
2

Layout Decomposition with Pairwise Coloring and Adaptive
Multi-Start for Triple Patterning Lithography

YE ZHANG, WAI-SHING LUK, and YUNFENG YANG, Fudan University
HAI ZHOU, Northwestern University
CHANGHAO YAN, Fudan University
DAVID Z. PAN, University of Texas at Austin
XUAN ZENG, Fudan University

In this article we present a pairwise coloring (PWC) approach to tackle the layout decomposition problem
for triple patterning lithography (TPL). The main idea is to reduce the problem to a set of bi-coloring
problems. The overall solution is refined by applying a bi-coloring method for pairs of color sets per pass.
One obvious advantage of this method is that the existing double patterning lithography (DPL) techniques
can be reused effortlessly. Moreover, we observe that each pass can be fulfilled efficiently by integrating
an SPQR-tree-graph-division-based bi-coloring method. In addition, to prevent the solution getting stuck
in the local minima, an adaptive multi-start (AMS) approach is incorporated. Adaptive starting points are
generated according to the vote of previous solutions. The experimental results show that our method is
competitive with other works on both solution quality and runtime performance.

Categories and Subject Descriptors: B.7.2 [Hardware, Integrated Circuits, Design Aids]: Layout

General Terms: Algorithms, Design

Additional Key Words and Phrases: Adaptive multi-start, design for manufacturability, layout decomposition,
pairwise coloring, triple patterning lithography

ACM Reference Format:
Ye Zhang, Wai-Shing Luk, Yunfeng Yang, Hai Zhou, Changhao Yan, David Z. Pan, and Xuan Zeng. 2015.
Layout decomposition with pairwise coloring and adaptive multi-start for triple patterning lithography. ACM
Trans. Des. Autom. Electron. Syst. 21, 1, Article 2 (November 2015), 25 pages.
DOI: http://dx.doi.org/10.1145/2764904

1. INTRODUCTION

According to the International Technology Roadmap for Semiconductors (ITRS) Re-
port 2013, the critical dimension will achieve 13nm in 2017. To meet the critical manu-
facture requirement, various next-generation lithography systems have been proposed.

This article extends an earlier version that appeared at the 32nd International Conference on Computer-
Aided Design (ICCAD2013).
This work was supported in part by the National Natural Science Foundation of China under Project
61125401, Project 61376040, Project 61274032, in part by the National Basic Research Program of China
under Grant 2011CB309701, in part by the Shanghai Science and Technology Committee under Project
13XD1401100, in part by NSF under CCF-1115550, CCF-1218906 and CNS-1441695, and in part by SRC
under 2014-TS-2559.
Authors’ addresses: Y. Zhang, W.-S. Luk, Y. Yang, the State Key Laboratory of ASIC and System, School
of Microelectronics, Fudan University, Shanghai 200433, China; email: yezhang12@fudan.edu.cn; H. Zhou,
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL; C.
Yan, the State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai
200433, China; D. Z. Pan, Department of Electrical and Computer Engineering, University of Texas at
Austin, Austin, TX; X. Zeng (corresponding author), the State Key Laboratory of ASIC and System, School
of Microelectronics, Fudan University, Shanghai 200433, China.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 1084-4309/2015/11-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2764904

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:2 Y. Zhang et al.

Fig. 1. Multiple patterning: features in different colors are printed in different lithograph steps. Conflict
regions are indicated by star shapes.

They include multiple patterning lithography (MPL), extreme ultraviolet (EUV) lithog-
raphy, and electron beam (E-beam) lithography. Currently, the implementation of MPL
remains challenging. However, due to the delay of availability of EUV and E-beam for
mass-volume chip production, MPL is still regarded as the most promising solution for
the next technology node.

One of the biggest challenges of MPL is how to split a layout into k nonconflicting
masks, where double and triple patterning correspond to k = 2 and 3, respectively.
An example of layout decomposition for double patterning lithography (DPL) in a litho-
etch-litho-etch (LELE) process is shown in Figure 1(a). Two different colors in the figure
correspond to two different masks which are printed in two separate lithography steps.
The main principle of the color assignment is that, given a minimum coloring spacing d,
there exists a conflict between two nontouching features if the distance between them
is less than d. Therefore they should be assigned different colors. The color assignment
problem can be formulated as the MIN k-PARTITION problem [Ausiello 1999, GT32]
or its dual, the MAX k-CUT problem [Ausiello 1999, ND17].

For DPL, many innovative bi-coloring methods have been proposed to tackle this
problem, such as the integer linear program (ILP) approach [Kahng et al. 2008; Yuan
et al. 2010; Sun et al. 2011], graph-theoretic approach [Yang et al. 2010; Xu and Chu
2010; Luk and Huang 2010]. The ILP approach is known to be time consuming, whereas
the quality of the results achieved with the graph-theoretic approach cannot be guar-
anteed. Parallel computing was also incorporated to reduce runtime and memory con-
sumption [Zhao et al. 2014]. Nevertheless, conflicts cannot be avoided whenever odd
cycles exist in the conflict graph. To further resolve the conflicts, the stitch inser-
tion [Kahng et al. 2008] and post-coloring legalization techniques [Ghaida et al. 2013]
have also been proposed.

