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1 Introduction
With the continuous shrinking of technology nodes, layout
patterns become more sensitive to lithography processes and
degrade manufacturing yield. Lithography hotspots are for-
bidden topologies that need to be identified and eliminated
during physical verification. Various designs for manufactur-
ing (DFM) techniques have been proposed to avoid these
hotspots.2 In the meantime, there are resolution enhancement
techniques, such as optical proximity correction, phase-shift
mask, and off-axis illumination, to improve the printability
of problematic topologies.3,4 However, for a deep subwave-
length process, preventing lithography hotspots is still chal-
lenging and requires accurate physical verification to identify
these hotspots for improving yield.

In physical design and verification stages, the hotspot
detection problem is to locate hotspots on a given layout
with a fast turn-around time. Conventional lithography sim-
ulation5,6 obtains pattern images using complicated lithogra-
phy models. Although it is accurate, full-chip lithography
simulation is computationally expensive and cannot provide
quick feedback to guide the early physical design stages.

To overcome the runtime overhead from conventional
lithography simulation recently, two hotspot detection meth-
odologies have recently evolved: pattern matching-based
methods7–10 and machine learning-based methods.1,11–17 In
pattern matching-based approaches, a hotspot pattern is
defined by its geometric characteristics, and the detection
process involves matching the hotspot patterns with all lay-
out patterns. This method relies on a set of predefined hot-
spot patterns, and patterns outside of the scope may all be
viewed as nonhotspots. Defining too many hotspot patterns
would lead to overestimation and overoptimization, while

defining too few would limit the design space too aggres-
sively. Although pattern matching-based methods are accu-
rate and fast, how to properly define hotspot patterns is still
the main issue. In machine learning-based approaches, a
regression model is constructed according to a given training
data which includes hotspot and nonhotspot patterns. The
model is then used to identify hotspots on a given testing
layout. Machine learning-based approaches enlarge the pos-
sible topologies for hotspots and can improve the detection
rate. However, they also increase the false alarms, which
mean some reported hotspots are not real hotspots.

Effective representation of layout data is essential for the
hotspot detection problem and there have been several
encoding methods proposed. Kahng et al. presented an
early hotspot detection7 that builds a graph for the full layout
to reflect the pattern-related critical dimension (CD) varia-
tion. This method depends on a limited set of CD variation
evaluation methods, and false alarms may be generated. Yu
et al. proposed a DRC-based hotspot detection10 by
extracting critical topological features and modeling them
as design rules. The method used to extract critical design
rules is a crucial process for its performance because exces-
sive rules would lead to numerous false alarms, while few
rules would lead to missed real hotspots. A range pattern8,9

is proposed to incorporate process-dependent specifications
which then can be used to identify hotspots by performing a
string matching. Recently, support vector nachine (SVM) has
become a popular data learning model for hotspot detection.
Drmanac et al.11 utilize SVM to train patterns represented by
the histogram extracted from pixel-based layout images. In
Ref. 13, layout density-based metrics are extracted to train
the SVM kernel. A hybrid pattern matching and machine
learning-based approaches14 are proposed to take advantage
of both techniques.
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In this paper, we propose a high performance hotspot
detection approach based on PCA-SVM classifier. Principal
component analysis (PCA) is a technique for feature extrac-
tion and data reduction. To the best of our knowledge, it is
the first time that a PCA-based method has been applied in
hotspot detection or a manufacturing field. We will demon-
strate the effectiveness of combining PCA with SVM: the
combination can help to significantly improve detection
accuracy. Besides, our approach integrates the advantages
of pattern matching and data learning, where pattern match-
ing techniques enable high accuracy and data learning algo-
rithms provide high flexibility to adapt to new lithography
processes and rules. The main contributions include:

• We propose a multilevel PCA-SVM-based data learn-
ing flow that can extract critical layout information
through mathematical analysis.

• We present a two-stage hierarchical data clustering
approach to partition the layout data, such that irrel-
evant data can be processed by different classifiers
for both efficiency and accuracy improvements.

• We apply several data compression techniques to
enhance the performance of PCA-SVM, including
data sampling for hotspot/nonhotspot imbalances and
dimension reduction for encoded layout data.

