paper Award in
CS/EE/Math, ASPDAC 2010, DATE 2009, ICICDT 2009, SRC Techcon in
1998, 2007, and 2012), Communications of the ACM Research Highlights
in 2014, ACM/SIGDA Outstanding New Faculty Award in 2005, NSF
CAREER Award in 2007, SRC Inventor Recognition Award three times, IBM
Faculty Award four times, UCLA Engineering Distinguished Young Alumnus
Award in 2009, UT Austin RAISE Faculty Excellence Award in 2014, ISPD
Routing Contest Awards in 2007, eASIC Placement Contest Grand Prize in
2009, ICCAD’12 and ICCAD’13 CAD Contest Awards, IBM Research Bravo
Award in 2003, Dimitris Chorafas Foundation Research Award in 2000, and
ACM Recognition of Service Award in 2007 and 2008. From 2008 to 2009,
he was an IEEE CAS Society Distinguished Lecturer.

