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Abstract—As the feature size of semiconductor process further
scales to sub-16 nm technology node, triple patterning lithog-
raphy (TPL) has been regarded as one of the most promising
lithography candidates along with extreme ultraviolet, electron
beam lithography, and directly self-assembly. M1 and contact
layers, which are usually deployed within standard cells, are
the most critical and complex parts for modern digital designs.
Traditional design flow that ignores TPL in early stages may
limit the potential to resolve all the TPL conflicts. In this paper,
we propose a coherent framework, including standard cell com-
pliance and detailed placement, to enable TPL friendly design.
Considering TPL constraints during early design stages, such as
standard cell compliance, improves the layout decomposability.
With the precoloring solutions of standard cells, we present a TPL
aware detailed placement where the layout decomposition and
placement can be resolved simultaneously. In addition, we pro-
pose a linear dynamic programming to solve TPL aware detailed
placement with maximum displacement, which can achieve good
trade-off in terms of runtime and performance. Experimental
results show that our framework can achieve zero conflict, mean-
while can effectively optimize the stitch number and placement
wire-length.

Index Terms—Design compliance, detailed placement, dynamic
programming, standard cell design, triple patterning lithogra-
phy (TPL).

I. INTRODUCTION

AS THE feature size of semiconductor process technol-
ogy nodes further scales to sub-16 nm, triple patterning

lithography (TPL) has been regarded as one of the most
promising lithography candidates, along with extreme ultra-
violet lithography, directed self-assembly, and electron beam
lithography [1]–[3]. TPL is a viable solution for emerging logic
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nodes, as other candidates suffer from either throughput prob-
lem or yield issues [4], [5]. As a natural extension along the
paradigm of double patterning lithography (DPL), TPL has
been pushed to its limit in sub-16 nm to introduce better
printability [6].

To deploy TPL process, layout decomposition is usually
applied to divide the initial layout into three masks. Then
each mask is implemented through one exposure-etch process,
through which the layout can be produced. In initial layout, two
features with distance less than minimum coloring distance,
dmin, should be assigned into different masks. One conflict
occurs when on one mask two features have a spacing less than
dmin. Sometimes the conflict can be also resolved by inserting a
stitch to split a feature into two touching parts. The TPL layout
decomposition problem with conflict and stitch minimization
has been well studied in the past few years [7]–[15]. However,
most existing work suffers from one or more of the following
drawbacks.

1) Because TPL layout decomposition problem is
NP-hard [9], most of the decomposers are based
on approximation or heuristic methods. Thus some extra
conflicts may be reported.

2) For each design, since the library only contains fixed
number of standard cells, layout decomposition would
contain lots of redundant works. For example, if one
cell is applied hundreds of times in a single design, it
would be decomposed hundreds of times during layout
decomposition.

3) Successfully carrying out these decomposition techniques
requires the input layouts to be TPL friendly.

However, since all these decomposition techniques are
applied at post-place/route stage, where all the design patterns
are already fixed, they lack the ability to resolve some native
TPL conflict patterns, e.g., four-clique conflicts.

It is observed that the most hard-to-decompose patterns orig-
inate from contact and M1 layers. Fig. 1 shows two common
native TPL conflicts in contact layer and M1 layer, respec-
tively. As shown in Fig. 1(a), contact layout within the standard
cell may generate some four-clique patterns, which are inde-
composable. Meanwhile, if placement techniques are not TPL
friendly, some boundary metals may introduce native conflicts
[see Fig. 1(b)]. Since redesigning indecomposable patterns in
the final layout requires high engineering change order efforts,
generating TPL-friendly layouts, especially in the early design
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Fig. 1. Two native conflicts (in read boxes) from (a) contact layer within a
standard cell and (b) M1 layer between adjacent standard cells.

stage, becomes urgent and pivotal. Through these two exam-
ples, we can see that TPL constraints should be considered in
both standard cell design and placement stages, so that we can
avoid indecomposable patterns in final layout.

There exist several placement studies toward different man-
ufacturing process targets [16]–[22]. Liebmann et al. [16] pro-
posed some guidelines to enable DPL friendly standard cell
design and placement. Taghavi et al. [22] presented a set of
algorithms to disperse local congestion. [23] and [24], proposed
TPL aware detailed routing schemes. However, to our best
knowledge, no previous work has addressed TPL compliance
at standard cell or placement level.

In this paper, we present a systematic framework to
seamlessly integrate TPL constraints in early design stages,
comprehending standard cell conflict removal, standard cell
precoloring, and detailed placement together. Note that our
framework is layout decomposition free, i.e., the TPL aware
detailed placement can generate optimized positions and color
assignment solutions for all cells simultaneously. Therefore, our
framework does not require conventional and time consuming
chip level layout decomposition. Our main contributions are
summarized as follows.

1) We propose systematic standard cell compliance tech-
niques for TPL and coloring solution generation.

2) We study the standard cell precoloring problem, and
propose effective methods.

3) We present the first systematic study for the TPL aware
ordered single row (TPL-OSR) placement, where cell
placement and color assignment can be solved simulta-
neously.

4) We propose linear dynamic programming algorithm to
solve TPL aware single row placement with maximum
displacement, and achieve a good trade-off in terms of
runtime and solution quality.

5) Our framework seamlessly integrates decomposition in
each key step, therefore, no additional layout decompo-
sition is required.

6) Experimental results show that our framework can
achieve zero conflict, meanwhile can effectively reduce
the stitch number.

The rest of this paper is organized as follows. Section II
provides preliminaries and overview of our methodologies.
Section III proposes standard cell modification to enable TPL
friendly cell layout, with negligible timing impact. Section IV
proposes cell precoloring techniques and look-up table (LUT)

Fig. 2. Overall flow of the methodologies for standard cell compliance and
detailed placement.

construction. Sections V–VII give details on our TPL aware
detailed placement. Section VIII presents the experiment results,
followed by the conclusion in Section IX.