• The experimental results show that our approach can
effectively optimize accuracy and false alarms, where
more than 80% of hotspots on all given testing layouts
can be successfully identified.

The rest of the paper is organized as follows. We will first
provide some preliminaries and the problem formulation in
Sec. 2. Our proposed approaches, including hotspot model
calibration and full layout detection, will be explained in
Secs. 3 and 4, respectively. Finally, we will show our exper-
imental results and performance analysis in Sec. 5, followed
by the conclusion in Sec. 6.

2 Preliminaries and Problem Formulation

2.1 Layout Pattern Representation

A layout pattern becomes a hotspot not only because of the
shape itself, but also because of the combined impact of its
neighboring patterns. One fundamental step for the hotspot

detection problem is to represent layout patterns with a cer-
tain format that can well describe the layout environment. In
this paper, we adopt the concept of the fragmentation-based
context characterization18 to encode the layout patterns. This
characterization method provides important layout informa-
tion that is sufficient to describe a hotspot/nonhotspot,
including pattern shapes, the distance between patterns, cor-
ner information (convex or concave), and so on.

Figure 1(a) shows the contour of three layout patterns and
their corresponding Hanan grids. In geometry, the Hanan
grid of a finite set of points in the plane is obtained by con-
structing vertical and horizontal lines through each point in
this set. It is named after Maurice Hanan, who was the first
person to introduce this graph.19 Fragments are generated
based on these grids as shown in (b). For each fragment
f, an effective radius r is defined to cover the neighboring
fragments which need to be considered in the context char-
acterization of f. The radius r is process-dependent, which
shows how neighboring patterns can affect the fragment of
interest f. We then extract all fragments fr covered by the
circle with radius r as shown in Fig. 1(b) and their properties.
A complete representation of f includes the geometric char-
acteristic of each fr, such as the length, corner, space, etc.,
which is stored as a vector for each fragment. In the follow-
ing paper, we refer to the characterized vector of a fragment
as fragment vectoer (FV).

The fragment generation in Ref. 18 is done by Calibre.20

Since our hotspot detection flow is independent of Calibre,
we generate fragments based on the Hanan grids.

2.2 Problem Formulation

There are two types of input layouts, training and testing lay-
outs. In training layout, all hotspot locations are pointed out.
An example of the input training layout is shown in Fig. 2,
where two boxes indicate hotspots resulting from one-
dimensional (1-D) and two-dimensional (2-D) patterns,
respectively. Sometimes a 1-D pattern is called a uni-direc-
tional pattern, while a 2-D pattern is called a bi-directional
pattern. For convenience, in the rest of this paper, we use the
terms 1-D and 2-D patterns to refer to uni-directional and bi-
directional patterns. The fragments within these hotspot loca-
tions are viewed as hotspot patterns, while the rest of the
fragments are viewed as nonhotspot patterns. Given the

Hanan grids

rf

(a) (b)

Fig. 1 Fragmentation-based hotspot signature extraction. (a) Layout patterns and the Hanan grids
shown in dashed lines. (b) Fragmentation-based context characterization within the effective radius.
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training and testing layouts, the hotspot detection problem
can be formulated as follows.

Problem 1 (hotspot detection). Given two sets of train-
ing layout clips, a set of hotspots and a set of nonhotspots,
construct a system/model that can be used to identify
unknown hotspots on a testing layout. The objective is to
increase the number of true hotspots (Hit) and decrease
the number of false hotspots (Extra).

Noted that when given a testing layout with unknown hot-
spots, the hotspot detection engine should report all possible
hotspot locations. However, the reporting of excessive false
hotspots would cause an overoptimization for the later hot-
spot fixing stage and should be minimized.

3 Hotspot Model Calibration
The hotspot detection is essentially composed of two steps:
hotspot model calibration on training layouts, and hotspot
detection on testing layouts. In this section, we will introduce
our approaches to calibrate accurate hotspot classification
models, which will be used in the hotspot detection process.

