
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 4, APRIL 2015 589

Clock Tree Resynthesis for Multi-Corner
Multi-Mode Timing Closure

Subhendu Roy, Student Member, IEEE, Pavlos M. Mattheakis, Laurent Masse-Navette,
and David Z. Pan, Fellow, IEEE

Abstract—With aggressive technology scaling and complex
design scenarios, timing closure has become a challenging
and tedious job for the designers. Timing violations persist
for multi-corner, multi-mode designs in the deep-routing stage
although careful optimization has been applied at every step after
synthesis. Useful clock skew optimization has been suggested as an
effective way to achieve design convergence and timing closure.
Existing approaches on useful skew optimization: 1) calculate
clock skew at sequential elements before the actual tree is syn-
thesized and 2) do not account for the implementability of the
calculated schedules at the later stages of design cycle. In this
paper, we propose a novel clock tree resynthesis methodology
which is based on a skew scheduling engine which works on an
already built clock tree. The output of the engine is a set of positive
and negative offsets which translate to the delay and accelerations,
respectively in clock arrival at the clock tree pins. We demonstrate
the effectiveness of the offsets at the output pins of the leaf-level
clock drivers in comparison to the traditional clock scheduling in
the clock pins of the flip-flops due to the better implementability
and lesser area overhead and present an algorithm to accurately
realize these offsets in the clock tree. Experimental results on
large-scale industrial designs demonstrate that our clock tree
resynthesis methodology achieves respectively 57%, 12%, and
42% average improvement in total negative slack, worst negative
slack, and failure-end-point with an average overhead of 26%
in clock tree area. We also experimentally study the impact of
on-chip-variation-derates on our approach in terms of the timing
metric improvement and clock tree overhead.

Index Terms—Clock skew scheduling, clock tree synthe-
sis (CTS), engineering change order (ECO), multi-corner,
multi-mode (MCMM), useful skew.

I. INTRODUCTION

CLOCK skew is the difference in clock arrival times (ATs)
at different sequential elements in the clock-distribution

network. A lot of work has been done in the past to minimize
clock-skew [1]–[3]. Targeting global zero skew not only costs
in area and power, but also limits the achievable operating
frequency to the maximum data path delay in the circuit. This
has led to a paradigm shift from skew minimization to useful

Manuscript received July 19, 2014; revised October 8, 2014 and
December 10, 2014; accepted January 4, 2015. Date of publication January 20,
2015; date of current version March 17, 2015. This paper was recommended
by Associate Editor J. Hu.

S. Roy and D. Z. Pan are with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, TX 78712 USA (e-mail:
subhendu@utexas.edu).

P. M. Mattheakis and L. Masse-Navette are with Mentor Graphics,
Grenoble 38100, France.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2394310

skew optimization as the latter has the potential to significantly
improve design performance [4]–[9].

As technology scales aggressively in the nanometer regime,
interconnects play a determining role in timing and uncertainty
due to process variations [10], [11] and the multi-corner anal-
ysis becomes more and more tedious. Rajaram and Pan [12]
have proposed an algorithm for chip-level clock tree
synthesis (CTS) to tackle the clock divergence issue in differ-
ent corners. However, it does not take into account the timing
information on data path for CTS. Additionally, a chip has
to operate in several modes to reduce power dissipation. For
instance, a design can be in active and sleep modes when
performance and power are the main concerns, respectively.
Consequently, timing closure has posed a challenging job
for designers to meet stringent silicon delivery targets [13],
especially with multi-corner, multi-mode (MCMM) designs.
In [14] and [15] clock tree aware placements are performed
with the objective of reducing total wire-length and/or switch-
ing power, but they do not account for any timing improve-
ments. Several works have focused on timing optimization
during placement and routing as well [16]–[18]. But in spite of
all these efforts, timing violations still exist after detail rout-
ing in MCMM designs, especially for the advanced technology
nodes. So the designers have to intervene manually to analyze
and fix the timing violations considering every mode and pro-
cess variation altogether in an iterative and non-convergent
way, where as the verification engineers need to run timing
analysis for each scenario.1

Engineering change order (ECO) is always used after detail
routing in order to fix existing timing violations by incremen-
tal adjustment of pertaining cells and nets [19], [20]. These
ECO adjustments, focused mainly on data path optimization,
are not sufficient to handle all timing violations. So data path
aware clock scheduling becomes an important step for timing
closure, as it allows modifications in the clock tree which is
toward timing closure. Several works study the clock schedul-
ing problem. In [7] clock skew scheduling is formulated as
a constrained quadratic problem, minimizing the least square
error between the computed clock schedule, consistent to the
interconnection between the registers, and the target clock
schedule. Ni and Memik [21] present a fast primal-dual based
approach for minimal clock period, improving over Burns’
algorithm [22] in run-time complexity. Nawale and Chen [9]
even tackle the clock scheduling problem in presence of

1Any mode/corner combination.

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



590 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 4, APRIL 2015

Fig. 1. Buffer insertion to mitigate D-slack violation can cause Q-slack
violation.

process variations by Integer Linear Programming formulation.
But the issues with these approaches are: 1) actual imple-
mentation of that clock scheduling is difficult to achieve in
real designs, especially at later design stages and 2) they are
unaware of MCMM scenarios.

Lu and Taskin [23] formulate a Linear Programming (LP)
problem to optimize clock period in the post-CTS stage by
bounded delay buffering at the leaves of the clock tree. But
since this paper only considers inserting delay but not speeding
up clock arrival at the leaves, the scope of the optimization
is limited and buffering at the leaf level introduces a high
area overhead in clock tree. Furthermore, [23] does not tackle
MCMM scenarios.

A recent work [24] focuses on the realization of the use-
ful skew on industrial-scale designs at post-routing stage. It
also performs local transformations at the leaf-level by insert-
ing/removing buffers to minimize negative D-slack/Q-slack2

violations. For instance, if Dslack < 0, it means the data
arrives too late or clock arrives too early. Fig. 1 shows
an example to mitigate D-slack violation by delaying the
clock arrival. But it might cause Q-slack violation if there
is no enough positive Q-slack available. The main issues
of this paper are: 1) it does not have the global view of
the clock tree, instead performs timing optimization greedily.
So this approach can not handle negative slacks at both
sides (D and Q) or negative slack at one side with very less
available positive slack at the other side, which is a com-
mon situation in today’s high-performance time-constrained
real designs; 2) area-overhead in clock tree is high as it works
only at leaf-level; and 3) speeding up clock arrival to fix
Q-slack violations by only removing buffer is hardly realizable
in practice to be discussed in Section II-D (Fig. 8).

To tackle these issues, a novel clock tree resynthesis
methodology is presented in this paper. We develop an LP
solver based on [25] to estimate MCMM-aware clock schedul-
ing. The notion of branch level clock scheduling is introduced
which, instead of estimating clock schedule at the leaf level
registers, considers offsets in clock arrival at the clock tree
driver pins of any placed design with already synthesized and
routed clock tree. Experimental runs with the LP solver on
industrial designs manifest the advantages of this granular-
ity reduction from leaf level to branch level clock scheduling
in terms of better implementability and lesser area/power cost
without significant degradation in the scope to improve timing.

We illustrate in Section II-C that it is easier to realize the
positive offsets by inserting buffer chains, but at the cost
of clock tree area. On the other hand, the negative offset

2The slack at the input/output pin of a register is defined as D-slack/Q-slack.