II. PRELIMINARIES

A. Row Structure Layout

Our framework assumes a row-structure layout where cells
in each row have the same height, and power/ground rails are
going from the very left to the very right. A similar assumption
was applied in row-based TPL layout decomposition [11] as
well. Based on the row-structure assumption, the whole layout
can be divided into rows, and layout decomposition or col-
oring assignment can be carried out for each row separately.
Without loss of generality, for each row the power/ground rails
are assigned to the color 1 (default color). In other words, the
coloring assignment results in each row are able to be merged
together, without losing optimality.

B. Overall Design Flow

The overall flow of our proposed framework is illustrated in
Fig. 2, which consists of two stages: 1) methodologies for stan-
dard cell compliance and 2) TPL aware detailed placement. In
the first stage, standard cell compliance, we carry out standard
cell conflict removal, timing analysis, standard cell precoloring,
and LUT generation. After the first stage we can ensure that, for
each cell, TPL friendly cell layout and a set of precoloring solu-
tions will be provided. In the second stage, TPL aware detailed
placement, we will discuss how to consider TPL constraints in
the single row placement problem (see Sections VI, VII) and
global moving (see Section V).

Note that since TPL constraints are seamlessly integrated into
our coherent design flow, we do not need a separate step of
layout decomposition. In other words, the output of our frame-
work is decomposed layouts that have resolved cell placement
and color assignment simultaneously.

III. STANDARD CELL COMPLIANCE

It is observed that without considering TPL in standard cell
design, the cell library may involve several cells with native
TPL conflict [see Fig. 1(a) for one example]. The inner native
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Fig. 3. Native conflict removal for (a) contact layer and (b) M1 layer.

TPL conflict cannot be resolved through either cell shift or lay-
out decomposition. In addition, one cell may be applied many
times in one single design, thus each inner native conflict may
cause hundreds of coloring conflicts in the final layout. To
achieve TPL friendly layout after the physical design flow, we
should first ensure the standard cell layout compliance for TPL.
Specifically, we will manually remove all four-clique conflicts
through standard cell modification. Then, parasitic extraction
and SPICE simulation are applied to analyze the timing impact
for the cell modification.

A. Native TPL Conflict Removal

For contact layer, one example of native TPL conflict removal
is illustrated in Fig. 3(a), where four contacts introduce an
indecomposable four-clique conflict structure. For such cases
we modify the contact layout into hexagonal close packing,
which allows for the most aggressive cell area shrinkage for
TPL friendly layout [6]. With slight modification to the original
layout, we can either choose to move contacts connected with
power or ground rails or shift contacts on the signal paths of the
cell. We call these two options cases 1 and 2, respectively, both
of which will lead to TPL friendly standard cell layout. For M1
layer, we observe that most of the cells have a set of legal col-
oring solutions purely through stitch insertion. However, stitch
insertion cannot resolve four-clique conflict from four points in
a layout [12]. Thus for these cells we have to shift M1 pat-
terns to resolve the conflict. One example of M1 layer native
TPL conflict removal is illustrated in Fig. 3(b). Note that after
layout modification, the layout still needs to satisfy the design
rules. It shall be noted that although conventional cell migration
techniques [25]–[27] might be able to automatically shift lay-
out patterns to avoid four-clique patterns, it is hard to guarantee
that the modified layout can maintain good timing performance.
Therefore, in this paper, we manually modify the standard cell
layout and verify timing after each shift operation.

B. Timing Characterization

Generally, the cell layout design flexibility is beneficial for
resolving conflicts between cells when they are placed next to
each other. However, from a circuit designer’s perspective, we
want to achieve little timing variation among various layout
styles of a single cell. Therefore, we need simulation results to
demonstrate negligible timing impact from layout modification.

A Nangate 45 nm Open Cell Library [28] has been scaled to
16 nm technology node. After native TPL conflict detection and

Fig. 4. Timing impact from layout modification for different types of gates.
(a) Timing impact for contact layer modification. (b) Timing impact for M1
layer modification.

layout modification, we carry out the standard cell level timing
analysis. Calibre xRC [29] is used to extract parasitic informa-
tion of the cell layout. We use SPICE simulation to characterize
different types of gates, which is based on the 16 nm Predictive
Technology Model model [30]. Then, we can get the propaga-
tion delay of each gate, which is the average of rising and falling
delay. For contact layer, we have original and modified layouts
with cases 1 and 2 options. From the extraction results, we can
see that the source/drain parasitic resistance of transistors varies
with the position of contacts, which is the direct impact from
layout modification. We pick up six most commonly used cells
to measure the relative changes of propagation delay due to
layout modification [see Fig. 4(a)]. It is clearly observed that,
for both cases 1 and 2, the timing impact will be within 0.5%
of the original propagation delay of gates, which is assumed
to be insignificant timing variation. For M1 layer, if we forbid
layout modification most cells still have some legal coloring
solutions purely through stitch insertion. Only few cells need to
shift patterns to ensure TPL friendly. For those cells with layout
modification, Fig. 4(b) analyzes their timing impacts. We can
see that the modification in M1 layer introduces less than 1%
timing degradation, which is assumed to be insignificant. Based
on the modifications on contact layer and M1 layer, we can
remove all conflicts among cells with negligible timing impact.
Thus, we can ensure the standard cell compliance for TPL.

IV. STANDARD CELL PRECOLORING

For each type of standard cell, after removing the native TPL
conflicts, we seek a set of precoloring solutions. These cell solu-
tions are prepared as a supplement to the library. In this section,
we first describe the cell precoloring problem formulation; then,
we introduce our algorithms to solve this problem.
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Fig. 5. CG construction and simplification. (a) Input layout and all stitch
candidates. (b) CG where solid edges are conflict edges and dash edges are
stitch edges. (c) SCG after removing immune features.