3.1 Overall Data Calibration Flow

Figure 3 shows our hotspot calibration flow. Given the train-
ing layout clips, we first decompose the layout patterns into
small fragments based on Hanan grids, and collect a set of
hotspot fragments and a set of nonhotspot fragments. We
adopt the fragmentation-based pattern characterization
method18 to encode fragments, in which each fragment is
represented by an FV. This characterization method provides
layout information that is sufficient to describe a hotspot/
nonhotspot environment, such as pattern shapes, the distance
between patterns, corner information (convex or concave),
and so on. First, we apply hierarchical data clustering to
group similar fragments together based on their topological
information (Sec. 3.2). Then the fragments in each cluster are
sampled for data balancing (Sec. 3.3), and are then sent to
our PCA-SVM-based learning process (Sec. 3.4). Finally, a
set of hotspot classification models will be calculated for the
use of the detection process.

3.2 Hierarchical Layout Data Clustering

The main objective of the hotspot calibration process is to
build a model that can distinguish hotspots and nonhotspots.

We observe that the accuracy of the calibrated model highly
depends on the simplicity of the data. If the training data are
very complicated, finding a general rule to classify them
would be difficult and inaccurate. Figure 2 shows two hot-
spot examples highlighted in slashed rectangles; the hotspot
in Fig. 2(a) simply results from 1-D patterns, while the one in
Fig. 2(b) involves several 2-D patterns. Putting these two
types of data in one classifier is already a challenge, not
to mention there are many more types of hotspots.
Training all data in a single classifier is not only time con-
suming, but also degrades the classification performance.
Therefore, we propose a two-stage hierarchical layout data
clustering approach to group the training data (fragments)
according to their topological information.

The first-level clustering tries to cluster fragments by cap-
turing the global view of the pattern environment; while the
second-level clustering further clusters the fragments within
each global cluster based on FV to reflect the local view. The
first-level clustering is introduced in Sec. 3.2.1, and the sec-
ond-level clustering is introduced in Sec. 3.2.2. By applying
our clustering approach, the whole calibration problem can

Fig. 2 Examples of hotspot patterns marked in red. (a) Hotspot resulted from one-dimensional (1-D)
patterns only. (b) Hotspot resulted from complex 1-D and 2-D patterns.

Hierarchical data 
clustering

Data balancing

Multi-level SVM based 
learning

Training 
layout clips

HS NHS

Data sampling 

Sec. 3.2

Sec. 3.3

Sec. 3.4.1

Fragment generation 
and encoding 

Sampled fragments

Dimension reduction
(PCA)

f

[1,1,0,0,...,2,0,10]

Sec. 3.4.2

[1,1,0,0,...,2,0,10]

[1,0,...,2,10]
Model 1

Fig. 3 Hotspot model calibration flow.
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be divided into several independent subproblems. Then all
the calibration results in different clusters can be merged
into our final calibration result. We will show that this clus-
tering approach helps to improve model accuracy and to
reduce the overall runtime in our experimental results.

3.2.1 Global pattern matching-based clustering

In the first stage, we apply a pattern matching-based cluster-
ing technique to provide quick clustering results in a global
view. Representative pattern types are predefined in our pat-
tern matching engine. These pattern types are obtained by
observing the common pattern combinations in the testing
layout clips. We define an impact region based on the lithog-
raphy process. For a fragment f, if there are only 1-D pat-
terns in its impact region, f is clustered as a 1-D pattern. In
general, 1-D and 2-D patterns are separated, and some spe-
cial 1-D/2-D shapes are defined. Specifically, we define a
1-D-type pattern that includes one long feature as shown
in Fig. 4(a), and another 1-D-type pattern that includes par-
allel 1-D features as shown in (b). On the other hand, if there
is a 2-D pattern inside the impact region of a fragment f, it is
clustered as a 2-D pattern. Figure 4(c) shows the pattern
defined by an L-shaped feature and a long feature, while
(d) shows a mountain-shaped pattern. In our implementation,
we define six types of patterns: two types for 1-D patterns,
and four types for 2-D patterns. The definition of the types is
based on our observation that similar pattern types may share
the same rules for detecting hotspot patterns.

Pattern matching is performed for each fragment to deter-
mine which pattern type a fragment belongs to. If no specific
pattern type is found, this fragment is assigned to a default

cluster. The pattern matching-based clustering only requires
scanning the fragments within the impact region, thus it can
be efficiently implemented.