Fig. 2. Our methodology in a conventional back-end flow.

realization (NOR) is disruptive and can have catastrophic
effects on the timing profile of the design unless handled prop-
erly. As a result, realization of an arbitrarily large negative
offset is not feasible. We run experiments with the LP solver
for industrial designs and come to the conclusion that a sig-
nificant gain in timing metrics is possible by realizing positive
offsets and bounded negative offsets. We develop a slack man-
ager infrastructure which keeps track of the available slacks
for clock arrival at the clock pins of the clock tree network. By
utilizing the positive slack at the fan-out cone of the clock tree
elements as a safe margin, our algorithm realizes the negative
offsets incrementally through clock tree restructuring or sizing.

Fig. 2 illustrates the steps of a conventional back-end flow
into which our methodology for clock tree resynthesis [26]
can be integrated. The benefits of our methodology are two
fold. Firstly, it helps to lead to the timing closure. Secondly,
post-CTS timing closure involves ECO adjustments, such as
data path optimization, etc., which generally cost a significant
area/power penalty. So, the more we advance toward timing
closure by clock tree resynthesis, the better are the savings in
terms of area/power. The key contributions of this paper are
as follows.

1) To the best of our knowledge, this is the first work to
consider offsets at output pins of clock tree cells for
improving timing metrics in a placed design with already
routed clock tree instead of estimating clock schedule at
the leaf level registers. Moreover, the offset calculation is
tightly coupled with feasibility in realizing those offsets.

2) A novel algorithm which is non-intrusive and area-
efficient is presented that realizes negative offsets.

3) A methodology for clock tree resynthesis is presented
which has significantly improved timing metrics of large
scale industrial designs (after placement and clock tree
routing) under MCMM scenarios.

4) The impact of on-chip-variation (OCV)-derates [27] on
our clock tree resynthesis methodology is experimentally
studied in terms of timing improvement as well as clock
tree overhead.

The rest of this paper is organized as follows. Section II
illustrates the concept of feasibility aware clock scheduling in
presence of MCMM scenarios using an LP solver. Section III
presents our novel algorithm to realize the negative offsets



ROY et al.: CLOCK TREE RESYNTHESIS FOR MCMM TIMING CLOSURE 591

predicted by the LP solver and the overall methodology for
clock tree resynthesis. Section IV presents the experimental
results of our approach for industrial designs. Section V dis-
cusses about the applicability of our methodology and future
work with the conclusion in Section VI.

II. FEASIBILITY AWARE CLOCK SCHEDULING

In this section, we first present an LP solver based on [25]
to calculate the offsets in clock arrival at the clock driver pins
under MCMM scenarios. Although this LP solver is not our
main contribution in this paper, it is imperative to address
concisely how the LP solver tackles various modes and corners
in the design. Then, we explain the notion of branch level
clock scheduling and why it is beneficial for modern space-
constrained industrial designs in comparison to leaf level clock
scheduling by running experiments on designs with the LP
solver. Next the approach for positive offset realization (POR)
is illustrated. Finally, the issues in realizing negative offsets
are discussed and offset bounds are introduced to tackle those
issues. So our clock scheduling technique not only tries to
maximize the gain in terms of timing metric improvements or
lesser area overhead, but also predicts clock schedules which
are feasible to implement in industrial designs. We call this as
feasibility aware clock scheduling.

A. LP Solver

In [25] an LP engine is presented, which estimates the
clock-scheduling for a design under MCMM scenarios tar-
geting the minimization of timing metrics, such as the total
negative slack (TNS) and total hold slack (THS).3 To include
the various corners in the design, scaling factors (ci) for each
corner i are calculated having as reference the constraint corner
i.e., ci = 1 for the constraint corner and ci < 1 for any other
corner. These scaling factors are used in the set-up/hold time
analysis for different corners. With respect to multiple mode
handling, the functional timing paths across all active modes
are analyzed. Additionally, OCV derates [27] calculated on the
already built tree are introduced in the LP solver as means to
reduce the variability effects on the resultant timing profile.

We develop an LP solver based on [25]. It can calculate
the positive and negative offsets at the leaf-clock pins or out-
put pins of the leaf-level gates/buffers (driving sequential leaf
cells) in terms of clock tree level which corresponds to intrin-
sic buffer delay (minimum buffer delay in the design), denoted
by Dbuf

min. Positive (negative) offset of doff at any pin signifies
that the clock-arrival at that pin is to be delayed (fastened) by
doff. Any offset doff in the constraint corner is equivalent to an
offset of ci×doff in the ith corner. We can specify the range of
these offsets by constraining minimum level (Loff

min) and maxi-
mum level (Loff

max). For instance, suppose the Dbuf
min of a design

is 60 ps and we specify Loff
min = −2 and Loff

max = 3, then the LP
solver will estimate the offsets of values −120, −60, 60, 120,
180 ps along with a prediction of timing improvement. The
calculation and realization of the offsets are tightly coupled in
this paper. Additionally, the realization maintains the timing
profile of the parts of the design which should not be affected.

3Here, THS signifies total negative hold slack.

(a)

(b)

Fig. 3. Granularity reduction in clock scheduling. (a) Leaf level clock
scheduling. (b) Branch level clock scheduling.

B. Leaf Level Versus Branch Level Clock Scheduling

Several works [7], [9], [23], [24] have focussed on leaf-
level clock scheduling, which means the clock arrivals at the
clock input pins of the flip-flops (FFs) are determined in order
to optimize time period or improve the timing metrics. On
the contrary, we define branch level clock scheduling as the
determination of clock-arrival at the output pins of driving
clock buffers/gates in the clock network, the objective being
the same, i.e., improving TNS/THS. Our LP solver can han-
dle both types of scheduling by computing offsets at the FF
clock pins [Fig. 3(a)] or output pins of the clock drivers
[Fig. 3(b)]. It should be stressed that the offset computation
by the LP-solver is followed by a post-processing step of off-
set factorization, i.e., if one buffer drives buffers with similar
offsets, then offsets are factorized and shifted upward. For
instance, the offsets at the output pins of B5, B6, and B7 are
respectively 100, 50, and 50 in Fig. 4 and in that case, an offset
of 50 would be assigned to the output pin of B2. But the offset
at the output pin of B3 can not be factorized since there is no
prescribed offset at the output of B4. However, as the offsets
computed by the LP-solver are typically sparse, the scope of
this offset factorization is very limited.

Due to the coarser granularity in the clock scheduling, leaf-
level clock scheduling can potentially provide more improve-
ment in timing metrics, but at the cost of high area overhead.
To demonstrate this, we take several industrial designs and run
our LP solver for leaf level and branch level clock scheduling.

Table I shows the result of this experiment. Column 2
presents the number of leaf-pins (or FFs) in each design. The
predicted TNS improvement and the number of offset counts
for leaf-level (branch level) clock scheduling are represented
by columns 3 and 4 (6 and 7). Offset count here refers to the



592 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 4, APRIL 2015

TABLE I
LP SOLVER PREDICTION FOR LEAF LEVEL VERSUS BRANCH LEVEL CLOCK SCHEDULING

Fig. 4. Offset factorization.

total number of offsets computed by the LP-solver. In case of
leaf-level clock scheduling this offset count will be same as
the total number of optimized leaf-pins. But for branch-level
clock scheduling, one offset at the branch level would affect
clock-scheduling at all the flops transitively driven by the cor-
responding clock-element. For instance, offset at the output pin
of B2 would change the clock arrival at the flops ff 1, ff 2, and
ff 3 (Fig. 3). Columns 5 and 8 calculate the percentage ratio
of offset count and total number of leaf-pins for leaf-level and
branch-level clock scheduling, respectively. Column 9 presents
the total number of leaf-pins where the clock-arrival would be
affected or optimized by the branch-level clock scheduling.