A. Problem Formulation

Given the input standard cell layout, all the stitch candidates
are captured through wire projection [12]. One feature in the
layout is divided into two touching parts, if one stitch candi-
date is introduced. Then a constraint graph (CG) is constructed
to represent all input features and all the stitch candidates.
A CG is an undirected graph, where each vertex is associ-
ated with one input layout feature. In a CG, there is a stitch
edge iff the two corresponding touching vertices are connected
through one stitch candidate, while there is a conflict edge iff
two untouched vertices are within minimum coloring distance
dmin. For example, given an input layout shown in Fig. 5(a),
five stitch candidates are generated through wire projection.
The CG is illustrated in Fig. 5(b), where the conflict edges
and the stitch edges are shown as solid edges and dash edges,
respectively. Note that, we forbid stitch on small features, e.g.,
contact, due to printability issue. Different from previous stitch
candidate generation, we forbid the stitch on boundary metal
wires due to the observation that boundary stitches tend to cause
indecomposable patterns between two cells.

Based on the CG, the standard cell precoloring problem
is to search all possible coloring solutions. At first glance,
this problem is similar to cell level layout decomposition.
However, different from the conventional layout decomposition,
for each cell precoloring could have more than one solution. It
is observed that for some complex cell structures, if we exhaus-
tively enumerate all possible colorings, it would have thousands
of solutions. Large solution size would impact the performance
of our whole flow. Therefore, to provide high quality precol-
oring solutions, meanwhile keeping the solution size as small
as possible, we define immune feature and redundant coloring
solutions as follows.

Definition 1 (Immune Feature): In one standard cell, an
inside feature that does not conflict with any outside feature
is defined as an immune feature.

It is easy to see that for one feature, if its distances to both
vertical boundaries are larger than dmin, its color would not
conflict with any other cells. Then, this feature is an immune
feature.

Definition 2 (Redundant Coloring Solutions): If two color-
ing solutions are only different at the immune features, these
two solutions are redundant to each other.

Problem 1 (Standard Cell Precoloring): Given the input
standard cell layout and the maximum allowed stitch number,
maxS, the CG is constructed. Standard cell precoloring problem

Algorithm 1 SCG Solution Enumeration
Require: SCG G = {V, CE, SE};

1: BACKTRACK(0, G);
2: return All color solutions in G;

3: function BACKTRACK(t, G)
4: if t ≥ size[G] then
5: Store current color solution;
6: else
7: for all legal color c do;
8: G[t]← c;
9: BACKTRACK(t + 1, G);

10: G[t]←−1;
11: end for
12: end if
13: end function

Fig. 6. AND2X1 cell example: eight enumerated solutions for SCG.

searches all coloring solutions on CG such that the stitch
number is no more than maxS. Meanwhile, no two solutions
are redundant with each other.

Since in CG some vertices represent the immune features, to
avoid redundant coloring solutions, these features are temporar-
ily removed. We denote the remaining graph as a simplified
CG (SCG). For example, for the CG in Fig. 5(b), the cor-
responding SCG is shown in Fig. 5(c). Our standard cell
precoloring algorithm consists of two stages: coloring solution
enumeration on SCG, and solution verification on CG.

B. SCG Solution Enumeration

In the first step, given an SCG, we enumerate all possible
coloring solutions. Our enumeration is based on backtracking
algorithm [31], which usually explores implicit directed graphs
to carry out a systematic search of all solutions.

The details of SCG solution enumeration are shown in
Algorithm 1. Given an SCG, G, a backtracking function,
BACKTRACK(0, G) is called to search the whole graph
(line 1). The backtracking is a modified depth-first search of
the solution space (lines 3–13). In line 7, a color c is denoted
as legal, when vertex G[t] is assigned color c, no conflict is
introduced, and the total stitch number does not exceed maxS.
It should be mentioned that since all power/ground rails are
assigned default color, the colors of corresponding vertices are
assigned before the backtracking process. For example, given
the SCG shown in Fig. 5(c), if no stitch is allowed, there are
eight solutions (see Fig. 6).

C. CG Solution Verification

Until now, we have enumerated all coloring solutions for
SCG. However, not all the SCG solutions can achieve legal
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Algorithm 2 CG Solution Verification

Require: Set of initial coloring solutions S′ for SCG;
1: si[t] = −1 for any nodes not in SCG;
2: for each coloring solution si ∈ S do
3: minCost←∞;
4: BRANCH-AND-BOUND(0, si);
5: if minCost < maxS then
6: Output si as legal precoloring solution;
7: end if
8: end for

9: function BRANCH-AND-BOUND(t, si)
10: if t ≥ size[si] then
11: if GET-COST( ) < minCost then
12: minCost← GET-COST();
13: end if
14: else if LOWER-BOUND( ) > minCost then
15: Return;
16: else if si[t] �= −1 then
17: BRANCH-AND-BOUND(t + 1, si);
18: else 	 si[t] = −1
19: for each available color c do;
20: si[t]← c;
21: BRANCH-AND-BOUND(t + 1, si);
22: si[t]←−1;
23: end for
24: end if
25: end function

layout decomposition in the initial CG. Therefore, in the second
step, CG solution verification is proposed to each generated
solution. Since SCG is a sub-set of CG, the verification can
be viewed as layout decomposition with precolored features
on SCG. If a coloring solution for whole CG can be found
with stitch number less than maxS, it would be stored as one
precoloring solution. The CG solution verification is based on
the branch-and-bound algorithm [31], which is very similar to
backtracking in that a state space tree is used to solve a problem.
However, the differences are twofold.

1) The branch-and-bound method is used only for optimiza-
tion problem, i.e., only one solution is generated.

2) The branch-and-bound algorithm introduces bounding
function to prune suboptimal nodes in search space.

That is, at each node of search space, we calculate a bound
on the possible solution. If the bound is worse than the best
solution we have found so far, then, we do not need to go to
the sub-space.