3.2.2 Local k-means clustering

Once the pattern matching-based clustering is done, we fur-
ther apply local clustering by k-means clustering21 for each
cluster obtained in the first stage. Given a set ofN data points
in d-dimensional space Rd, we use k-means clustering to par-
tition the points into k disjoint subsets S. The objective is to
minimize the sum of the mean-squared distance within each
cluster:

min ∶
Xk
i¼1

X
n∈Si

����xn − μi

����
2

; (1)

where xn is a vector representing the n-th data point, and μ is
the mean of points in Si. By mapping FVs with d elements to
d-dimensional points, we can directly apply k-means cluster-
ing to partition the fragments inside each global cluster based
on the differencees of their geometrical properties. Since
Eq. (1) minimizes the sum of mean-squared distance, each
dimension of a data point should be at the same scale. In
our implementation, we normalize each element of FV
before applying k-means clustering. Figure 5 illustrates
one example of such a clustering. The initial patterns are fur-
ther divided into five different subclusters through the k-
means method. For each cluster, one typical layout is illus-
trated in Fig. 5.

(a) (b)

(c) (d)

Fig. 4 Pattern types. (a) 1-D pattern including one long feature; (b) 1-D pattern including two parallel long
features; (c) 2-D pattern including one long feature; (d) 2-D mountain-shaped pattern.
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3.3 Nonhotspot Data Balancing

There are numerous various-shaped patterns in a layout, and
the problem is that nonhotspot patterns greatly outnumber
hotspot patterns.22 For example, for a layout with hundreds
of millions of patterns per square millimeter, the number of
hotspots may be less than 100. The imbalance between hot-
spot and nonhotspot data is called imbalanced populations,
which critically affect the success of SVM learning.21 In
addition, since we decompose the layout patterns as frag-
ments and represent them with FVs, the size of the training
data rapidly increases. It is important to shrink the data size
to speed up the later data learning process. To enhance both
accuracy and efficiency, we propose a data sampling tech-
nique to reduce the number of nonhotpot data.

There are two common sampling techniques: simple ran-
dom sampling and systematic sampling. In simple random
sampling, every element in the given dataset has an equal
chance of being chosen. In systematic sampling, on the
other hand, elements of the given dataset are first sorted
in a certain order, and each element at a regular interval
is selected. However, both of them suffer from some limita-
tions and cannot be applied in our data sampling here. On
one hand, simple random sampling is vulnerable to sampling
error because the random selection may not reflect the real
data distribution. On the other hand, the difficulty of sam-
pling FVs with systematic sampling is that the dimension
d of each FV may be very high. In our experience, we
may need an FV with d ¼ 250 to well describe the property
of a fragment. The sorting process for all fragments would be
time consuming. FVs are usually not evenly distributed in
the d-dimensional space, which can result in over- or
under-representation of the data.

Our sampling process utilizes k-means clustering to group
together data with similar geographical information. We can
choose the center of each cluster as the sampled data of the
corresponding cluster, where the center is the mean of the
data within a cluster. Using a larger number of clusters
can minimize the data difference within a cluster and reduce
the sampling error, while using a smaller number of clusters
makes the training process faster with an average view of the
data. By carefully choosing the size of the cluster, we can
keep the main characteristics of each cluster without losing
the sampling coverage.

3.4 Multilevel Principal Component Analysis-Support
Vector Machine-Based Classification

3.4.1 Dimension reduction with principal component
analysis

PCA23 is a statistical technique that analyzes a set of data
composed of possibly inter-correlated variables. The goal
is to extract the important information of the original data
and to represent the data as a new set of uncorrelated vari-
ables, called principal components. The number of principal
components s is less than or equal to the number of the origi-
nal variables. In the computer vision field, the combination
of PCA and SVM24,25 has been proven to improve the per-
formance of pattern recognition. However, the PCA method
is still new to manufacturing community. Therefore, in this
work, we introduce the ideas of PCA. We apply PCA in front
of our SVM process, which has the advantages of reducing
the data size and increasing the hotspot classification accu-
racy. In other words, through the PCA process, the dimen-
sion of each fragment vector can be reduced. For example,
the length of FV without PCA is 250, while the maximum
length of FV with PCA is 80.