We observe that the predicted TNS improvements in case of
leaf-level clock scheduling are slightly better than that in case
of branch-level clock scheduling, except the first design, where
leaf-level scheduling can achieve much better TNS improve-
ment. A reason could be that at the transitive fanout (TFO) of
a branch pin there is a race of the scheduling direction i.e.,
some flops have positive D and negative Q-slack and some
others have the opposite, hence moving the branch optimizes
some flops but degrades others. On average, leaf-level clock
scheduling can achieve 60.7% improvement in TNS by adjust-
ing clock-schedules of 19% leaf clock pins, whereas branch
level clock scheduling achieves 55.5% improvement in TNS
with 19/0.7 = 27.1× lesser number of offset realization. The
following are the issues in realizing offsets at the leaf-level.

1) To realize positive offsets (Section II-C), we need to
introduce buffering to delay the clock arrivals. Since the
number of offsets for leaf-level clock scheduling is very
high, this would introduce a significant area/power cost
due to the large number of buffers to be incorporated,
and secondly it is very difficult to place/route so many
extra buffers in the modern space-constrained designs.
So post-CTS delay buffering at the leaf level [23], [24]

Fig. 5. Moving flops can affect data-path timing profile.

to improve timing is practically difficult to realize for
large-scale industrial designs.

2) Branch-level negative offsets (i.e., speeding up clock
arrival at the output pins of clock buffers/inverters) may
be realized by sizing or moving the driving buffers to
be discussed in Section II-D. However, this can not be
used to realize leaf-level negative offsets as typically
one clock buffer drives multiple FFs and moving/sizing
the driving buffer would affect the timing profile of all
the sinks driven by that buffer. A possible approach to
realize negative offsets at the leaf-level clock pins could
be to place the FFs closer to its driving buffers/inverters.
But the movement of the flops would not only affect the
clock arrival at other leaf-pins, but also can have catas-
trophic effect on the timing profile of the data-path. The
situation is illustrated in Fig. 5, where the clock pin and
the data pin of the FF are driven by the clock buffer
B1 and the combinational gate I1, respectively. So if
the flop is moved physically closer to B1 to speed-up
the clock arrival at the clock pin of FF, it might move
further from I1, and in that case, the delay of the data-
path ending at FF would increase. Similar effect can also
happen for the data-paths starting at FF. This is detri-
mental to timing closure since the clock scheduling has
been performed assuming no change in the data-path
timing profile. However, in case of branch level clock
scheduling, movement of clock buffers/inverters to real-
ize negative offsets does not affect the data-path timing
profile.

Driven by the above findings, this paper focuses on branch
level clock scheduling which would be feasible to realize,
and then physically implement the offsets predicted by the
LP-solver.

C. POR

POR is accomplished by inserting route aware delay ele-
ments. Fig. 6 illustrates the realization of a positive offset



ROY et al.: CLOCK TREE RESYNTHESIS FOR MCMM TIMING CLOSURE 593

Fig. 6. POR.

at the output pin of the repeater B1. Initially, the LP solver
predicts that a positive offset (doff) should be realized at the
output pin (op) of the buffer B1, i.e., the clock arrival of the
buffers/leaf-cells driven by B1 should be delayed by doff. We
can implement this positive offset by incorporating a delay ele-
ment D (merely a buffer chain) of doff at op. While doing this,
we consider various corners and insert/size/place the delay
block accordingly to realize this positive offset as accurate as
possible across all corners. Additionally it should be guaran-
teed that the offset realization does not degrade the quality of
the clock tree e.g., design rule check (DRC) violations are not
increased. It should be stressed that the POR is not intrusive as
the parts of the clock tree which are irrelevant to the inserted
offset are not affected. For instance in the example shown in
Fig. 6 there is no impact of D on B2 and B3, the siblings of B1,
as B1 effectively acts as a shield buffer. Consequently, there
is no side-effect on the clock tree in terms of timing profile.
However, this will introduce clock tree area overhead due to
the insertion of buffers.

D. Issues in NOR

The NOR poses more challenges. A representative example
is the following. Let us assume that the LP engine predicts a
negative offset (doff) for the output pin of buffer B5 as shown
in Fig. 7. This offset can be realized by placing, sizing, or
changing the clock tree structure. Each one of the aforemen-
tioned approaches has its own drawbacks. For instance, placing
B5 at another location will force its parent (B2) to drive a dif-
ferent amount of load than before, altering thus the AT of all
clock tree nodes at B2’s TFO. Sizing has similar effects on
B5’s siblings as B2 will again have to drive a different amount
of load defined by the gate sizing result. Another option is
to restructure the clock tree, moving upward cell B5. In this
case, the AT to FFs at the TFO of B5 is reduced but multiple
side effects alter the ATs to the old and the new siblings of B5.
This is due to the load decrease and increase at the nets driven
by B2 and B0, respectively and that affect all the FFs at the
TFO of B0.

Shen et al. [24] have mentioned that clock arrivals could be
accelerated by removing the corresponding buffer B1 (Fig. 8).
But this can be safe only when it does not have any sibling,
which is not common in practice. Furthermore, this technique
might not be effective in that case as well as: 1) B0 is now
driving 3 buffers instead of 1, viz. B2, B3, and B4 and 2) B0 has

(a) (b)

Fig. 7. NOR. (a) B5 output pin should be accelerated by doff. (b) B5 is
shifted one level upward the tree.

Fig. 8. Buffer removal might not be effective in realizing negative offset.

to drive more wire-load. When B1 is far away from B0, then
the wire-load increase is even more. As a result the clock
arrival might get delayed at the TFO cone of B0.

From the above it can be concluded that realizing neg-
ative offsets in the clock tree imposes side effects which
may significantly change the timing profile of the design
and possibly cancel the expected timing gains. Additionally,
it should be noted that the more the negative an offset is,
the more the pin should be moved upward the tree. As a
consequence, more FFs downward the tree will be affected
increasing the probability of degrading the timing instead of
optimizing it.

E. Offset Bounds

Any positive offset can be realized by injecting a delay ele-
ment with delay equal/close to the offset. Negative offsets, on
the other side, can not always be realized. For instance, if a pin
has a negative offset with delay greater than the arrival time
from the clock root to this pin, then it can be deduced that
this offset is infeasible for this pin. Hence, the pins which can
carry offsets should be bounded to guarantee that the calcu-
lated negative offset can be realized. A per-pin negative offset
bound would be cumbersome as the side effects of each NOR
should be modeled into the LP solver, thus a global bound was
selected for all pins. An experiment was performed to calcu-
late a negative bound which should deliver as much timing
gain as possible and at the same time be as less disruptive as
possible, i.e., closer to zero.

Three LP runs were performed with real industry-strength
benchmarks. The first run corresponds to LP solutions with
only positive offsets, whereas the second and the third allow



594 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 4, APRIL 2015

Fig. 9. Normalized TNS prediction by LP solver for industrial designs.

for one and three levels of negative offset, respectively. For
all three runs the positive offset bound was set to three. The
results are shown in Fig. 9, where TNS predicted by the solver
for each one of the three aforementioned experiments are nor-
malized with respect to the original TNS of each design, which
is the TNS after placement, CTS and routing by an industrial
tool. We observe that there is a significant improvement from
original TNS to the TNS predicted in first run and from pre-
dicted TNS in first run to the second run, but the same trend
does not continue as the bound further decreases. From the
above it can be concluded that most of the potential TNS gain
can be acquired by pairing a single level of negative offset
with many levels of positive offset. This finding will be used
throughout this paper as the solver will be bounded to produce
solutions with a single level of negative offset.