As the technology node shrinks further down to 13nm and beyond, DPL will not
be sufficient. Thus, triple patterning lithography (TPL) is proposed in which one more
mask is introduced. Figure 1(b) shows an example of layout decomposition for TPL in
a litho-etch-litho-etch-litho-etch (LELELE) process where all conflicts can be resolved.
From the problem complexity point of view, the color assignment problem for TPL is
more “difficult” to solve than that for DPL, in the sense that the MAX k-CUT problem
for k = 3 has no known polynomial-time solution even for planar graphs. Furthermore,
the MAX k-CUT problem for bipartite graphs and k = 2 can be solved in linear time,
whereas the problem for tripartite graphs and k = 3 is NP-hard. As a result, not all DPL
techniques can be directly extended for TPL. In Yu et al. [2011], an approximation al-
gorithm is proposed which is based on the semidefinite programming (SDP) relaxation,
which is extended for k > 3 in Yu and Pan [2014]. The effectiveness of the algorithm
relies on the underlying numerical SDP solver. In Fang et al. [2012, 2014], the au-
thors proposed a heuristic algorithm which is based on the recursive-largest-first (RLF)
algorithm. Another previous work [Tian et al. 2012] proposed an algorithm which is
specialized for cell-based row structure layouts. In Kuang and Young [2013], a layout
decomposition approach was implemented by building a coloring library. In Yu et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:3

[2013], Tian et al. [2013], and Chen et al. [2013], the color balancing was considered as
well.

This article presents a pairwise coloring (PWC) approach for solving the TPL layout
decomposition problem. The main idea is to reduce the problem to a set of bi-coloring
problems. The overall solution is refined by applying a bi-coloring method for pairs of
colors per pass. This idea has been exploited, for example, in circuit partitioning [Cong
and Lim 1998]. One major advantage of the PWC approach is that existing bi-coloring
techniques can be reusable. Any improvement of them can directly benefit the TPL
counterpart. Nevertheless, two questions about this approach have to be addressed.
The first is that whether its runtime performance is competitive with other methods.
To answer this, we observe that each pass can be fulfilled in a reasonable time by in-
tegrating an SPQR-tree-graph-division-based bi-coloring method into this framework.
The second question is that whether the solution will get stuck in the local minima.
To deal with this, an adaptive multi-start (AMS) approach is adopted, where adaptive
starting points are generated according to the vote of previous solutions. The effective-
ness of our method will further be demonstrated with the experimental results.

In this article, we make the following contributions.

(1) We solve the layout decomposition problem for TPL with a PWC approach where
the existing bi-coloring techniques can be reused.

(2) In order to make the PWC approach applicable in practice, we integrate an SPQR-
tree-graph-division-based bi-coloring method to improve the runtime performance.

(3) We incorporate an AMS approach in this framework. Consequently, the solutions
can largely avoid getting stuck in the local minima.

(4) Experimental results show that our proposed method is effective.

The remainder of this article is organized as follows. First, the layout decomposition
problem formulation for MPL is given in Section 2. An overview of our layout decom-
position tool is presented in Section 3. After that, we present the layout decomposition
methods for TPL in Section 4. Experimental results are provided in Section 5. Our
conclusions are given in Section 6.

2. PROBLEM FORMULATION

Given a layout that consists of features represented by polygonal shapes, features are
first fractured into rectangles [Kahng et al. 2008]. Although this process will increase
the problem size, the reasons it is preferable are three-folds:

(1) since a rectangle is easier to handle than a polygon, this process can simplify the
later algorithms such as plane sweeping and stitch insertion;

(2) the process introduces stitch candidates naturally;
(3) self-conflict features can be more easily detected.

In Section 4.1, a simple layout fracturing method that reduces the number of rect-
angles will be given. Note that stitch insertion techniques could further be applied if
necessary.

A provision that a set of rectangles that represents a fractured layout is given.
Given a minimum coloring spacing d, there exists a conflict between two nontouching
rectangles if the distance between them is less than d (more precise description of
conflict detection will be given in Section 4.1). If two rectangles are touching each other,
we assume they belong to the same feature and that there exists a stitch candidate.
A conflict graph G = (V, E) is then constructed by the following. Each vertex v ∈ V
represents a rectangle in a layout. Each edge e ∈ E represents a conflict or a stitch
candidate between two rectangles. A weight function w is associated with each edge.
If two rectangles are in conflict, then the corresponding edge is assigned a positive

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:4 Y. Zhang et al.

Fig. 2. The overall flow of our layout decomposition method for TPL.

weight. In addition, a negative weight is assigned to each pair of touching rectangles
so that the same color is preferred, hence minimizing the number of stitches. The layout
color assignment problem for MPL can now be formulated as follows.

—INSTANCE: Graph G = (V, E) and a weight w : w → R.
—SOLUTION: A color assignment c : V → [1..k].
—MINIMIZE: the weight of the monochromatic edges,

∑

(v1,v2)∈E:c(v1)=c(v2)

w(v1, v2) .

DPL and TPL correspond to the cases of k = 2 and 3, respectively. The problem is the
same as the MIN k-PARTITION problem described in Ausiello [1999, GT32] which is
known to be NP-hard in general. If G is a planar graph, it is polynomial-time solvable
for k = 2, but still NP-hard for k > 2. Furthermore, if G is a bipartite graph, the problem
can be solved in linear time for k = 2. Thus, the problem for k = 2 can be recasted as
finding a bipartite subgraph G′ = (V, E− Ec) where Ec is a set of edges to be deleted. In
DPL, it is more convenient to keep track of Ec instead of the whole color solution, since
the size of Ec is practically small. More importantly, color flipping can be avoided when
a graph division method is applied. Nevertheless, the technique cannot be applied to
TPL directly, due to the fact that the problem is still NP-hard when G is a tri-colorable
(tripartite) graph and k = 3 (c.f. Yu et al. [2011]).

3. OVERVIEW OF OUR LAYOUT DECOMPOSITION FLOW

As certain techniques can only be applied for k = 2, the PWC approach for TPL is
presented, which is essentially a local search metaheuristic. In order to avoid getting
stuck in the local minima, the AMS approach is also incorporated. The overall flow
of our method is shown in Figure 2. The polygonal-shaped features are fractured into
rectangles and a conflict graph is constructed based on d. More details are presented
in Section 4.1. The layout decomposition problem for TPL is then transformed into a

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:5

tri-coloring problem. By coloring all vertices with three colors, rectangle features are
assigned to three masks.