The PCA problem is defined as follows. Given a dataset
x ∈ Rd, transform x into a new dataset y ∈ Rs:

yi;1 ¼ A11xi;1 þ A12xi;2 þ : : : þ A1 sxi;s
yi;2 ¼ A21xi;1 þ A22xi;2 þ : : : þ A2 sxi;s
: : :
yi;s ¼ As1xi;1 þ As2xi;2 þ : : : þ Assxi;s

∀ xi ¼ ðxi;1; xi;2; : : : ; xi;dÞT ∈ x; i ¼ 1; : : : ; n

; (2)

such that each yi ∈ y explains as much as possible of the
variance in the original dataset and that elements in y are
uncorrelated. The correlation matrix A is a d × d matrix,
which defines the new coordinate system. Each i’th column
Ai ¼ ðAi1; Ai2; : : : AisÞ is the i-th eigenvector of the data
covariance matrix C.

C ¼ 1

n

Xn
i¼1

xixTi : (3)

PCA starts from calculating the covariance matrix C and
then solves the eigenvector problem:

Dimension 2

Dimension 1

Fig. 5 K-means clustering with k ¼ 5.
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CAi ¼ λiAi; i ¼ 1; : : : ; n; (4)

to obtain eigenvalues λ and their corresponding eigenvectors.
The eigenvector with the largest eigenvalue captures the
most variation among the training vectors x, while the eigen-
vector with the smallest eigenvalue has the least variation.

Geometrically, PCA enables us to calculate a projection
of the data to a subspace formed by eigenvectors correspond-
ing to the most dominant eigenvalues. By sorting the eigen-
values in descending order, we can choose the first s
principal components to represent the original data. This
allows us to reduce our high-dimensional FV into a much
shorter and more unique vector.

3.4.2 Support vector machine with polynomial kernel

SVM is a machine learning method for classification and
learning tasks. In SVM, data vectors are mapped into a
higher dimensional space using a kernel function, and an
optimal linear discrimination function in the space or an opti-
mal hyperplane that fits the training data is built. The objec-
tive is to maximize the margin between the separating hyper
plane and the nearest data vectors from both classes. We
adopt a two-class C-type SVM.26,27 Given training vectors
xi ∈ Rd, i ¼ 1; : : : ; n and an indicator vector z ∈ f1;−1g,
the classical problem formulation is noted as follows.

min ∶ 1
2
αTQα − eTα

s:t: zTα ¼ 0

Qij ¼ zizjKðxi; xjÞ i; j ¼ 1; : : : ; n
0 ≤ αi ≤ C; i ¼ 1; : : : ; n

; (5)

where e is the vector of all ones, Q is an n × n positive semi-
definite matrix, and the parameter C controls the trade-off
between allowing training errors and forcing rigid separating
margins. For each element Qij ∈ Q, Qij ¼ zizjKðxi; xjÞ.
The kernel function K maps the data into a different
space so a hyperplane can be used to do the separation.
We use a polynomial kernel function in our implementation,
which achieves the best results in our experiments. The
objective function is a classical form for a C-type SVM,
where α is variable and matrix Q and vector e are constants.

After solving the optimization problem in Eq. (5), all αi ∈
α can be calculated. Then, given a new testing vector t, the

decision function is sgn
hP

iziαiKðxi; tÞ
i
, where the sgn

function is defined as follows:

sgnðxÞ ¼
�
−1; if x ≤ 0

1; if x > 0
:

In other words, for the testing vector t, if
“
P

iziαiKðxi; tÞ > 0” it is not a hotspot. Otherwise, the vec-
tor t is detected as hotspot.

3.4.3 Multilevel training for false alarm minimization

We obtain several clusters from the clustering step explained
in Sec. 3.2 and individually train a kernel for each cluster.
The fact that hotspot data are far less than nonhotspot
data significantly affects the performance of the SVM. We
find that although our trained models can successfully iden-
tify true hotspots, numerous false alarms (Extra) are also
reported. In order to reduce the number of false alarms,
we adopt a multilevel self validation kernel structure.
Conceptually, we verify our trained model using known
data and collect false alarm information. These false alarms
are fed into the training process in the next level, where the
SVM model can focus on eliminating those false alarms.