III. CLOCK TREE RESYNTHESIS

Section II-E showed that significant TNS gains can be
enjoyed if pins which can carry offsets are bounded to −1
level (Loff

min = −1). In this section, we present a methodology
for clock tree resynthesis to improve timing in a routed clock
tree. A novel algorithm is presented which realizes accurately
one level of negative offset, so that the predicted TNS gain
is maintained after offset realization. The two basic opera-
tions used are sizing and restructuring. It should be stressed
that the restructuring is always performed within the scope of
a hyper-net to guarantee that the clock gating function will
be preserved by the clock tree restructuring. A hyper-net is a
set of logically equivalent or opposite polarity nets separated
by buffers/inverters in the same physical partition as the root
driver of the top net, and thus this set is necessarily connected
in a tree topology. The root of this tree (hyper-root) is either
the driver pin of a clock gate or a clock root. The elements
of any hyper-net are comprised of all the nets traversed until
another hyper-root is visited. Fig. 10 demonstrates a clock
tree comprised of three hyper-nets. The datapath logic and the
enable signals at the clock tree clock gates are omitted in the
figure.

The key to accurately realizing negative offsets is the uti-
lization of the positive slack. If a clock tree driver pin has only
sequential cells with positive slack (more specifically Q-slack)

Fig. 10. Clock tree decomposition to hyper-nets.

at its TFO it is annotated as a potential acceptor of pins with
negative offset. In this way, negative offsets are realized accu-
rately without degrading the TNS. We develop an engine,
called slack manager, which helps to extract the potential
acceptors for pins with negative offset.

A. Slack Manager

The slack manager is an engine, that keeps track of cer-
tain parameters at any pin corresponding to the D-slack
and Q-slack of the leaf-cells in the TFO cone of that pin
(leafCellsfo(pin)). We define the following parameters.

1) Qslacksum(pin)/Dslacksum(pin) = sum of the negative
Q/D-slacks at leafCellsfo(pin).

2) Qslackcnt(pin)/Dslackcnt(pin) = count of leafCellsfo(pin)

having negative Q/D-slack.
These parameters are calculated recursively in a bottom-

up fashion. Algorithm 1 presents the recursive procedure
“BUSlackParamCalculate(pin, mode)”, which stores the slack-
parameters in any pin for all the corners active in that mode.
Since these slack parameters depend on both modes and cor-
ners, we store these parameters per scenario, i.e., corner and
mode combination. However, only mode but not corner is used
as the argument for the procedure. This is because the recur-
sive traversal of the clock-network in the procedure is decided
by the parent–child relationship of the clock elements, and
this parent–child relationship is invariant across different cor-
ners, but may vary with different modes due to the presence
of clock-multiplexers in the clock network.

Lines 3–7 first initialize the parameter values at each sce-
nario. Then at Line 8 it is checked whether the pin is a leaf, and
in this case it gets the Q-slack value from the timer (Line 5). If
the Q-slack is less than a threshold, then (Lines 13 and 14) we
set Qslackcnt to be 1 and Qslacksum to be the Q-slack value. In
the other case, i.e., for non-leaf pins, Line 22 calls the proce-
dure recursively for all of its children pins (note children of a
pin depends on mode) and then it accumulates the values of its
children (Lines 23 and 24). In our implementation, we have set
this threshold to be 0, and thus these parameters, respectively
estimates the count of leafCellsfo(pin) with negative Q-slack
and sum of negative Q-slacks of leafCellsfo(pin).



ROY et al.: CLOCK TREE RESYNTHESIS FOR MCMM TIMING CLOSURE 595

Algorithm 1 Procedure to Calculate Slack Parameters
1: Procedure BUSlackParamCalculate(pin, mode);
2: activeCorners ← corners active in mode;
3: for all cor ∈ activeCorners do
4: scn ← combination(mode, cor);
5: Qslacksum(pin, scn)← 0;
6: Qslackcnt(pin, scn)← 0;
7: end for
8: if isLeaf(pin) then
9: for all cor ∈ activeCorners do

10: scn ← combination(mode, cor);
11: Qslack← getQslack(pin, scn);
12: if Qslack < slackThreshold then
13: Qslackcnt(pin, scn)← 1;
14: Qslacksum(pin, scn)← Qslack;
15: return
16: end if
17: end for
18: end if
19: for all childPin ∈ childList(pin, mode) do
20: for all cor ∈ activeCorners do
21: scn ← combination(mode, cor);
22: BUSlackParamCalculate(childPin, scn);
23: Qslackcnt(pin, scn) ← Qslackcnt(pin, scn) +

Qslackcnt(childPin, scn);
24: Qslacksum(pin, scn) ← Qslacksum(pin, scn) +

Qslacksum(childPin, scn);
25: end for
26: end for
27: return
28: end Procedure

Fig. 11. Q-slack parameter calculation.

The execution of the algorithm is demonstrated with a rep-
resentative example in Fig. 11. The output pins of the cells B2
and B3 have Qslackcnt equal to 1 due to the cells ff3 and ff5,
respectively. B1’s output pin has Qslackcnt equal to 2 which
results from the addition of its children’s corresponding values.
The Qslacksum values are calculated accordingly.

Similar calculation is done for D-slack parameters and it
has not been shown in Algorithm 1 or Fig. 11 for brevity.

B. NOR Algorithm (NORA)

The slack manager exposes the space that is available for
NOR in terms of slack. The “NORA” utilizes this space

Algorithm 2 Procedure to Realize a Negative Offset
1: Procedure NORA(p, offset);
2: scn← getConstraintScenario;
3: ppar ← parent(p);
4: bestSol ← currentSol;
5: if Qslackeff

cnt(ppar, scn) ≥ Dslackeff
cnt(ppar, scn) then

6: acand ← driver pins in ps hyper-root;
7: prune acand based on level;
8: remove acand elements if their AT is ≥ AT(p)−2∗offset;
9: for all a ∈ acand do

10: if Qslackcnt(inPin(a), scn) > 0 then
11: remove a from acand;
12: end if
13: end for
14: sort acand according to geometric distance from p;
15: for all a ∈ acand do
16: connect p with a;
17: buffer(p);
18: if cost(currentSol) < cost(bestSol) then
19: bestSol ← currentSol;
20: end if
21: end for
22: else
23: size(p);
24: if cost(currentSol) < cost(bestSol) then
25: bestSol ← currentSol;
26: end if
27: end if
28: return bestSol;

to: 1) accurately realize all negative offsets and 2) gain the
improvement in TNS calculated by the LP solver.

Algorithm 2 captures the functionality of NORA for a sin-
gle pin, p (output pin of a cell c), with negative offset. Initially,
a reference (constraint) scenario is chosen along with p’s par-
ent, ppar. Then, (Line 5) it is decided whether the negative
offset will be realized by restructuring the clock tree or by
sizing. This decision is made after the slack parameters calcu-
lated by the slack manager for ppar are modified to compensate
for the case when p is detached from ppar. These new values
are named Qslackeff

sum and Qslackeff
cnt and they are calculated

according to the following formulas:

Qslackeff
sum(ppar, scn) = Qslacksum(ppar, scn)

− Qslacksum(p, scn) (1)

Qslackeff
cnt(ppar, scn) = Qslackcnt(ppar, scn)

− Qslackcnt(p, scn). (2)

The effective D-slack values are calculated accordingly.
If Qslackeff

count is greater than Dslackeff
count for ppar, then it is

preferable to reduce the load at ppar’s fanout as in this way the
clock will arrive faster to the sequential cells and the negative
slack at the Q side will be reduced. Thus, it is chosen to detach
p from ppar and connect it to another node higher in the tree,
as in this way not only the negative offset will be realized, but
also the negative slack at the Q-side of the sequential cells at
ppar’s TFO will be reduced. The above will have a negative



596 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 4, APRIL 2015

impact on the D-side of the sequential cells at ppar’s TFO,
but it is better to optimize in favor of the Q-side, as the latter
affects multiple endpoints with negative slack.