First the conflict graph is divided into biconnected components, each of which is then
simplified (presented in Section 4.4). Consequently, the problem size can be reduced.

Afterwards, the tri-coloring problem for each biconnected component is indepen-
dently solved using the AMS approach. There are two phases in the AMS approach:
the Learning Phase and the Improving Phase. In the Learning Phase, a set of ran-
dom starting points are constructed such that each vertex is randomly assigned to one
of the three colors with equal probability. Then, from each starting point, the PWC
approach is conducted to achieve the corresponding solution. The solutions build up
the “experience”. In the Improving Phase, the starting points are adaptively generated
according to the vote of previous solutions. The generated starting points are more
likely to lead to better solutions [Boese et al. 1994]. The new solutions achieved with
the PWC approach from the adaptive starting points update the “experience” as well.
The Improving Phase will exit if the AMS stopping criteria are met. The achieved
best solution is selected as output. Section 4.3 provides more details about the AMS
approach.

In both of the phases, given a starting point, the corresponding solution is achieved
with the PWC approach. In this approach, the tri-coloring problem is reduced to a
set of bi-coloring problems, each conquered with a bi-coloring algorithm. The adopted
bi-coloring algorithm is based on the SPQR-tree technique (described in Section 4.5.1)
and Hadlock’s algorithm (described in Section 4.5.2). If the bi-coloring problem can be
solved well, the quality of overall tri-coloring solution might be improved after a PWC
pass (defined in Section 4.2). The PWC passes continue until the stopping criteria are
met. More details about the PWC approach are presented in Section 4.2.

Finally the outputs of all biconnected components are merged in linear time with no
solution-quality degradation.

4. LAYOUT DECOMPOSITION FOR TPL

In this section, the TPL layout decomposition techniques are presented. We first per-
form layout fracturing and conflict graph construction. The TPL layout decomposition
is formulated as a tri-coloring problem. Then the problem is solved with the PWC
and AMS approaches. Besides, graph division and simplification techniques are also
incorporated for TPL.

4.1. Layout Fracturing and Conflict Graph Construction

We employ a layout fracturing algorithm based on Gourley and Green [1983] that
fractures the polygonal features into rectangle pieces. The algorithm is simple and
works as follows. Let us say a vertex with internal angle equals 270◦ a fracture vertex.
The algorithm basically looks for any fracture vertex, and then makes a cut from it to its
nearest line segment. Because each cut eliminates one fracture vertex, the algorithm
terminates when no more fracture vertex is found. The algorithm runs in O(N2) time,
where N is the number of vertices of a given polygon. However, the algorithm may
generate slivers which are undesired in our application. One example is shown in
Figure 3(a). The polygonal feature is fractured into three rectangles, the smallest one
a sliver. Based on Gourley and Green [1983], we present a slightly modified version
which can eliminate the sliver by allowing overlap between rectangle pieces. First for
each fracture vertex A, we check whether there is another nearest fracture vertex B
in its “opposite” direction. If not, then we simply follow the procedure of the original
algorithm. Otherwise, two cuts with overlapped area are generated as indicated by
the dashed circle in Figure 3(b). Note that the overlapping area also partly alleviates
manufacturing overlay error. As shown in Figure 3(a), with manufacturing overlay

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:6 Y. Zhang et al.

Fig. 3. Layout fracturing methods comparison.

Fig. 4. Layout fracturing and conflict detection. Overlapped regions are indicated by dashed circles.

error, the circuit could be easily disconnected. By introducing an overlapping area, it
will maintain connected if the overlay error is not severe.

The conflict graph construction is presented as follows. Each layout rectangle is first
enlarged by moving each side outward by d/2. Since two rectangles are in conflict only
if their enlarged counterparts are overlapped, we can then apply a plane sweeping
method that screens out most of the unnecessary conflict detection. With the help of
a data structure named dynamic priority search tree [McCrelght 1985], the sweeping
process can be performed in O(n log n) time, where n is the number of rectangles.
After shrinking back each rectangle, further examinations of conflict are performed as
follows. If two rectangles are not touching each other and their distance is less than
d, then we examine whether two rectangles belong to the same polygon. If they do,
then we examine whether this is the case that they form a rectilinearly concave shape
along their path in the polygon. If it is the case, then an edge with a positive weight
is created for the two rectangles. For example, as shown in Figure 4, rectangles B and
C are in conflict, whereas rectangles A and C are not even though their minimum
distance is less than d. Note that a rectilinear polygon is called rectilinearly convex
if it is both x-monotone and y-monotone. Otherwise, it is called rectilinearly concave.
Two examples are presented in Figure 5. If two rectangles are touching each other, we
create an edge with negative weight so that two rectangles having the same color are
preferred and hence minimize the number of stitches. Note that further checking such
as design rule checking (DRC) could also be performed if necessary.

4.2. Pairwise Coloring Method

After the conflict graph construction, the PWC approach is executed to perform local
search. To describe the PWC approach, we first define some terms.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:7

Fig. 5. Examples for rectilinearly convex and rectilinearly concave.

Definition 4.1 (Color Set). A color set is a set of vertices which are assigned a des-
ignated color.

Definition 4.2 (Pairing Colors). Pairing colors are a pair of designated color sets to
which a bi-coloring process is executed to assign vertices.

Assume there are three color sets: R (red), G (green), and B (blue). All pairing colors
are: {R, G}, {G, B} and {B, R}.

Definition 4.3 (Bi-Coloring Conflict Subgraph). Given a conflict graph, G = (V, E),
and a tri-coloring solution. The bi-coloring conflict subgraph Gc = (Vc, Ec) of certain
pairing colors (e.g., {R,G}) is that:

—Vc = R ∪ G,
—∀ u, v ∈ Vc, e = uv ∈ Ec if e ∈ E.