The details of the CG solution verification are shown
in Algorithm 2. Given an SCG coloring solutions S′ =
{s′1, s′2 . . . s′n}, at the beginning the corresponding CG coloring
solutions S = {s1, s2, . . . , sn} are generated (line 1). Then, we
iteratively check each coloring solution si (lines 2–6). For one
coloring solution si, if vertex t belongs to SCG, si[t] should
be already assigned one legal color. If t does not belong to
SCG, si[t] ← −1. The BRANCH-AND-BOUND() algorithm
traverses the decision tree with a depth first search method
(lines 9–25). For each vertex t, if si[t] has been assigned one

Fig. 7. AND2X1 cell example: in CG four verified solutions are stored as
final coloring solutions.

legal color in SCG, we skip t and travel to the next vertex.
Otherwise, every legal color would be assigned to t before trav-
eling to the next vertex. Different from exhaustive search, search
space can be effectively reduced through the pruning process
(lines 14 and 15). The function LOWER-BOUND() is to get
the lower bound by calculating the current stitch number. Note
that, if one conflict is found, then the function returns a large
value. Before checking any legal color of vertex t, we calcu-
late its lower bound first. If LOWER-BOUND() is larger than
minCost, we shall not branch from t, since all the children solu-
tions will be of higher cost than minCost. Through the travel,
all vertices have been assigned legal colors, stored in si. After
the travel, if minCost ≤ maxS, then si is one of the precoloring
solutions (lines 5 and 6).

It shall be noted that although other layout decomposition
techniques, like integer linear programming, may be modified as
the verification engine, our branch-and-bound based method is
easy to implement and effective for standard cell level problem
size. Even for the most complex cell, SCG solution enumeration
and CG solution verification can be finished in five seconds.
For the SCG solutions in Fig. 6, four solutions are verified and
assigned final colors (see Fig. 7). These four solutions would
be the final coloring solutions for this standard cell, and are
provided as supplement to the library.

D. LUT Construction

For each cell ci in the library, we have generated a set of
precoloring solutions Si = {si1, si2, . . . , siv}. We further pre-
compute the decomposability of each cell pair and store them
in a LUT. For example, if two cells, ci and cj, are assigned with
the pth and qth coloring solutions, respectively, then in LUT a
value LUT(i, p, j, q) would be stored, which is the minimum
distance required when ci is to the left of cj. If two colored
cells can be legally abutted to each other, the corresponding
value would be 0. Otherwise, the value would be the site num-
ber required to keep two cells decomposable. Meanwhile, for
each cell, the stitch numbers in different coloring solutions are
also stored. It shall be noted that during the LUT construction,
the cell flipping is considered and related values are stored as
well. For one cell, if there are k solutions during cell precolor-
ing, 2k solutions would be stored in LUT to consider the cell
flipping.

V. OVERALL PLACEMENT SCHEME

In this section, we present our overall scheme for the whole
design level TPL aware detailed placement. As mentioned
in [32], unless the target objectives of detailed placement and
global placement are the same, detailed placement could ruin
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Algorithm 3 TPL Aware Detailed Placement
Require: Cells to be placed;

1: Move cells for better wire-length;
2: repeat
3: Sort all rows;
4: Label all rows as FREE;
5: for each row rowi do
6: Solve single row problem for rowi;
7: if exist unsolved cells then
8: Global Moving;
9: Update cell widths considering assigned colors;

10: Solve OSR problem for rowi;
11: end if
12: Label rowi as BUSY;
13: end for
14: until no significant improvement;

the optimized objective of global placement, such as timing
and global routability. Therefore, inspired by [32], our TPL
aware detailed placement formulates maximum displacement
constraint Ddisp as follows:

Ddisp ≥ max
c∈C

(|xc − xc0| + |yc − yc0|)

where C is a set of cells, (xc, yc) is the current position of cell c,
(xc0, yc0) is the original position of cell c in initial placement.

Algorithm 3 summarizes the overall flow of the detailed
placement scheme. At the beginning, we try to move each cell to
another place to reduce the half perimeter wire-length, while the
new place should be within the range of maximum displacement
constraint. Then all rows are labeled as FREE, which means
additional cells can be inserted (line 4). In each main loop, rows
are sorted such that the row with more cells occupied would be
solved earlier. For each row rowi, we carry out single row TPL
aware detailed placement as introduced in Sections VI and VII,
to solve color assignment and cell placement simultaneously.
Note that sometimes in one row we cannot assign all cells legal
positions, due to extra sites required to resolve coloring con-
flicts. If single row problem ends with unsolved cells, global
moving is applied to move some cells to other rows (line 8).
The basic idea behind the global moving is to find the “optimal
row and site” for a cell in the placement region and remove
some local triple patterning conflicts. For each cell we define
its “optimal region” as the site to place where the half-perimeter
wire-length (HPWL) is optimal [33]. During global moving the
maximum displacement constraint should be satisfied as well.
Since some cells in the middle of a row may be moved, we need
to solve OSR problem to rearrange the cell positions [34]. Note
that since all cells on the row have been assigned colors, cell
widths would be updated to preserve extra space for coloring
conflict (lines 9 and 10). After solving one rowi, it is labeled as
BUSY (line 12). Since the rows are placed and colored one by
one sequentially, the solution obtained within one single row
may not be good enough. Therefore, our scheme is able to
repeatedly call the main loop until no significant improvement
is achieved (line 14).

TABLE I
NOTATIONS USED IN TPL-OSR PROBLEM

VI. TPL-OSR PLACEMENT

In this section, we solve a single row placement, where the
orders of all cells on the row are determined. When the TPL
related constraints are not considered, this row-based design
problem is the well studied OSR problem [34]–[37]. Here, we
revisit the OSR problem with the TPL process consideration.
For convenience, Table I lists the notations used in this section.