In order to realize the negative offset at p, a driver pin is
found higher in the clock tree, so that if p is connected to it, the
difference in AT will effectively realize the offset. However,
these driver pins, called from now on acceptors, should reside
at the same scope of hyper-net as p to guarantee the same
functionality as mentioned earlier. In addition, the polarity is
also matched to take care of inverters in the clock tree.

We use the level of any clock-element within the scope of
the hyper-net as a coarse knob to identify these acceptor pins
acand (Line 7), i.e., any driver pin which is at higher level
than p in the hyper-net would be considered for a potential
candidate acceptor. Out of all the candidate driver pins, a finer
tuning is done on the basis of AT. The candidates which have
AT greater than AT(p) − 2 × offset are disregarded (Line 8)
as connecting p to them would not result to the desired AT
AT(p) - offset, considering a best case delay of offset (which
is also equal to the intrinsic buffer delay in the design) from
the input pin to the output pin p of the corresponding cell c.
Finally, we prune acand on the basis of available slack in the
TFO of the acceptor pin a (Lines 9–13). If there is no available
slack, then we remove the element from acand. This is to ensure
that although a would drive more load in case c is connected
to a and might worsen Q-slack at TFO of a, the available slack
is sufficient to account for that (not shown in Algorithm 2).

Then the candidate acceptor pins are sorted according to
their proximity to the pin p as it is assumed that the accep-
tors which are closer will be directly connected realizing the
desired offset without incurring extra buffering which would
increase the total area (Line 14).

Afterwards, the sorted candidate acceptor pins are exam-
ined. Initially, p is connected to the candidate acceptor pin a
and buffering is applied on the net between them. Then the
cost of the current solution is estimated. The solution with
the minimum cost is committed by backtracking mechanism.
This cost estimation depends on the accuracy of realizing the
offset. The closer the AT difference seen at p approaches the
desired negative offset value, lesser is the cost. In addition,
if it introduces any new DRC violation, then the cost is set
to infinity making the solution infeasible. If there are lot of
candidate acceptors, the first ten acceptors are explored. This
reduces run time, and at the same time helps to achieve area-
efficient restructuring due to the proximity of the acceptors to
the pin p. If there is no potential acceptor with available slack,
the acceptor with maximum Qslacksum across all scenarios is
chosen.

In the case where buffering was chosen instead of clock tree
restructuring (Line 5), p is sized and the solution is committed.
Interestingly, sizing can approximately realize the offset as the
amount of negative offset is only one level of intrinsic buffer
delay or Dbuf

min.
The execution of the above algorithm is illustrated with a

representative example shown in Fig. 12(a). In this example,
pin p of clock tree buffer B1 is annotated with a negative offset
which is equal to one clock tree level. Assuming that restruc-
turing is selected instead of sizing, the candidate acceptors are

(a)

(b)

Fig. 12. NOR example. (a) Clock tree hyper-net where p has negative offset
of one clock tree level. (b) Resultant clock tree hyper-net where the negative
offset at p is realized by restructuring.

initially extracted and suppose B6 driver pin is the best accep-
tor for p that can realize the offset most accurately. Then,
the restructuring is applied by detaching B1 from B0’s fanout
and connecting it at B6. The resultant clock tree is shown in
Fig. 12(b).

C. Our Methodology

Algorithm 3 shows the steps of our methodology for clock
tree resynthesis. Initially, the LP solver calculates the offsets
in the clock tree. In the case that the offset at a pin is posi-
tive, a buffer chain is inserted according to the methodology
presented in Section II-C (Line 5). Otherwise, if the offset
is negative, the slack manager is updated (Line 7) and then
NORA is used to realize the offset (Line 8). Note that, the
algorithm has been implemented into an industrial Placement
& Routing tool, and so whenever the slack manager is updated
and the D/Q-slack parameters are calculated, the timer embed-
ded in the tool is incrementally called to always give correct
D/Q-slack values.

IV. EXPERIMENTAL RESULTS

We have implemented the algorithms presented in this
paper in C++ and ran it on a Linux machine with 16-Core
3 GHz CPU and 256 GB RAM. Table II presents the
characteristics of seven industrial designs using cutting-edge
technology nodes (20–32 nm), in terms of total number of
cells (column 2), number of scenarios (column 3) and initial
timing metrics after placement, CTS and routing by an indus-
trial tool. Columns 4–6, respectively specify the TNS, worst



ROY et al.: CLOCK TREE RESYNTHESIS FOR MCMM TIMING CLOSURE 597

Algorithm 3 Clock Tree Resynthesis
1: Calculate clock tree offsets, Soffset by LP solver;
2: Execute ‘BUSlackParamCalculate’ for all clock tree roots

and operating modes;
3: for all (p, offset) ∈ Soffset do
4: if offset > 0 then
5: Insert route-aware buffer(s) at p;
6: else
7: Update slack manager;
8: NORA(p, offset);
9: end if

10: end for

TABLE II
DESIGN SPECIFICATION

negative slack (WNS) and failure-end-point (FEP) across all
scenarios.

Table III presents the results of our approach. Columns 2–6
exhibit that if the LP solver is constrained to use only one level
of negative offset and none of positive ones, then an average
improvement of 15.85%, 1.05%, and 11.64% is achieved in
TNS, WNS, and FEP, respectively with average clock tree area
overhead less than 2%. If positive offset levels are allowed as
well (columns 7–11), then an average improvement of 56.68%,
12.04%, and 41.82% in TNS, WNS, and FEP, respectively is
achieved with an average clock tree area overhead of 26.17%.

Results show that NOR does not increase the clock tree area
significantly, as it is only gate up-sizing which introduces area
in this case and this reinforces our claim of area-efficient neg-
ative offset implementation. If positive offsets are allowed as
well, the area overhead increases on average to 26.17% as pos-
itive offsets are typically realized by introducing delay chains
comprised of multiple buffers. The aforementioned percentage
in area increase is in terms of buffers/inverters/combinational
elements in clock tree network only and this does not include
sequential leaf cells and data path combinational logic, which
dominate the total area of the design. So, if we consider the
total design area or even include the registers, the percentage
increase would be negligible. For instance, for design ‘E’, the
percentage increase in clock tree area is maximum (55%), but
if we consider the total area of the design, the percentage area
increase is less than 1%.

With respect to the timing optimization, using only negative
offsets suffices to reduce TNS for designs ‘D’ and ‘G’ by more
than 30%. On the contrary, TNS improvement for designs ‘E’
and ‘F’ is below 10%. WNS is almost not reduced, as the
realized offsets correspond to a single clock tree level which
is a relatively small portion of WNS. FEP reduction follows
the corresponding reduction of TNS for all the designs but ‘A’

and ‘B’, for which FEP reduction is significantly smaller than
the one of TNS.

In the case that positive offsets are allowed as well, TNS
reduction reaches 56.68% on average, with most of the
designs exhibiting TNS reduction by more than 62%. WNS
is improved more when compared to only using a single level
of negative offset. FEP reduction again follows the TNS reduc-
tion, with designs ‘A’ and ‘D’ exhibiting significantly less FEP
optimization compared to TNS.

It should be stressed that for designs ‘B’ and ‘D’, besides
TNS, THS is optimized as well, by 88% and 15%, respectively
with POR and NOR and by 14.5% and 13%, respectively
with only NOR (not mentioned in Table III). For rest of
the designs, hold corner analysis is not enabled. For design
‘D’, compared to the case of realizing only negative offsets,
TNS/FEP improvement decreases while realizing both posi-
tive and negative offsets, but WNS and THS improvement is
more.