Definition 4.4 (PWC Pass). During a PWC pass, three bi-coloring processes are exe-
cuted sequentially with different pairing colors on the corresponding bi-coloring conflict
subgraphs.

An example is presented in Figure 6 to illustrate the definitions. Figure 6(a) shows a
conflict graph after tri-coloring. The conflicts and stitch candidates are represented by
the solid and dashed lines, respectively. As shown in Figure 6(b), the bi-coloring conflict
subgraph of {R,G} is induced by the vertices colored red and green.

The PWC approach is essentially a local search metaheuristic. Its main idea is to
reduce the tri-coloring problem to a set of bi-coloring problems for the corresponding
bi-coloring conflict subgraphs. A bi-coloring is limited between the pairing colors, but
the overall solution can be improved during each PWC pass. The order of bi-coloring
processes can be arranged in many ways. In this article, we select the simplest order
as shown in Figure 7. A PWC pass consists of three bi-coloring processes executed
with {G,B}, {B,R} and {R,G} sequentially. After each pass, the cost of the tri-coloring
problem, defined in Section 2, is evaluated. If the cost is the smallest in this run, the
corresponding solution is updated. The PWC passes continue until the stopping criteria
are met.

An example of the PWC approach is presented in Figure 8 to illustrate the solution
improvement process. Figure 8(a) shows a conflict graph. The solid and dashed edges
indicate the conflicts and stitch candidates, respectively. A random starting point is
presented in Figure 8(b), where there exist three conflicts and two stitches. As the
flow shown in Figure 7, Figure 8(c) to 8(f) present the solutions after each bi-coloring
process. In this simple example, the solution is quickly achieved as shown in Figure 8(f).

A similar method was used in Ghaida et al. [2012]. However, in order to make
it applicable in practice, there are three challenges that must be considered in this
approach:

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:8 Y. Zhang et al.

Fig. 6. A conflict graph showing the concepts of pairing colors and bi-coloring conflict subgraph.

(1) whether its runtime performance is competitive with other methods;
(2) when to terminate the current run; and
(3) whether the solution will get stuck in the local minima.

In this section, we endeavor to solve those challenges.

4.2.1. Bi-Coloring Algorithm Design Criteria. In the PWC approach, the overall solution is
refined by applying a bi-coloring method whose design criteria are listed as follows.

(1) Small time complexity. In order to compete with other methods on the runtime
performance, the bi-coloring process should be completed efficiently.

(2) Compatibility with unresolved conflicts. For a practical layout, there is no guarantee
that all bi-coloring conflict subgraphs are bipartite graphs.

The bi-coloring method integrated into our tool is presented in Section 4.5.

4.2.2. Stopping Criteria. Another issue worth further consideration is the stopping cri-
teria of a run. Assume there exists a “good” bi-coloring approach that can solve the
bi-coloring problem optimally. As a result, the cost would not increase after each pass.
In that case we can adopt the immediate stopping, where a run stops right after the cost
stops decreasing. This criterion was adopted in Ghaida et al. [2012]. However, as men-
tioned in Section 2, MIN 2-PARTITION is known to be NP-hard for a general graph.
Consequently, as shown in Figure 9, the cost after each PWC pass might slightly rise
before further drop. Therefore we set the stopping criteria so that: (1) the cost achieves
zero; or (2) the solution of this run fails to be updated after t passes successively. With
the stopping criteria, in Figure 9, the run stops at C and achieves the solution at B
with t = 3. For comparison, with the immediate stopping it stops at A.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:9

Fig. 7. The flow of the PWC method of a run.

4.3. Adaptive Multi-Start Approach

A tri-coloring problem with one more color to spare possesses a larger solution space
than a bi-coloring problem does. Consequently, it is more difficult to find the global
optima for TPL. For a local search method such as the PWC approach, it can become
localized in a small area of the solution space. Therefore some type of diversification
is required to overcome the local optimality. One way to achieve diversification is the
multi-start strategy: restart the search from a new solution once a region has been
extensively explored [Glover and Kochenberger 2003]. A multi-start procedure usually
consists of two phases: (1) the starting points are generated; (2) the solution gets
improved. The diversification is achieved in the first step.

The starting points can be constructed with various strategies. Randomization is
the simplest way, which was adopted in our previous work [Zhang et al. 2013]. The
starting point of each run is purely randomized. It introduces the natural parallelism
because all runs are independent from each other. However, it is a memoryless approach
where the current decisions derive no benefit from the knowledge accumulated during
prior search. Besides, with no control over the diversity, very similar solutions can be
reached [Glover and Kochenberger 2003].

In order to overcome the disadvantages of the randomization approach, an AMS
approach is adopted in this article. It has been previously exploited and analyzed in
detail for combinatorial optimization in Boese et al. [1994]. The authors investigated
the global structure of optimization cost surface of the combinatorial optimization prob-
lems. They claimed that in the solution space there exists a “big valley” [Boese et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:10 Y. Zhang et al.

Fig. 8. An example of PWC process.

Fig. 9. Cost variation trend of the PWC method on C432 for TPL.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:11

Fig. 10. An intuitive picture of “big valley” [Boese et al. 1993] in the solution space.

1993], an intuitive example of which is shown in Figure 10. The “big valley” implies
a correlation: the best local minimum locates central to the others’. It means that the
best local minimum is likely to include what other local minima share. This correlation
was demonstrated in Boese et al. [1994] by taking traveling salesman problem (TSP)
and graph bisection problem as the examples. The correlation suggests an improved
multi-start approach, AMS, which derives starting points from the previous local min-
ima. The derived starting points are more easily led to better local minima. Unlike the
randomization approach, the AMS approach constructs the starting points systemat-
ically with memory by exploiting the history. The approach was applied and proven
both efficient and effective in many applications, such as circuit partition [Hagen and
Kahng 1997]. For detailed analysis of the AMS approach, one can refer to Boese et al.
[1994].