Our multilevel kernel training flow is shown in Fig. 6. In
first level, all data within a cluster are sent to the SVM kernel
training process, where a classification model will be calcu-
lated. The classification model is tested with the same data
used for training, thus we can verify the performance of the
model by the number of Hit and Extra. If the number of Extra
exceeds a certain threshold, we train another SVM kernel in
the next level, where the input data will be only Hit and Extra
data. Equation (6) is used to determine if the training process
is continued, where th is a user-define threshold value for the
false alarm rate.

#Extra

#Total Nonhotspots
> th: (6)

The larger th is, the greater the number of Hit; however,
the number of false alarms also goes up. In our implemen-
tation, th is set as 5%.

It is worth mentioning that the data in each cluster are
independent. Therefore, we can perform the kernel training
and the later detection process in parallel. By taking advan-
tage of multicore machines, our approach can be more effi-
cient, which is a practical feature for modern complex
layouts.

SVM kernel 
training model 1 with model 1

Clustered data

Hit Extra High 
extra?

SVM kernel 
training model 2 with model 2

Start

Stop

...

Level1

Level2

Level3

...

Yes

No

c

c

Fig. 6 SVM-based data learning flow.
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4 Full Layout Hotspot Detection
Once the hotspot classification models are obtained in the
training process, we can use these models to identify
unknown hotspots on a given testing layout.

4.1 Layout Scanning

Given a full layout, we need to first generate fragments and
encode each fragment by FV according to the geometric
information in its nearby area. Constructing fragments and
FV for the whole layout is time consuming and impractical
since hotspots are only formed in small regions. Therefore,
we propose a layout scanning technique to perform our hot-
spot checking process in a more efficient way. The basic idea
is that the whole layout is decomposed into a set of grids, and
the hotspot detection for each grid is independent. Therefore,
the parallel techniques can be adopted here solve these in-
dependent hotspot detection problems.

First, the layout is decomposed into grids. The grid size is
process-dependent and must be larger than the potential hot-
spot diameter to give sufficient information for FV. By
default, we set the grid size to be the same as the frame
size of the training clips. For each grid, we extract fragments
and construct FV according to patterns inside the grid.
Because the layout data outside of the grid are ignored at
this time, we may miss some important information for frag-
ments on the grid boundary. In order not to underestimate
hotspots, we slightly enlarge the grid area whenever a

grid is processed, as shown in Fig. 7(a). In this way, we cre-
ate an overlapped checking area between adjacent grids,
which helps to increase hotspot identification accuracy.
The boxes in Fig. 7(b) show two adjacent checking areas
by enlarging their corresponding grids; the slashed area
will be checked twice (one for the red box and one for
the blue box) to ensure the result is not biased by the grid
boundary.

4.2 Hotspot Identification Steps

In the hotspot detection process, we are required to identify
hotspots on a given testing layout using the prebuilt classi-
fication models. The hotspot identification flow is shown in
Fig. 8. We first partition the layout into smaller grids and
scan the layout on the grid base. The same fragment gener-
ation and data compression techniques are applied as the
training flow. Each fragment to be tested will then be
assigned into a specific cluster. Therefore, we can feed
the fragments and FVs into their corresponding classification
models obtained in the previous training process. According
to our multilevel hotspot detection structure, a potential hot-
spot fragment must be identified by all classification models
before they are reported. This helps to significantly reduce
the number of false alarms. Note that the flow here is similar
to that in the training process (see Fig. 3). However, one
major difference is that here the classification models are

Grid

Grid

(a) (b)

Fig. 7 Layout scanning. (a) Enlarged checking area. (b) Slashes show the overlapped area between
adjacent checking areas.

Fig. 8 Full layout hotspot detection flow.
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input, while in the training process the classification models
are calculated as output.

5 Experimental Results
The proposed algorithms are implemented in C++ and tested
on the machine with eight 3.0 GHz CPUs and 32 GB
memory. The OpenMP28 library is used for our parallel
implementation. We apply the same setting of parameters
in our approach for all benchmarks. The number of local
clusters is set as 10; the maximum number of sampled non-
hotspot centers within a cluster is 500; and the number of
principal components for FV is 80.