The biggest design in this benchmark suite contains more
than 2 M cells and it has six scenarios. Our approach achieves
62% improvement in TNS with 11% overhead in clock tree
area. Runtime for this benchmark is less than seven hours,
which is quite reasonable. However, it is counter-intuitive that
run time is high in a few designs (‘C’ and ‘G’) for realizing
only negative offsets than for realizing both positive and neg-
ative offsets. This is due to the behavior of the LP engine, as
for those designs the total number of negative offsets to be
realized in the case where only negative offsets are allowed is
more than the total number of offsets when both positive and
negative ones are allowed. Note that, this run-time includes
computing the offsets by the LP-solver and realizing the
offsets, followed by global and detail routing of the clock nets.

In Fig. 13 the percentage TNS improvements predicted by
LP-solver and that after actual physical offset (positive +
negative) realization are compared for each of the 7 designs.
Corresponding to each design, the first column represents the
% TNS improvement computed by the LP-solver that would
have been achieved on exact realization of all offsets, and
the second column represents the actual % TNS improvement
by our offset realization algorithm. On average, our algorithm
achieves 56.68% improvement in TNS while that predicted by
the LP-solver is 63.58%. The discrepancy is because the phys-
ically implemented offsets are not exactly the same as those
computed by the LP-solver, nevertheless we have achieved
most of the timing improvements predicted by the LP-solver.
It should be noted that the offsets computed by the LP-solver
are bounded and discrete valued (Section II-A), and so may
not give the optimum results. Thus the inexactness in offset
implementation has benefited in case of design ‘D’, where we
got more timing improvements than predicted.

Table IV presents the results with only POR. An average
improvement of 56.14% and 9.21% is achieved in TNS and
WNS, respectively with an average clock tree overhead of
29.51%. In comparison to POR + NOR (PNOR), the timing
improvements in this case are very close but with some addi-
tional clock tree overhead. For designs ‘A’ and ‘D’, PNOR is
more effective both in terms of timing optimization and clock
tree overhead than POR. In case of designs ‘F’ and ‘G’, timing



598 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 4, APRIL 2015

TABLE III
TIMING METRIC IMPROVEMENT IN INDUSTRIAL DESIGNS BY OUR APPROACH

Fig. 13. Comparison of % TNS improvement between LP-solver prediction
and after actual physical offset realization.

improvements for POR are more but with significant overhead
in clock tree area. However, POR gives similar or better TNS
improvement with less clock tree overhead when compared to
PNOR for rest three designs.

The scope or effectiveness of NOR is limited in those
designs due to the presence of short depth clock trees. In a
few cases, the leaf-level integrating clock cells in the designs
drive the sinks either directly or through few buffers. Since
restructuring to realize negative offsets is performed within
the scope of a hyper-net, and as the driver pin of a clock
gate is treated as a hyper-root (as explained in Section III), it
becomes infeasible to realize negative offsets by restructuring
in those situations. A possible solution to this issue may be
to make the LP-solver aware of this, i.e., identify these cases
beforehand, and feed this information to the LP-solver such
that it is prevented to assign any negative offset on those driver
pins.

In order to analyze the results of POR, NOR, and com-
bined offset realization, we define quality of results (QoR) as
the ratio of % TNS improvement to the % clock tree area over-
head. QoR for the three cases are compared across all designs
in Table V. We can see that combined offset realization gives
better “QoR” in 4 out of 7 designs in comparison to POR,
whereas NOR always gives the best QoR due to its very low
clock tree area overhead.

Although the comparison between POR and PNOR shows
similar timing improvement, there are several advantages of

TABLE IV
POR

TABLE V
QOR COMPARISON

PNOR or specifically the NOR. Firstly, as discussed earlier,
the overhead in clock tree area does not contribute much to
the total design area. But clock nets typically switch faster
than the signal nets, and consequently, 30%–70% of total
dynamic power of the design is consumed in the clock net-
work [28]. So any sort of area-overhead in clock network will
contribute significantly in increasing the total dynamic power
of the design. The parameter QoR is thus an indicator of tim-
ing versus power trade-off, and better QoRs in NOR signify
more power-efficient solutions. For designs like ‘D’ and ‘F’,
we get more than 2× improvement in QoR for PNOR com-
pared to POR. Secondly, NOR, but not POR, is the preferable
way to fix violations in certain cases. For instance, a clock-gate
may drive (directly or transitively) hundreds of FFs in mod-
ern designs. If there are setup violations in the timing paths
associated with the path group through that clock gate, then
it would be convenient to fix those by speeding up the clock
arrival at the clock pins of the flops which are at the transitive
fan-in cone of the clock gate, since these flops are relatively
fewer compared to those in the TFO cone of the clock gate.



ROY et al.: CLOCK TREE RESYNTHESIS FOR MCMM TIMING CLOSURE 599

Fig. 14. QoR versus offset level.

In addition, if there is any timing violation pertaining to the
timing path between a FF and a primary output, it can also be
fixed by speeding up the clock arrival at the clock pin of the
flop. Finally, POR is more prone to OCV compared to NOR
to be discussed later.

A. Impact of Offset Levels on QoR

Next, we study the impact of offset levels on QoR. We run
our algorithm by varying the positive offset levels from 2 to 10
in steps of 2, and negative offset levels with 0 and 1. Fig. 14
shows the plot of QoR with different positive offset levels
for two cases, with (PNOR) and without (POR) NOR. PNOR
achieves better QoR in designs ‘A’, ‘D’, ‘F’, and ‘G’, and POR
achieves better QoR in design ‘C’ than their respective coun-
terparts for all positive offset levels. QoR for PNOR and POR
are comparable for design ‘E’. For design ‘B’, POR achieves
better QoR except the case for offset level = 2. There is no
general trend for dependence of QoR on offset levels, and it
varies from design to design.

B. Impact of OCV-Derates on Clock-Tree Resynthesis

In any industrial timer, typically two types of clock
arrivals are calculated for each pin, namely early arrival and
late arrival to accommodate OCV, and are characterized by
OCV-derates [27]. For instance, suppose one level of buffer
delay is 50 ps and OCV-derates are 0.97–1.05. Then the early
delay (late delay) for that level would be 50× 0.97 = 48.5 ps
(50×1.05 = 52.5 ps). So as OCV-derates increase, i.e., derates
become more apart from 1.00, it becomes difficult to achieve
the timing closure under worst-case scenario. Consequently
with increase in OCV-derates, TNS of the designs as well as
the count of offsets predicted by LP solver to improve the
timing metrics increase. Fig. 15 shows the TNS changes of
5 industrial designs with different OCV-derates. We consider
three situations: 1) 1.00–1.00, i.e., no OCV; 2) 0.95–1.05; and
3) 0.90–1.10 and TNS for each case is normalized with respect
to the TNS without any OCV. We can observe that as OCV-
derates increase, TNS for the designs rise up significantly.
For D1, the increase in TNS is very high as the absolute TNS
is very small in absence of OCV. Similar trend is exhibited in

Fig. 15. TNS of designs increase as OCV-derates increase.

Fig. 16. Offset counts increase as OCV-derates increase.

Fig. 16, where the offset counts for different OCV-derates are
normalized with respect to that with no OCV. Note that the
designs used in this experiment are not exactly same as those
used in Table III, with D3 and D4 corresponding to E and F,
respectively. D5 is the biggest design in this suite with around
216 k FFs, 2.16 M cells, and four scenarios. The run-time for
this design for OCV-derate 0.90–1.10 (including computing
offsets by LP-solver, offset realization followed by global and
detail routing of the clock nets) is around 12 h.



600 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 4, APRIL 2015

Fig. 17. Percentage TNS improvement with different OCV-derates.