The AMS approach essentially is a voting approach, which consists of two phases.

(1) Learning Phase. Generate a set of random starting points, and the corresponding
local minima are achieved by applying the PWC approach on each starting point.

(2) Improving Phase. Construct adaptive starting points from the obtained local min-
ima, and run the PWC approach on these to yield corresponding new local minima.

Assume that there are three color sets, R, G, and B. The AMS approach is described
in Algorithm 1. A reference vertex vr is selected randomly in the conflict graph. The
“experience”, M, stores the latest ns solutions [Hagen and Kahng 1997]. In the Improv-
ing Phase (line 5 to line 18), a single process of improving corresponds to an improving
loop (line 6 to line 17). In each loop, from an adaptive starting point, the PWC approach
is applied to achieve a new solution S′ which then updates M by replacing the earliest
solution in M with S′. If S′ has lower cost compared with S, the best solution will
also be updated. In practice, the solution-quality improvement cannot be guaranteed
after an improving loop. Thus, as described in Section 4.2.2, we use the AMS stopping
criteria that the improving loop will be exited if: (1) the cost achieves zero; or (2) the
best solution fails to be updated after t runs successively. It can save the risk of missing
better solutions.

The subroutine Generate Adaptive Starting Point constructs an adaptive starting
point as shown in Algorithm 2. The ns solutions in M vote to determine a set of vertices
which are more likely to be colored the same as vr in a better solution. Here we adopt
the unanimity rule, where a vertex will be added to the set only if it shares a same
color with vr for all solutions in M. The rule was also applied in Hagen and Kahng

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:12 Y. Zhang et al.

ALGORITHM 1: Adaptive Multi-Start
Input: The conflict graph G = (V, E), and the number of solutions used to construct each

adaptive starting point ns.
Output: The best solution S.

1 M ← ns solutions from random starting points;
2 S ← best solution in M;
3 vr ← a random vertex in V ;
4 u ← 0;
5 while u ≤ t do
6 S′ ← Generate Adaptive Starting Point(V, M, vr);
7 S′ ← PWC(G) from S′;
8 if cost(S′) = 0 then
9 S ← S′;

10 break;
11 end
12 M ← update M with S′;
13 u ← u + 1;
14 if cost(S′) < cost(S) then
15 S ← S′;
16 u ← 0;
17 end
18 end

ALGORITHM 2: Generate Adaptive Starting Point
Input: The conflict graph G = (V, E), the previous solutions M, the reference vertex vr .
Output: A new starting point S′.

1 R ← ∅;
2 G ← ∅;
3 B ← ∅;
4 for each vertex v in V do
5 f lag(v) ← true;
6 for each solution S in M do
7 if c(v) �= c(vr) then
8 f lag(v) ← f alse;
9 break;

10 end
11 end
12 if f lag(v) = true then
13 R ← R ∪ {v};
14 end
15 end
16 Gc ← the subgraph of G induced by V − R;
17 G, B ← bi-coloring(Gc);
18 S′ ← R, G, B;

[1997]. Then the set of vertices are colored red first. Finally the adaptive starting point
is constructed after a bi-coloring process with {G,B}.

4.4. Graph Division and Simplification

As mentioned in Section 2, the tri-coloring problem is NP-hard. The runtime increases
dramatically as the problem size grows. In order to reduce the problem size, the graph
division and simplification techniques are incorporated.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:13

A connected conflict graph is divided into the biconnected components based on
Depth-First Search (DFS) in linear time [Tarjan 1972]. On each biconnected component,
a graph simplification is performed in a way that the vertices whose degree is less than
three are iteratively removed and stored in a stack [Yu et al. 2011, 2013, Fang et al.
2012, 2014, Kuang and Young 2013]. Then the tri-coloring problem on each biconnected
component is conquered with the PWC and AMS approaches independently. After that,
the vertices in the stack are sequentially added back to the component and assigned a
legal color. Finally the coloring solutions of all biconnected components are merged in
linear time.

4.5. The Bi-Coloring Method

As mentioned in Section 4.2, the PWC approach reduces the tri-coloring problem to
a set of bi-coloring problems on the corresponding bi-coloring conflict subgraphs. The
bi-coloring method integrated into our tool is presented in this section. First, the bi-
coloring problem is reduced by an SPQR-tree-graph division method. Then a bi-coloring
method based on Hadlock’s algorithm is applied.

4.5.1. SPQR-Tree-Graph Division Method. The SPQR-tree-graph division method was first
introduced for DPL in Luk and Huang [2010]. In order to illustrate the idea, some
definitions are as follows.

Definition 4.5 (Separation Pair). If G = (V, E) is a biconnected graph, a separation
pair of G is a pair of vertices if their removal increases the number of connected
components.

Definition 4.6 (Triconnected Graph). A graph G = (V, E) is a triconnected graph if
there is no separation pair in V .

An SPQR-tree is a data structure in which each node is associated with an undirected
triconnected graph Gs with a set of virtual edges. A node, and the graph associated with
it, may have one of the following four types.

(1) S-node. Gs is a cycle graph.
(2) P-node. Gs contains exactly two vertices and at least three edges.
(3) Q-node. Gs contains two vertices and two edges. One of the two edges is a virtual

edge; the other one is a real edge.
(4) R-node. Gs is a triconnected graph other than the three preceding types.

A division of any biconnected graph into its triconnected components can be per-
formed by identifying the separation pairs in linear time with the help of the SPQR-
tree [Hopcroft and Tarjan 1973]. According to the prior definition, each real edge cor-
responds to one Q-node of an SPQR-tree. In actual implementation, the Q-node can
simply be replaced with a flag distinguishing a real edge from a virtual one [Gutwenger
and Mutzel 2001]. Figure 11 shows an example of a biconnected graph, its triconnected
components, and the corresponding SPQR-tree. Note that the SPQR-tree is an unrooted
tree. On the other hand, an arbitrary node can practically be chosen as a root.