A. Problem Formulation

We consider an input single row as m ordered sites
R = {r1, r2, . . . , rm}, and an input n movable cells C =
{c1, c2, . . . , cn} whose order is determined. That is, ci is to the
left of cj, if i < j. Each cell ci has vi different coloring solutions.
Besides, for each cell ci, we define its displacement range as
range(i), which is the bounds on the x-coordinate of ci that is
within the maximum displacement constraint. A cell-color pair
(i, p) denotes that cell ci is assigned to the pth color solution,
where p ∈ [1, vi]. Meanwhile, s(i, p) gives the corresponding
stitch number for (i, p). The horizontal position of cell ci is
given by x(i), and the cell width is given by w(i). All the cells
in other rows are with fixed positions. A single row placement
is legal if and only if any two cells, ci and cj, meet the following
nonoverlap constraint:

x(i)+ w(i)+ LUT(i, p, j, q) ≤ x
(
cj

)
, if (i, p) & (j, q)

where LUT(i, p, j, q) is the minimum distance required between
(i, p) & (j, q). Based on all these notations, we define the
TPL-OSR problem as follows.

Problem 2 (TPL-OSR Problem): Given a single row place-
ment, we seek a legal placement and cell color assignment,
so that the HPWL of all nets and the total stitch number are
minimized.

Compared with the traditional OSR problem, the TPL-OSR
problem faces two special challenges.

1) TPL-OSR not only needs to solve cell placement, but
also needs to assign appropriate coloring solutions for
cells to minimize the stitch number. In other words,
cell placement and color assignment should be solved
simultaneously.

2) In conventional OSR problems, if the sum of all cell
widths is less than row capacity, it is guaranteed that there
would be one legal placement solution.
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Fig. 8. Two techniques for removing conflicts during placement. (a) Shift
the cell. (b) Flip the cell.

However, for TPL-OSR problems, since some extra sites
may be spared to resolve coloring conflicts, before coloring
assignment we cannot calculate the required site number.

In addition, it shall be noted that compared with the con-
ventional color assignment problem, in TPL-OSR the solution
space is much larger. That is, to resolve the coloring conflict
between two abutted cells, ci and cj, apart from picking up
compatible coloring solutions, TPL-OSR can seek to flip cells
[see Fig. 8(a)] or shift cells [see Fig. 8 (b)].

B. Unified Graph Model

In this section, we propose a graph model that correctly cap-
tures the cost of HPWL and the stitch number. Furthermore,
we will show that performing a shortest path algorithm on the
graph model can optimally solve the TPL-OSR problem.

To consider cell placement and cell color assignment simul-
taneously, a directed acyclic graph G = (V, E) is constructed.
The graph G is with vertex set V and edge set E. V =
{{0, . . . , m} × {0, . . . , N}, t}, where N = ∑n

i=1 vi. The vertex
in the first row and the first column is defined as vertex s.
We can see that each column corresponds to one site’s start
point, and each row is related to one specified color assign-
ment of one cell. Without loss of generality, we label each row
as r(i, p), if it is related to cell ci with pth coloring solution.
The edge set E is composed of three sets of edges: 1) horizontal
edges Eh; 2) ending edges Ee; and 3) diagonal edges Ed

Eh = {(i, j− 1)→ (i, j)|0 ≤ i ≤ N, 1 ≤ j ≤ m}
Ee = {(i, m)→ t|i ∈ [1, N]}
Ed = {(r(i− 1, p), k)→ (r(i, q), k + w(i)

+ LUT(i− 1, p, i, q)) |i ∈ [2, n]

p ∈ [1, vi−1], q ∈ [1, vi]}.
We denote each edge by its start and end point. A legal

TPL-OSR solution corresponds to finding a directed path from
the vertex s to vertex t. Sometimes one row cannot insert all
the cells, therefore, ending edges are introduced. With these
ending edges, the graph model can guarantee to find out one
path from s to t.

To simultaneously minimize the HPWL and stitch number,
we define the cost on edges as follows.

1) All horizontal edges are with zero cost.
2) For ending edge {(r(i, p), m) → t}, it is labeled by the

cost (n− i) ·M, where M is a large number.
3) For diagonal edge {(r(i− 1, p), k)→ (r(i, q), k+ w(i)+

LUT(i− 1, p, i, q))}, it is labeled by the cost as follows:

α ·�WL+ s(i− 1, p)+ s(i, q)

where �WL is the HPWL increment of placing ci in
position k + LUT(i− 1, p, i, q).

Note that if position k + LUT(i − 1, p, i, q) is outside the
range(i), we can simply ignore the diagonal edge. Here α

is a user-defined parameter for assigning relative importance
between the HPWL and the stitch number. In our framework,
α is set to 10.

One example of the graph model is illustrated in Fig. 9, where
two cells, c1 and c2, are to be placed in a row with five sites.
Each cell has two different coloring solutions and corresponding
required stitch number. For example, the label (2,1)-0 means
c2 is assigned to the first coloring solution, with no stitch. The
graph model is shown in Fig. 9(b)–(d), where each figure shows
different part of diagonal edges. Cells c1 and c2 are connected
with pins 1 and 2, respectively. Therefore, c1 tends to be on
the left side of the row, while c2 tends to be on the right side.
Fig. 10 gives two shortest path solutions with the same HPWL.
Because the second has a smaller stitch number, it would be
selected as the solution for the TPL-OSR problem.

Since G is a directed acyclic graph, the shortest path can be
calculated using topological traversal of G in O(mnK) steps,
where K is the maximal precoloring solution number for each
cell. To apply topological traversal, a dynamic programming
algorithm is proposed to find the shortest path from the s vertex
to the t vertex.

C. Two Stage Graph Model

Although the unified graph model can be optimally solved
through a shortest path method in O(mnK), for practical design
when each cell could allow many precoloring solutions, the
proposed graph model may still suffer from long runtime
penalty. Here, we present a new two-stage graph model for
the TPL-OSR problem. The main idea is that the previous uni-
fied graph model is decomposed into two smaller graphs, one
for color assignment and another for cell placement. Therefore,
solving the new model can provide a fast solution to the
TPL-OSR problem.