Fig. 18. Percentage FEP improvement with different OCV-derates.

Next, we compare the improvement of the timing metrics
and clock tree overhead with different OCV-derates. Fig. 17
shows the percentage TNS improvement of the designs under
three OCV-derates. We observe that percentage TNS improve-
ment is typically maximum with no OCV, and as OCV derates
increase it decrease. However, for D5 and D4, this behavior is
not monotonic. On average, the percentage TNS improvements
for the OCV-derates 1.00–1.00, 0.95–1.05, and 0.90–1.10
are respectively 52.3%, 41.3%, and 27.6%. Similar trend is
also observed in case of FEP improvement (Fig. 18). The
corresponding percentage improvements are 43.8%, 29.7%,
and 14.4%, respectively. It should be stressed that these
reported improvements are after clock tree resynthesis or real-
ization of the offsets, but not the improvements predicted
by the LP-solver. The degradation in timing improvement
with OCV-derates is due to several reasons. Firstly, the pre-
dicted TNS improvement by LP solver decreases with increase
in OCV-derates. This is because as OCV-derates increase,
it becomes more and more difficult to achieve the timing
closure. Secondly, incorporating the buffers to realize posi-
tive offsets increase the number of levels and path-length in
the clock tree and consequently, OCV-impact becomes more
severe. Finally, restructuring might benefit or aggravate the
OCV-impact depending on the increase or decrease of the com-
mon path between the clock pins of the launch and capture
flops due to the common-path-pessimism-removal.

Fig. 19. Percentage clock tree overhead with different OCV-derates.

Fig. 19 shows the percentage clock-tree overhead for
the designs with different OCV-derates. With increase in
OCV-derates, the clock tree overhead increases and the plot is
similar to that of offset counts versus OCV-derates (Fig. 16).
This is intuitive, as number of offsets increase, more buffers
will be introduced and more clock tree restructuring would be
performed causing increase in clock tree overhead. The per-
centage clock tree overhead for the OCV-derates 1.00–1.00,
0.95–1.05, and 0.90–1.10 are respectively 29.1%, 56.9%, and
71.7%. Note that, this clock tree overhead is calculated based
on the area of the clock tree buffers/inverters etc. and does
not include the sequential elements. The maximum overhead
is observed for D4 with OCV-derate 0.90–1.10, but it is less
than 1%, if we consider the total area of the design, however,
in terms of power consumption the overhead can be significant
due to the higher switching activity in the clock network.

V. DISCUSSION

In Fig. 2, we place the block of our methodology just before
the post-CTS timing closure. Nevertheless it is worth mention-
ing that this is not the limitation and we can perform the clock
tree resynthesis after the post-CTS data-path optimizations as
well. But then the post-CTS data path optimizations would
cost a significant area/power penalty and the potential of our
approach to recover timing with minor area overhead in the
design would not have been fully exploited. Furthermore, our
approach can be suitably used for reducing design frequency
as well by targeting aggressive clock cycle period.

We plan to extend this framework to improve on the area
overhead in the clock tree. We can see that the area over-
head in the clock tree is mainly due to the POR. It should
be noted that restructuring might not be helpful in realizing
positive offset at any pin as the place-holders for offsets are
typically leaf-level gates/buffers and so it is difficult to find
an acceptor in the clock tree which can match the desired AT
of the pin on restructuring. But we can consider the partial
realization of the positive offsets, while realizing the negative
offsets so that the size of the buffer to be inserted for real-
izing positive offsets decreases and area overhead improves.
For instance, when we choose potential acceptor for realizing
negative offset, a priority can be given (by modifying the cost



ROY et al.: CLOCK TREE RESYNTHESIS FOR MCMM TIMING CLOSURE 601

function in Algorithm 2) to the acceptors which have place-
holders (driver pins) for positive offsets in its TFO cone as
the restructuring would result some delay in clock arrival for
those pins, thereby realizing the positive offsets partially.

VI. CONCLUSION

This paper introduces algorithms which significantly
improve timing metrics in large-scale industrial designs under
MCMM scenarios. To our best knowledge this is the first work
to implement a feasibility aware clock scheduling, realized by
solving a constrained LP problem globally, and using the clock
tree elements as place holders for the resultant offsets. Our
approach has achieved an average TNS improvement of 57%
in industrial designs with an average overhead of 26% in clock
tree area. We define the QoR metric and study its dependence
on offset levels. We also study the impact of OCV-derates on
our approach and have proposed to extend our current frame-
work to improve in clock tree area overhead. In the future, we
plan to examine the space between solutions with only nega-
tive offsets and that with both negative and positive offsets by
using area and power bounds.

REFERENCES

[1] R. Tsay, “Exact zero skew clock routing algorithm,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 12, no. 2, pp. 242–249,
Feb. 1993.

[2] K. D. Boese and A. B. Kahng, “Zero skew clock-routing trees with mini-
mum wirelength,” in Proc. 5th Annu. Int. ASIC Conf. Exhibit., Rochester,
NY, USA, 1992, pp. 17–21.

[3] J. L. Tsai, T. H. Chen, and C. C. Chen, “Zero skew clock-tree opti-
mization with buffer insertion/sizing and wire sizing,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 4, pp. 565–572,
Apr. 2004.

[4] J. P. Fishburn, “Clock skew optimization,” IEEE Trans. Comput., vol. 39,
no. 7, pp. 945–951, Jul. 1990.

[5] R. Deokar and S. Sapatnekar, “A graph-theoretic approach to clock skew
optimization,” in Proc. Int. Symp. Circuits Syst., vol. 1. London, U.K.,
1994, pp. 407–410.

[6] L. F. Chao and H. M. Sha, “Retiming and clock skew for synchronous
systems,” in Proc. Int. Symp. Circuits Syst., vol. 1. London, U.K., 1994,
pp. 283–286.

[7] I. S. Kourtev and E. G. Friedman, “Clock skew scheduling for improved
reliability via quadratic programming,” in Proc. Int. Conf. Comput.-
Aided Design, San Jose, CA, USA, 1999, pp. 239–243.

[8] X. Liu, M. C. Papaefthymiou, and E. G. Friedman, “Maximizing per-
formance by retiming and clock skew scheduling,” in Proc. 36th Design
Autom. Conf., New Orleans, LA, USA, 1999, pp. 231–236.

[9] V. Nawale and T. W. Chen, “Optimal useful clock skew scheduling in
the presence of variations using robust ILP formulations,” in Proc. Int.
Conf. Comput.-Aided Design, San Jose, CA, USA, 2006, pp. 27–32.

[10] Y. Taur et al., “CMOS scaling in nanometer regime,” Proc. IEEE,
vol. 85, no. 4, pp. 486–504, Apr. 1997.

[11] V. Mehrotra and D. Boning, “Technology scaling impact of variation
on clock skew and interconnect delay,” in Proc. Int. Interconnect Tech.
Conf., Burlingame, CA, USA, 2001, pp. 4–6.

[12] A. Rajaram and D. Z. Pan, “Robust chip-level clock tree synthesis for
SoC designs,” in Proc. 45th ACM/IEEE Design Autom. Conf., Anaheim,
CA, USA, 2008, pp. 720–723.

[13] S. Jilla, “Multi-corner multi-mode signal integrity opti-
mization,” EDA Tech Forum, 2008. [Online]. Available:
http://www.techdesignforums.com/practice/technique/multi-corner-multi-
mode-signal-integrity-optimization/

[14] D. Lee and I. L. Markov, “Obstacle-aware clock-tree shaping during
placement,” in Proc. Int. Symp. Phys. Design, Monterey, CA, USA,
2011, pp. 123–130.