With the help of SPQR-tree, a bi-coloring problem can be solved with a divide-and-
conquer method which consists of three steps.

(1) Divide a biconnected graph into its triconnected components.
(2) Conquer each component in a bottom-up manner.
(3) Merge the solutions into a complete one in a top-down manner.

In step 1, the algorithm in Gutwenger and Mutzel [2001] is implemented to divide
the biconnected graph and generate an SPQR-tree. We can choose an arbitrary node

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:14 Y. Zhang et al.

Fig. 11. An example of an SPQR-tree. Virtual edges are indicated by dashed lines.

as a root for convenience. In step 2, the triconnected components are then solved in a
bottom-up manner according to the SPQR-tree. First we define the term.

Definition 4.7 (Reference Edge). In an SPQR-tree, the reference edge of a node x is
a virtual edge of its parent tree node, connecting the separation pair between x and its
parent tree node.

Take an example of the R-node shown in Figure 11. The reference edge of the R-node
is e1 and the corresponding separation pair is {b, h}. There are two possible solutions
for the R-node component, namely b and h having a same color, or b and h having
different colors. For R-node components, we rely on a bi-coloring method for solving the
two solutions. To ensure that b and h are assigned a same color, we assign −∞ to w(e′

1).
Similarly, to ensure that b and h are assigned different colors, we assign +∞ to w(e′

1).
The two solutions associate with their cost, C00 and C01. The cost difference between
the two solutions (e.g., C00 − C01) is assigned to the weight of its reference edge.

In step 3, all solutions are merged into a complete one in a top-down manner. We
simply select and collect the solutions of the tree nodes based on the coloring of the
corresponding separation pair. Note that the root component is need only be solved once.
Also we can keep track of the solutions by a set of edges Ec for which G′ = (V, E − Ec)
is a bipartite graph. One advantage is that color flipping can be avoided when merging
the solutions. It can be performed in O(|V | + |E|) time.

4.5.2. Bi-Coloring Based on Hadlock’s Algorithm. In step 2, in order to achieve Ec for the R-
node components, we have implemented a graph-theoretic method described in Chiang
et al. [2005] in our tool, which is based on Hadlock’s algorithm [Hadlock 1975] for
planar graphs. Hadlock’s algorithm can find a maximum cut of a planar graph in

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:15

ALGORITHM 3: The Bi-coloring Method
Input: An R-node component Gs = (Vs, Es).
Output: An edge set Ec.

1 Find the maximum planar subgraph Gp = (Vs, Es − Ep) of Gs;
2 Constructs the dual graph G0 of Gp;
3 Construct a complete graph Gm = (Vm, Em);
4 Solve the minimum weighted perfect matching on Gm for Ec1;
5 Find the edge set Ec2 ⊆ Ep whose connected vertices are with a same color;
6 Ec = Ec1 ∪ Ec2;

polynomial time. Its main idea is to transform the maximum cut problem on a planar
graph into finding a minimum odd-vertex pairing of its dual [Hadlock 1975]. The bi-
coloring method based on Hadlock’s algorithm is described in Algorithm 3. Other types
of nodes can be solved easily and the description is omitted in this article.

For a given R-node component Gs, we first find a planar subgraph of Gs by removing a
minimum number of edges (line 1). Note that the maximum planar subgraph problem
is NP-hard in general. Here we assume that Gs is a nearly planar graph in practice.
The assumption will be justified in Section 5. Finding the maximum planar subgraph
is performed as follows: The edges are all deleted first. Then the planar subgraph
is obtained by putting back the edges one by one in order of their weight, which
can facilitate the post-coloring legalization [Ghaida et al. 2013]. The planarity of the
subgraph is checked after adding every edge. Any edge damaging the planarity will
be removed. Note that we only need to solve the maximum planar subgraph problem
once, even though the bi-coloring problem for each R-type component is needed to
be solved twice. Let Ep be the set of removed edges. The resulting planar subgraph
Gp = (Vs, Es − Ep) is then solved optimally by Hadlock’s algorithm [Hadlock 1975]. The
algorithm eliminates the odd cycles of a planar graph by pairing them in a clever way
and removing the edges between every pair. To do that, the algorithm first constructs
the dual graph G0 of Gp in linear time (line 2). Then a complete graph Gm = (Vm, Em)
is formed where Vm is the set of odd-degree vertices (named T-join) of G0 (line 3). The
edge weight in Em is assigned to be the total length of the shortest path between two
vertices in G0. The minimum weighted perfect matching (MWPM) is then applied to
Gm, which is polynomial-time solvable using a network flow algorithm (line 4).

In our implementation of Hadlock’s algorithm, Dijkstra’s method is employed for
finding shortest paths when determining the edge weight in Em. The method is fast yet
can only handle nonnegative weights. Luckily, the bi-coloring problem can be trans-
formed into one that contains edges with only positive weights. This can be done by
a simple modification of the edges described as follows. An example is shown in Fig-
ure 12. For each edge e = (A, B) having a negative weight −|w|, we create a dummy
node D and replace the edge with (A, D) and (D, B), each having the weight |w|. There
are only two possible outcomes of the coloring solution, namely A, B having the same
color and A, B having different colors. In the original graph, say G, the cost difference is
−|w| − 0 = −|w|. In the modified graph, say G′, if A, B have a same color, D is assigned
the alternative color; if A, B have different colors, D can be assigned either color. Hence
the cost difference is 0 − |w| = −|w|, which is the same as that in G. Consequently, the
modification does not change any decision of choosing the two possible outcomes and
hence the optimality of the result.

Finally, edges in Ep whose connected vertices have different colors are reinserted
(line 5).