To solve the example in Fig. 9, the first stage graph model
is illustrated in Fig. 11(a), where the cost of each edge
((i− 1, p)→ (i, q)) is defined as follows:

s(i, q)+ α · LUT(i− 1, p, i, q).

With this cost function, both stitch number and site number
can be minimized simultaneously. A shortest path on the graph
corresponds to a color assignment with optimized stitch number
and site number.

Our second stage is for cell placement and the previous color
assignment solutions are considered here. That is, if in previous



YU et al.: METHODOLOGY FOR STANDARD CELL COMPLIANCE AND DETAILED PLACEMENT FOR TPL 733

Fig. 9. Example for the TPL-OSR problem. (a) Two cells with different coloring solutions to be placed into a five sites row. Graph models with diagonal
edges (b) from s vertex to first cell, (c) from c1_1 to second cell, and (d) from c1_2 to second cell.

Fig. 10. Shortest path solutions on the graph model with (a) 1 stitch and (b)
0 stitch.

Fig. 11. (a) First stage to solve color assignment. In this example edge cost
only considers the stitch number minimization. (b) One shortest path solution,
where both cell 1 and 2 are assigned to coloring solution 1.

color assignment cells, ci−1 and ci, are assigned its pth and qth
coloring solutions, then the width of cell ci is changed from w(i)
to w(i)+LUT(i−1, p, i, q). This way, the extra sites to resolve
coloring conflicts are prepared for cell placement. Based on the
updated cell widths, the graph model in [34] can be directly
applied here. For instance, the second stage graph model for
the example in Fig. 9 is illustrated in Fig. 12. It shall be noted
that all cells have been assigned a coloring solution, thus the
graph size is much smaller than that in Fig. 9. As shown in
Fig. 12(b), the shortest path on the graph corresponds to a cell
placement. The maximum displacement constraint can be easily
considered through ignoring some diagonal edges.

The first graph model can be solved in O(nK), while the sec-
ond graph model can be resolved in O(mn). Therefore, although
the speed-up technique can not achieve an optimal solution of
the TPL-OSR problem, applying the two-stage graph model can
reduce the complexity from O(mnK) to O(nK + mn).

VII. TPL-OSR WITH MAXIMUM DISPLACEMENT

In this section, we consider another single row placement
problem, which is similar to the TPL-OSR, where the ini-
tial cell orders are determined. The slight difference here is
that each cell is forbidden from moving more than distance M

Fig. 12. (a) Second stage to solve detailed placement. (b) One shortest path
solution corresponds to a cell placement.

from its original location. The new problem is called TPL-OSR
with maximum displacement. The motivation to study this new
problem is twofold. First, in the previous TPL-OSR problem,
although the two stage graph model can provide fast solutions
due to the nature that the color assignment and cell place-
ment are solved separately, its solution qualities may not be
good enough. For the new problem, we are able to propose
a fast but high performance optimization algorithm. Second,
from the design perspective, a detailed placement technique
with maximum displacement constraints is robust and important
in practical situations. For example, if the initial placement is
optimized toward other design metrics, e.g., timing, pin density,
or routability, limiting cell displacements can help to maintain
these metrics.

A. Problem Formulation

The problem we solve is finding new locations for all cells
that preserve their relative order. Meanwhile, each cell has max-
imum moving distance, M, from its original location. In other
words, for each cell ci, its displacement range is defined as
range(i) overlaps with [x(i) − M, x(i) + M]. Here x(i) is the
original position of cell ci, while M is a user-defined parameter.

B. Linear Dynamic Programming Algorithm

Inspired by [22], our algorithm is based on linear dynamic
programming, which means the optimal solution can be
searched in linear time. The main idea is that we process cells
starting from c1 and explore cell pair locations for (c1, c2), fol-
lowed by (c2, c3), etc. Once the optimal placements and color
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TABLE II
NOTATIONS USED IN LINEAR DYNAMIC PROGRAMMING

Algorithm 4 Linear Dynamic Programming
Require: Cells C in row sites R;

1: Initialize matrices r, t, d, and a; F←∞;
2: for all i = 2 to n do
3: for all a1 = 1 to vi−1, a2 = 1 to vi do
4: for all d1 = −M to M, d2 = −M to M do
5: if r[i − 1][d1][a1] = 1 or x(i) + d1 outside

range(i) or x(j)+ d2 outside range(j) then
6: continue;
7: end if
8: y = t[i− 1][d1][a1]+ Fi−1(d1, a1, d2, a2);
9: if y < t[i][d2][a2] then

10: t[i][d2][a2]← y;
11: d[i][d2][a2]← d1;
12: a[i][d2][a2]← a1;
13: end if
14: end for
15: end for
16: Mark inferior ones with r[i][d][a]← 1;
17: end for
18: for dn = −M to M, an = 1 to vn do
19: if t[n][dn][an] < F then
20: F← t[n][dn][an];
21: d(n)← dn;
22: a(n)← an;
23: end if
24: end for
25: for i = n downto 2 do
26: d(i− 1)← d[i][d(i)][a(i)];
27: a(i− 1)← a[i][d(i)][a(i)];
28: end for

assignments for c1, . . . , ci−1 are computed we search the opti-
mal placement and color assignment simultaneously for ci. For
convenience, Table II lists some additional notations used in the
linear dynamic programming.

The details of the linear dynamic programming are shown
in Algorithm 4. Line 1 initializes the solution costs. The
main algorithmic computation takes place in the loops
(lines 2–17). We iteratively explore all cell pairs (ci−1, ci), with
different displacement values and color assignment solutions
(lines 2–4). For cell pair (ci−1, ci) and different combinations
of (d1, a1, d2, a2), the best cost is stored in t[i][d2][a2], while
d1 and a1 are stored in d[i][d2][a2] and a[i][d2][a2], respec-
tively (lines 9–13). Fi−1(d1, a1, d2, a2) is the cost considering

wire-length impact and stitch number, defined as follows:

α ·�WL+ s(i− 1, a1)+ s(i, a2)

where �WL is the HPWL improvement of placing ci−1 and
ci in x(i − 1) + d1 and x(i) + d2, respectively. s(i − 1, a1)

and s(i, a2) are used to calculate the stitch numbers. Here α

is a user-defined parameter for assigning relative importance
between the HPWL and the stitch number.