[15] Y. Wang, Q. Zhou, X. Hong, and Y. Cai, “Clock-tree aware placement
based on dynamic clock-tree building,” in Proc. Int. Symp. Circuits Syst.,
New Orleans, LA, USA, 2007, pp. 2040–2043.

[16] K. Rajagopal et al., “Timing driven force directed placement with phys-
ical net constraints,” in Proc. Int. Symp. Phys. Design, Monterey, CA,
USA, 2003, pp. 60–66.

[17] Y. Liu, R. S. Shelar, and J. Hu, “Delay-optimal simultaneous technol-
ogy mapping and placement with applications to timing optimization,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA, 2008,
pp. 101–106.

[18] S. W. Hur, A. Jagannathan, and J. Lillis, “Timing driven maze routing,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 2,
pp. 234–241, Feb. 2000.

[19] K. Sato, H. E. M. Kawarabayashi, and N. Maeda, “Post-layout opti-
mization for deep submicron design,” in Proc. Design Autom. Conf.,
Las Vegas, NV, USA, 1996, pp. 740–745.

[20] Y. P. Chen, J. W. Fang, and Y. W. Chang, “ECO timing optimization
using spare cells,” in Proc. Int. Conf. Comput.-Aided Design, San Jose,
CA, USA, 2007, pp. 530–535.

[21] M. Ni and S. O. Memik, “A revisit to the primal-dual based clock
skew scheduling algorithm,” in Proc. Int. Symp. Qual. Electron. Design,
San Jose, CA, USA, 2010, pp. 755–764.

[22] S. M. Burns, Performance Analysis and Optimization of Asynchronous
Circuits, Ph.D. dissertation, Dept. Comput. Sci., California Inst.
Technol., Pasadena, CA, USA, 1991.

[23] J. Lu and B. Taskin, “Post-CTS clock skew scheduling with limited
delay buffering,” in Proc. Int. Midwest Symp. Circuits Syst., Cancun,
Mexico, 2009, pp. 224–227.

[24] W. Shen et al., “Useful clock skew optimization under a multi-corner
multi-mode design framework,” in Proc. Int. Symp. Qual. Electron.
Design, San Jose, CA, USA, 2010, pp. 62–68.

[25] V. Ramachandran, “Functional skew aware clock tree synthesis,” in Proc.
Int. Symp. Phys. Design, Monterey, CA, USA, 2012.

[26] S. Roy, P. M. Mattheakis, L. Masse-Navette, and D. Z. Pan, “Clock tree
resynthesis for multi-corner multi-mode timing closure,” in Proc. Int.
Symp. Phys. Design, Monterey, CA, USA, 2014, pp. 69–76.

[27] J. Bhaskar and R. Chadha, Static Timing Analysis for Nanometer
Designs: A Practical Approach. New York, NY, USA: Springer, 2009.

[28] V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic, and N. M. Nedovic,
Digital System Clocking: High-Performance and Low-Power Aspects.
Hoboken, NJ, USA: Wiley, 2003.

Subhendu Roy (S’13) received the B.E. degree in
electronics and telecommunication engineering from
Jadavpur University, Kolkata, India, and the M.Tech.
degree in electronic systems from the Indian Institute
of Technology, Bombay, Mumbai, India, in 2006
and 2009, respectively. He is currently pursuing
the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Texas at
Austin, Austin, TX, USA.

He was at Atrenta, Noida, India, where he was
involved in developing tools in the architectural

power domain and register transfer level (RTL) domain for three years.
He underwent summer internships at IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA in 2012 and at Mentor Graphics, Fremont, USA
in 2013 and 2014. His current research interests include design automation for
logic synthesis, physical design, and cross-layer reliability. He has authored
papers in major EDA conferences/journals, such as DAC, ISPD, ASPDAC,
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, and holds one U.S. patent.
Mr. Roy was the recipient of the Best Paper Award at ISPD’14.



602 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 4, APRIL 2015

Pavlos M. Mattheakis received the M.S. and Ph.D.
degrees in computer science from the University of
Crete, Heraklion, Greece, EU, in 2007 and 2013,
respectively.

During his M.S. he was also with the Institute
of Computer Science, FORTH, Heraklion, Greece,
EU and with ISD S.A. Athens, Greece, EU. From
2007 to 2010 he was with Nanochronous Logic Inc,
San Jose, CA, USA. During his Ph.D. he was also
with the FORTH and the Technical University of
Crete, Chania, Greece, EU. He is currently an R&D

Engineer at Mentor Graphics, Grenoble, France, EU. His research interests
include the specification and synthesis of asynchronous circuits, the opti-
mization of clock networks in synchronous circuits, the architecture of high
performance computers and high level synthesis. Dr. Mattheakis received the
best paper award at ISPD14. He holds two patents.

Laurent Masse-Navette received the M.S. degree
(Diplôme d’Ingénieur) in computer science from
the Institut National Polytechnique de Grenoble,
Grenoble, France, and the M.A.S. degree in
microelectronics from Université Joseph Fourier,
Grenoble.

After studying at INPG-CSI under professor
G. Saucier between 1991 and 1994, he held positions
as CAD and Research Engineer in the IC design
and EDA industries in companies such as ST-Micro,
Synopsys Inc. and Pulsic Ltd., where he built up

expertise in the physical design and IC layout implementation domains, with
a special focus on Clock Tree Synthesis, before joining Mentor Graphics in
2010. He is now leading the Research and Development team on Clock Tree
Synthesis based in the Grenoble area as part of the Olympus product R&D
team in Mentor Graphics IC Implementation Division.

David Z. Pan (S’97–M’00–SM’06–F’14) received
the B.S. degree from Peking University, Beijing,
China, and the M.S. and Ph.D. degrees from the
University of California, Los Angeles (UCLA),
Los Angeles, CA, USA.

From 2000 to 2003, he was a Research Staff
Member at IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA. He is currently the
Engineering Foundation Endowed Professor with the
Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX, USA.

His current research interests include cross-layer nanometer IC design for
manufacturability/reliability, new frontiers of physical design, and CAD for
emerging technologies such as 3-D-IC, biochip, and nanophotonics. He has
published over 200 papers in refereed journals and conferences and holds
eight U.S. patents.

Prof. Pan was the recipient of several awards for the contributions
and services, including the SRC’13 Technical Excellence Award, the DAC
Top Ten Author in Fifth Decade, the DAC Prolific Author Award, the
ASP-DAC Frequently Cited Author Award, 11 Best Paper Awards, includ-
ing the ISPD’14, ICCAD’13, ASPDAC’12, ISPD11, IBM Research 2010 Pat
Goldberg Memorial Best Paper Award, ASPDAC’10, DATE’09, ICICDT’09,
the SRC Techcon in 1998, 2007, and 2012, and 11 other Best Paper
Award nominations at DAC/ICCAD/ASPDAC/ISPD, the Communications
of ACM Research Highlights in 2014, the ACM/SIGDA Outstanding New
Faculty Award in 2005, the NSF CAREER Award in 2007, the SRC
Inventor Recognition Award thrice, the IBM Faculty Award four times,
the UCLA Engineering Distinguished Young Alumnus Award in 2009, the
UT Austin RAISE Faculty Excellence Award in 2014, the ISPD Routing
Contest Awards in 2007, the eASIC Placement Contest Grand Prize in 2009,
and the ICCAD CAD Contest Awards in 2012 and 2013. He served as a
Senior Associate Editor of the ACM Transactions on Design Automation of
Electronic Systems, an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS,
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I, the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART II, Science
China Information Sciences, the IEEE CAS Society Newsletter, and the
Executive/Program Committees of several major conferences, such as DAC,
ICCAD, ASPDAC, and ISPD.