We test our approach on the industrial benchmarks
released in Ref. 22. Table 1 shows the statistics of five bench-
marks, including 32 and 28 nm designs. The training layouts
are the input of the hotspot calibration process where hotspot
and nonhotspot clips are given, while the testing layouts need

to be verified by our hotspot detection flow to report the loca-
tions of identified hotspots. The number of total hotspot and
nonhotspot clips is shown by #HS and #NHS, respectively.
According to the definition in Ref. 22, a reported hotspot is a
Hit if it overlaps a real hotspot in the testing layout, otherwise
it is an Extra. Here, we define two important criteria to evalu-
ate the performance of hotspot identification as shown in
Eqs. (7) and (8). Both terms should be maximized.

Accuracy ¼ #Hit

#HS
; (7)

H∕ERatio ¼ #Hit

#Extra
: (8)

Table 2 shows our results compared with Ref. 15. Note that
although Ref. 16 also utilizes ICCAD12 benchmarks, their

Table 1 ICCAD12 benchmark statistics.

Technique

Training layouts Testing layouts

Name #HS #NHS Name #HS Area (mm2)

32 nm MX_benchmark1 99 340 Array_benchmark1 226 12,516

28 nm MX_benchmark2 174 5285 Array_benchmark2 498 106,954

28 nm MX_benchmark3 909 4643 Array_benchmark3 1808 122,565

28 nm MX_benchmark4 95 4452 Array_benchmark4 177 82,010

28 nm MX_benchmark5 26 2716 Array_benchmark5 41 49,583

Table 2 Result comparison with Ref. 15.

Testing layout Methods Accuracy (%) H/E ratio CPU (s)

Array_benchmark1 Yu et al.15 94.69 0.143 38.1 sa

Ours 80.97 0.253 63 sb

Array_benchmark2 Yu et al.15 98.20 0.041 3 min 54 sa

Ours 81.12 0.041 34 min 57 sa

Array_benchmark3 Yu et al.15 91.88 0.123 14 min 58 sb

Ours 90.93 0.098 29 min 42 sa

Array_benchmark4 Yu et al.15 85.94 0.045 5 min 56 sb

Ours 87.01 0.057 13 min 8 sa

Array_benchmark5 Yu et al.15 92.86 0.032 20 sb

Ours 80.49 0.049 8 min 26 sa

Overall improvement −9.0 27.17%

a8 Intel Xeon 3.0 GHz CPUs with 32 GB memory.
b2 Intel Xeon 2.3 GHz CPUs with 64 GB memory.
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approach does not process a full layout but only layout clips.
Because of this fundamental difference, we cannot provide a
fair comparison with Ref. 16. H/E ratio includes the informa-
tion of both Hit and Extra. Since the hotspot detection problem
requires both Hit maximization and Extra minimization, H/E
ratio can more generally represent the overall performance.
Hotspot detection should simultaneously optimize both the
accuracy and H/E ratio. H/E ratio is an important metric,
because each false alarm may require additional effort to man-
ually modify the layout. From Table 2, we can see that our
approach (Ours) steadily identifies more than 80% of the hot-
spots on all benchmarks and maintains a good H/E ratio at the
same time. On average, our approach improves the H/E ratio
by 27.17% compared with Ref. 15. The CPU time in Table 2 is
the overall runtime including training and detection processes.
We can see that our runtime is longer than Ref. 15. The reason
for the longer runtime is twofold: (1) our training and detec-
tion processes are multilevel approaches. Compared with a
conventional single level approach, a longer runtime is
expected. (2) The potential hotspots are encoded into FVs.
Therefore, for one region there may be many FVs, which
increases the complexity of the training process. We believe
applying another encoding method without fragments can
effectively reduce the runtime.

Table 3 shows the training time and detection time of our
approach. It can be seen that the runtime spent on prediction
is relatively low. In a real application, the training process
requires a one-time effort to build the classification
model. Then the obtained models can be repeatedly used
for layouts with the same process parameters. It is worth-
while to obtain an accurate model with an affordable runtime
effort considering that the model determines the detection
performance and is built only once.

Figure 9 lists six hotspot pattern examples that can be suc-
cessfully detected by our approach. Figure 10 illustrates
three false alarms. In other words, these three patterns are
reported, but they are not real hotspots. Besides, Fig. 11
depicts some hotspot examples that cannot be detected by
our current approach.