Note that Hadlock’s algorithm cannot be extended to the cases of k > 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:16 Y. Zhang et al.

Fig. 12. An edge with negative weight is replaced with two adjacent edges with positive weight and a
dummy node.

5. EXPERIMENTAL RESULTS

We have implemented our method in C++, using the LEDA package [Mehlhorn et al.
1997] for the basic graph structure and algorithms. The program was run on a 64-bit
Linux machine with a 3.10 GHz CPU and 6GB RAM. ISCAS-85 and 89 benchmarks
provided by the authors of Fang et al. [2012, 2014] were tested. The metal-1 layer was
used for evaluation, in which the minimum metal-metal spacing and the minimum
metal line width was 50nm and 40nm, respectively. Our method was mainly compared
against two state-of-the-art works [Yu et al. 2013; Fang et al. 2014]. For the approach
in Kuang and Young [2013], a graph library has to be built manually first before
decomposition. However, with d = 160nm, a conflict graph can be so dense that building
the graph library is almost impossible. Therefore it was not used for comparison.

The absolute weight of each edge in a conflict graph can be assigned based on the cor-
responding overlapping area after rectangle enlargement to represent the importance
of the conflict or stitch. However, for the sake of comparison, the weights of conflict and
stitch were set to 1 and 0.1, respectively, according to Yu et al. [2013] and Fang et al.
[2014]. Note that the values of weights do not affect the effectiveness of the proposed
coloring method.

With respect to the setting in Yu et al. [2013] and Fang et al. [2014], the experiments
were conducted with d = 120nm. First, we evaluate the effectiveness of the AMS
approach. Our previous work [Zhang et al. 2013] was used for comparison. Graph
division and simplification techniques mentioned in Section 4.4 were not incorporated
in either of them. For the method in Zhang et al. [2013], we set nL = 30, tL = +∞,
where nL is the number of random starting points, and tL is the time limit. For the
AMS approach, we set ns = 3, where ns is the number of random starting points in the
Learning Phase. The results are shown in Table I. “|V |” and “|E|” denote the number
of vertices and number of edges in the conflict graph, respectively. “COST” is the cost
of the output. The CPU time is denoted by “CPU (s)”. “Imp (%)” and “spdup” denote
the cost percentage reduction and speedup times compared with the method in Zhang
et al. [2013]. According to Table I, with the help of the AMS approach, COST has been
reduced significantly. On the other hand, the runtime is also seriously reduced. The
speedup can be up to 8.1x.

Afterwards, we tested our layout decomposition method combining the PWC ap-
proach, the AMS approach, and the graph division and simplification techniques. Our
method is compared against the RLF-based algorithm in Fang et al. [2014] and the
SDP-based method in Yu et al. [2013]. Note that the work in Yu et al. [2013] considered
the color balancing as well. We set ns = 5. The rest of the parameters’ settings are
maintained for our method.

The results are shown in Table II. In the table, “#C”, “#S”, “COST”, and “CPU(s)”
denote the number of conflicts, the number of stitches, the cost of the output, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:17

Table I. Comparison between the PWC Method With and Without AMS, d = 120nm

PWC PWC+AMS
Design |V | |E| COST CPU (s) COST CPU (s) Imp (%) spdup
C432 2883 4787 0.4 14 1.4 2.4 -250 5.8X
C499 5536 9896 0.1 34 0 4.2 100 8.1X
C880 5817 9006 1.3 28 0.7 4.9 46.2 5.5X

C1355 8915 14342 0.9 57 0.5 8.1 44.4 7X
C1908 14127 22371 0.5 84 0.3 14 40 6X
C2670 21160 33988 3.2 131 1.4 26 56.3 5X
C3540 26274 38523 4.4 166 2.4 36 45.5 4.6X
C5315 38523 61472 6.1 294 3.1 47 49.2 6.3X
C6288 37724 57678 38.4 314 33.6 77 12.5 4.1X
C7552 55677 88034 10.8 410 4.2 77 61.1 5.3X
S1488 11129 17369 3 63 1 13 66.7 4.8X
S38417 144501 220465 74.1 1277 47.8 227 35.5 5.6X
S35932 342529 546956 179.8 3270 95.6 963 46.8 3.4X
S38584 355001 538932 192.9 3278 116.9 920 39.4 3.6X
S15850 349210 540952 173.2 3494 99.7 638 42.4 5.5X

Table II. Experimental Results Comparison with d = 120nm

RLF Based [Fang et al. 2014] SDP Based [Yu et al. 2013] Ours
Design #C #S COST CPU(s) #C #S COST CPU(s) #C #S COST CPU(s)
C432 0 4 0.4 0.01 0 4 0.4 0.37 0 4 0.4 0.29
C499 0 0 0 0.01 0 0 0 0.11 0 0 0 0.34
C880 1 8 1.8 0.01 0 7 0.7 0.10 0 8 0.8 0.31
C1355 1 4 1.4 0.02 0 3 0.3 0.29 0 3 0.3 0.35
C1908 1 0 1 0.03 0 1 0.1 0.13 0 1 0.1 0.54
C2670 2 11 3.1 0.05 0 6 0.6 0.24 0 6 0.6 1.14
C3540 2 12 3.2 0.06 1 9 1.9 0.38 1 8 1.8 1.13
C5315 3 11 4.1 0.1 0 9 0.9 0.47 0 13 1.3 1.88
C6288 19 248 43.8 0.11 1 212 22.2 4.46 1 205 21.5 7.44
C7552 3 37 6.7 0.18 0 26 2.6 0.87 1 21 3.1 2.52
S1488 0 4 0.4 0.03 0 2 0.2 0.12 0 2 0.2 0.42
S38417 43 105 53.5 0.65 30 75 37.5 3.20 27 73 34.3 6.24
S35932 108 114 119.4 1.93 77 87 85.7 12.13 77 88 85.8 16.33
S38584 120 202 140.2 1.83 83 165 99.5 10.68 83 152 98.2 15.43
S15850 85 214 106.4 1.72 57 165 73.5 8.64 61 158 76.8 15.94