Different from the method in [22], we propose pruning tech-
niques to speed-up the dynamic programming process. For
any two solutions t[i][d1][a] and t[i][d2][a], if t[i][d1][a] >=
t[i][d2][a] and d1 >= d2, we can say t[i][d1][a] is inferior
to t[i][d2][a]. Then r[i][d1][a] is assigned 1 to label the infe-
riority (line 16). Therefore, one can exit early when checking
the r value (lines 5–7). Lines 18–24 compute the end case of
the last cell in the row, and the solution is recovered at last
(lines 25–28).

Theorem 1: The linear dynamic programming runs in
O(nK2M2) time to optimally solve the problem.

The complexity analysis results from the for loops
(lines 2–17). Since both K and M are constants, the runtime
complexity of Algorithm 4 is linear. Optimality stems from
the fact that t[i][ ][ ] explores all possible displacement val-
ues and color assignment solutions. It shall be noted that the
runtime complexity using unified graph model in Section VI-B
is O(nmK). Since usually m is larger than n, the complexity
of a unified graph model is quadratic and may be slower than
linear dynamic programming.

VIII. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement our standard cell precoloring and TPL aware
detailed placement in C++, and all the experiments are per-
formed on a Linux machine with 3.0 GHz CPU. Nangate 45
nm library [28] is scaled down to 16 nm technology node, as our
initial standard cell library. We apply standard cell compliance
and precoloring on the scaled library. During standard cell pre-
coloring, each cell’s maximum allowed stitch number, maxS,
is set to 2. Note that for some complex cells, the minimum
stitch number required may be larger than maxS. For these com-
plex cells, maxS is set as the minimum stitch number required.
We use Design Compiler [38] to synthesize OpenSPARC T1
designs based on the modified cell library. For each bench-
mark, we perform placement with Cadence SoC Encounter [39]
to generate initial placement results. To better compare the
performance of detailed placement under different placement
densities, for each circuit, we choose three different core uti-
lization rates 0.7, 0.8, and 0.85. Generally speaking, the higher
utilization rate, the more difficult of the detailed placement. In
our implementation, the α value is set to 10.

The benchmark statistics are listed in Table III. Column “K”
is the maximum cell precoloring solution number among all
standard cell types, which is related to the LUT size. Columns
“cell #” and “row #” are the total cell module number and
the total row number for each placement test case, respectively.
Both “cell #” and “row #” reflect the placement problem size.
To demonstrate the problem size of each single row placement,
columns “max cell # per row” and “max m per row” are used.
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TABLE III
BENCHMARK STATISTICS

TABLE IV
COMPARISONS WITH POST-LAYOUT DECOMPOSITION

These columns represent maximum cell module number in one
row, and maximum site number in one row, respectively.

B. Compare With Layout Decomposition Works

In the first experiment, we demonstrate the effectiveness of
our TPL aware design flow compared to conventional TPL lay-
out decomposition-based flow. The TPL layout decomposition-
based flow consists of standard cell synthesis, placement,
and TPL layout decomposition at post-stage. Our proposed
flow integrates TPL constraints into standard cell synthe-
sis and detailed placement, thus no layout decomposition is
required on the whole chip layout. Table IV compares these
flows for the M1 layers of all the benchmarks. In layout
decomposition-based flow, Encounter is chosen as the placer.
Column “decomposer [14]” lists the conflict number and the
stitch number by an academic layout decomposers, while col-
umn “our flow” is the proposed TPL aware design flow. Layout
modification and precoloring are carried out for each stan-
dard cell, and the unified graph model is applied to solve cell

Fig. 13. Examples of different design flows. (a) Even the layout is TPL
friendly, layout decomposition may report unnecessary conflict. (b) Our TPL
aware design flow can generate conflict-free output.

placement and color assignment simultaneously. Note that for
each flow, the standard cell inner native conflicts have been
removed through our compliance techniques (see Section III).
In other words, theoretically the conflicts can only happen on
the boundaries between standard cells.

On one hand, we can see that in the layout decomposition-
based flow, even input layout itself is TPL-friendly on average
more than 120 unnecessary conflicts are reported. Due to the
large number of conflicts, a lot of efforts may be required
to manually modify or migrate the layout to resolve the con-
flicts. On the other hand, through considering TPL constraints
in early design stages, our proposed TPL aware design flow
can guarantee zero conflict. Fig. 13 compares the outputs from
decomposer [14] and our flow. In Fig. 13(a), we can see that
one unnecessary conflict is reported, while in Fig. 13(b) our
flow can generate conflict-free layout.

C. Detailed Placement Algorithm Comparison

In Sections VI and VII, we have proposed several algorithms
to solve TPL aware single row detailed placement. In the sec-
ond experiment, we analyze the performances of the proposed
algorithms and related speed-up techniques in Table V. Column
“GREEDY” is a greedy detailed placement algorithm [20],
which is implemented as our baseline. Although [20] is tar-
geting the self-aligned double patterning, the proposed detailed
placement algorithm can be modified to be integrated into our
framework. The detailed placement in [20] is greedy-based.
Rows of placement are processed one by one, left to right.
For each pair of conflicting cells, we first check if the con-
flict can be resolved through cell flipping, if no then cell
spreading would be carried out. Columns “TPLPlacer” and
“TPLPlacer-2Stage” are detailed placement algorithms with dif-
ferent TPL-OSR engines. TPLPlacer utilizes the optimal unified
graph model, while TPLPlacer-2Stage uses fast two-stage graph
models to solve color assignment and cell placement iteratively.