5.1 Performance Analysis of Nonhotspot Data
Balancing

In Sec. 3.3, we introduce our data sampling technique
for nonhotspots to alleviate the imbalance between hotspot
and nonhotspot data. We adjust different sampling rates as
Eq. (9) and see how the sampled data affect the results.

Table 3 Runtime breakdown.

CPU time

Benchmarks

B1 (s) B2 B3 B4 B5

Training 55 29 min 4 s 23 min 34 s 11 min 14 s 7 min 21 s

Detection 8 5 min 53 s 6 min 8 s 1 min 54 s 1 min 5 s

Fig. 9 Pattern examples of detected hotspots.
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Sampling Rate¼ #Sample dfragments for the training process

#Total fragments
:

(9)

Figure 12 shows the results of Array_benchmark5 with
different sampling rates, where the x-axis is the sampling
rate and the y-axis represents the values of the accuracy
and the H/E ratio. One can observe that when the sampling
rate gets higher, the results have a trend of lower accuracy
and higher H/E ratio. The reason for such trend is twofold:
(1) the sampling technique is working for nonhotspots, while
hotspot patterns are all kept for the training process. As the
sampling rate increases, more nonhotspot patterns are
involved into our classification models. Therefore, more test-
ing patterns tend to be treated as nonhotspots. (2) Our

Fig. 10 Pattern examples of false alarms.

Fig. 11 Pattern examples of nondetected hotspots.

Fig. 12 Results comparison with different sampling rates for
Array_benchmark5.

Table 4 Comparison of results with PCA and without PCA applied.

Benchmark

Without PCA With PCA

Accuracy (%) H/E ratio CPU (s) Accuracy (%) H/E ratio CPU (s)

B1 80.09 0.217 69 80.97 0.253 63

B2 81.73 0.041 2005 81.12 0.041 2097

B3 85.90 0.074 1934 85.40 0.092 1782

B4 87.57 0.023 814 87.01 0.057 788

B5 82.93 0.036 496 80.49 0.049 506

Average 1 1 1 0.99 1.45 0.97
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training process needs to ensure detection accuracy with
multilevel SVM kernels. When the number of data is large,
our training process would generate stricter detection models
to prevent false alarms. In other words, too high a sampling
rate may cause an “overfitting” problem. The trend of
increasing H/E ratio and decreasing accuracy reflects the
effect of the stricter models. The sampling rate needs to
be properly chosen to maintain a good trade-off between
the accuracy and the H/E ratio. In our implementation, we
set 80% accuracy as our main optimization objective, then
a higher H/E ratio is considered. As a result, the 1.56% sam-
pling rate in Fig. 12 is selected as our final parameter.

5.2 Performance Analysis of Principal Component
Analysis-Based Support Vector Machine

In order to understand the impact on SVM results by apply-
ing PCA, we implement two versions of our approach, one
using the presented PCA-SVM (with PCA), and the other
using a typical SVM (without PCA). The length of FV with-
out PCA is 250, while the maximum length of FV with PCA
is 80.

Table 4 shows the comparison of the five benchmarks in
terms of accuracy, H/E ratio, and CPU Time. We can see that
the difference in the accuracy is low, showing that reducing
the vector dimension does not lose critical information. On
the other hand, the H/E ratio is significantly improved in
most cases, showing that eliminating less-relevant informa-
tion using PCA helps to reduce false alarms. The results
show the effectiveness of PCA-SVM on reducing the false
alarms and the runtime, while maintaining the accuracy at
the same time.

6 Conclusions
Lithography hotspots have a great impact on manufacturing
yield. Identifying these forbidden pattern topologies in the
physical verification or early physical design stage has
become a critical problem. In this paper, we present a high
performance hotspot detection approach based on PCA-
SVM classifier. Several techniques, including hierarchical
data clustering, data balancing, and multilevel training, are
provided to enhance the performance of the proposed
approach. Pattern matching techniques enable high accuracy
and data learning algorithms and provide high flexibility to
adapt to new lithography processes and rules. Our data clus-
tering and data compression techniques help to improve the
accuracy and to reduce the false alarms. The experimental
results show that our approach effectively maximizes accu-
racy and minimizes false alarms at the same time, where
more than 80% of the hotspots on all given testing layouts
can be successfully identified.
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