736 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 5, MAY 2015

TABLE V
COMPARISONS OF DETAILED PLACEMENT ALGORITHMS

In addition, column “TPLPlacer-MDP” is to apply the linear
dynamic programming method (see Section VII). Here the max-
imum displacement value, M, is set to 8. Column “Ddisp” lists
the maximum displacement constraint for each test case. For
each algorithm we list several metrics “ST#,” “�WL,” and
“CPU(s).” “ST#” is the stitch number on the final decomposed
layout. �WL is the total wire-length difference before and after
our TPL aware placement, where HPWL is applied to calcu-
late the total wire-length. Column CPU(s) gives the detailed
placement process runtime in seconds.

From column GREEDY we can see that the greedy method
is very fast. However, in 3 out of 21 cases it cannot find legal
placement solutions. For each illegal result “N/A” is labeled
in Table V. The main reason for these illegal solutions is that
GREEDY only shifts the cells right. Therefore, due to the
greedy nature, for a benchmark case with high cell utilization
it may cause final placement violation. Meanwhile, since the
color assignment is solved through greedy method as well, it
loses the global view to minimize the stitch number. We can
observe that more stitches are reported for those cases where it
finds out legal results.

We further compare two TPL-OSR algorithms: TPLPlacer
and TPLPlacer-2Stage. Comparing these two columns we can
see that both of them can yield very similar wire-length
improvement (around 1% wire-length reduction). In TPLPlacer-
2Stage the unified graph is divided into two independent graphs,
so the graph size can be reduced. Due to the smaller graph size,
TPLPlacer-2Stage can get 10× speed-up against TPLPlacer.
However, TPLPlacer-2Stage introduces 16% more stitch num-
bers. The possible reason is that under the 2-stage graph model,
placement and color assignment are optimized separately, and
then this speed-up technique may lose some optimality in terms
of stitch number.

From column TPLPlacer-MDP we can see that the lin-
ear dynamic programming technique has a better trade-off
to optimize wire-length and stitch number together. That is,
TPLPlacer-MDP achieves nearly the same wire-length and
stitch number results comparing with TPLPlacer. Meanwhile,
TPLPlacer-MDP is around 5× faster than the unified graph
model in TPLPlacer. The reason is that TPLPlacer-MDP is a
linear runtime algorithm in terms of n, while TPLPlacer has
nearly a quadratic runtime complexity.

The TPLPlacer-MDP is implemented with M = 8. In other
words, each cell ci has 2M+ 1 possible new positions between
[x(i) − M, x(i) + M]. Since the M value determines the place-
ment solution space, it impacts the performance of detailed
placement a lot. Therefore, to demonstrate the robustness of
TPLPlacer-MDP, it would be interesting to analyze the perfor-
mance with different M settings. Fig. 14 gives such analysis
for test cases alu_70, alu_80, and alu_85. From Fig. 14(a) and
(b), we can see that with different M values, TPLPlacer-MDP
can achieve similar stitch number and wire-length improvement.
Note that in Fig. 14(b), we observe sometimes smaller M value
may lead to little better wire-length. The possible reason is that
when M is smaller, we cannot find legal placement solution in
a single row, thus global moving would be carried out. Due to
the additional global moving effort, the total wire-length can be
improved. It is not hard to see from Fig. 14(c) that the runtime
is related to the M value. Although the runtime complexity is
quadratic to M value, due to pruning technique the practical
runtime is nearly a linear function of M. Therefore, we can
conclude that TPLplacer-MDP is very robust and insensitive to
the M value. In our implementation, M is set as a small value
8, to maintain both good speed-up and good performance.

α is a user-defined parameter for assigning relative impor-
tance between the HPWL and the stitch number. In Table V,
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Fig. 14. TPLPlacer-MDP performance analyzes with different M values for alu design cases. (a) Impact on stitch numbers. (b) Impact on wire-length
improvements (�WL). (c) Impact on runtimes.

Fig. 15. Performance analyzes with different α values for ctl design cases. (a) Impact on stitch numbers. (b) Impact on wire-length improvements (�WL).
(c) Impact on runtimes.

α is set to 10. Fig. 15 analyzes the TPLPlacer-MDP perfor-
mance with different α settings for test cases ctl_70, ctl_80,
and ctl_85. From Fig. 15(a) and (b), we can see that with
smaller α value, TPLPlacer-MDP can achieve smaller stitch
number, but longer wire-length. In other words, if smaller
α is selected, stitch minimization would be emphasized dur-
ing our TPL aware detailed placement; if larger α is applied,
wire-length optimization would be more important.

IX. CONCLUSION

In this paper, we have proposed a coherent framework to
seamlessly integrate the TPL aware optimizations into early
design stages, e.g., standard cell compliance, standard cell pre-
coloring, and detailed placement. To the best of our knowledge,
this is the first work for TPL compliance at both standard
cell and placement levels. For the TPL-OSR problem, an opti-
mal graph model to simultaneously solve cell placement and
color assignment is proposed. Then, a two-stage graph model
is applied to speed-up the algorithm. To alleviate the impact
on solution quality, another speed-up technique is presented to
solve the TPL-OSR with maximum displacement constraints.
The results show that considering TPL constraints in early
design stages can dramatically reduce the conflict number and
stitch number in the final layout.

As continuing shrinking of technology node to sub-16 nm,
TPL turns out to be a definitely promising lithography solution.

A dedicated design flow that integrates TPL constraints is nec-
essary to assist in the whole process. We believe this paper
will stimulate more research on TPL and TPL aware design.
Future works would include how the coloring and placement
methodologies can be extended to resolve conflicts across cell
rows or multirow height cells. Another line of research would
explore the parallelization of detailed placement for different
rows, though the overall placement scheme may have to be
modified to accommodate global moving during parallelization.
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