avg. 32.36 0.45 21.74 2.81 21.68 4.69
ratio 1.49 0.095 1.003 0.60 1.000 1.000

the CPU time, respectively. Compared between Table I and Table II, the cost and the
runtime of our method are reduced further using the graph division and simplification
techniques. Compared with the RLF-based algorithm in Fang et al. [2014], our method
achieved lower or equal cost for all of the benchmarks. On average the cost has been
reduced by 32.9%. Against the SDP-based method in Yu et al. [2013], the solution
quality has been improved by 0.3% on average, while the runtime of our method is in a
reasonable range. Note that the stitch insertion technique has been incorporated in Yu
et al. [2013] and Fang et al. [2014].

However, DPL is preferred for its lower cost. For d = 120nm, DPL can still produce
reasonable results. One example is shown in Figure 13(a). The conflict is indicated by
the solid line for DPL. The only unresolved conflict can be easily eliminated with the
layout legalization technique [Ghaida et al. 2013]. For TPL, all conflicts are resolved

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:18 Y. Zhang et al.

Fig. 13. Multiple patterning for metal-1 layer with different values of d.

under the same d as shown in Figure 13(b). However, with one additional mask, the
cost of TPL is much higher than that of DPL. Therefore TPL will only be adopted at
the technology node where DPL fails. With d = 160nm, two rectangles might conflict
with each other even with another one between them, where there exists an odd cycle
which is unsolvable for DPL as shown in Figure 13(c). However, TPL can produce a
pleasant solution as shown in Figure 13(d). Figure 14 illustrates a similar example for
a poly-layer with different values of d.

Based on the preceding analysis, we again ran the experiments. The AMS approach
was evaluated first with d = 160nm. The results are shown in Table III. As d increases,
“|V |” increases too. The reason is that with a small d there exist isolated vertices whose
color can be given randomly. Therefore they can be removed from the conflict graph.
With a larger d, “|V |” increases for the dropping number of the isolated vertices. In
Table III, with the AMS approach, at cost of less random starting points, a relatively
equal solution quality is achieved. Especially for the large benchmarks (e.g., S38417,
S35932, S38584, S15850), the cost is reduced slightly. On the runtime performance,
the speedup is more significant with a larger d, especially for the large bench-
marks (e.g., S38417, S35932, S38584, S15850). The effectiveness of the AMS approach
is demonstrated with different d.

Next, our method was compared against the RLF-based algorithm in Fang et al.
[2014], again with d = 160nm. According to Table IV, the RLF-based algorithm achieves
the smallest runtime in this experiment. However, its solutions have the lowest quality
here. Using our method, COST can be reduced by around 43.7% on average. Then the
SDP-based method in Yu et al. [2013] was also compared against our method. Table IV
shows that, with our method, COST and the runtime can be reduced by around 15.1%
and 42.1% on average.

In Section 4.5.2, we assume that the bi-coloring conflict graph Gs = (Vs, Es) is a
nearly planar graph. Under this assumption, the maximum planar subgraph is found
by removing a set of edges Ds in which case Hadlock’s algorithm can be then utilized.
In order to justify the assumption, the following experiments were conducted. With
d = 120nm, the results are shown in Table V. In the table, R, G, and B are three

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:19

Fig. 14. Multiple patterning for poly-layer with different values of d.

Table III. Comparison between the PWC Method With and Without AMS, d = 160nm

PWC PWC+AMS
Design |V | |E| COST CPU (s) COST CPU (s) Imp (%) spdup
C432 2959 6790 81 58 82.3 8.2 −1.6 7.1X
C499 5615 14040 293.9 176 295.8 25 −0.6 7X
C880 5946 12738 145 142 141.3 17 2.6 8.4X
C1355 9210 19586 143.7 187 145.4 29 −1.2 6.4X
C1908 14393 30095 185.3 307 190.2 44 −2.6 7X
C2670 21341 46199 496.8 628 503.8 105 −1.4 6X
C3540 26549 55573 523.9 763 520.6 122 0.6 6.3X
C5315 38885 84010 973.4 1279 950.6 224 2.3 5.7X
C6288 39427 88219 760.3 1164 762.5 201 −0.3 5.8X
C7552 56438 119346 1164 1708 1147.4 371 1.4 4.6X
S1488 11136 23845 464.5 5919 457.3 77 1.6 4X
S38417 146006 304680 4714 19721 4631.4 828 1.8 7.1X
S35932 349839 771252 13813 19721 13581.7 2978 1.7 6.6X
S38584 360520 753103 11797 18732 11282.8 2765 4.4 6.8X
S15850 353646 757725 14105 14007.1 13878.7 2972 0.9 6.7X

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:20 Y. Zhang et al.

Ta
bl

e
IV

.E
xp

er
im

en
ta

lR
es

ul
ts

C
om

pa
ris

on
w

ith
d

=
16

0n
m

R
L

F
B

as
ed

[F
an

g
et

al
.2

01
4]

S
D

P
B

as
ed

[Y
u

et
al

.2
01

3]
O

u
rs

D
es

ig
n

#C
#S

C
O

S
T

C
P

U
(s

)
#C

#S
C

O
S

T
C

P
U

(s
)

#C
#S

C
O

S
T

C
P

U
(s

)
C

43
2

94
11

95
.1

0.
02

86
19

87
.9

4.
26

78
17

79
.7

6.
81

C
49

9
35

0
17

35
1.

7
0.

06
29

6
62

30
2.

2
24

.8
3

28
1

49
28

5.
9

14
.9

6
C

88
0

23
0

36
23

3.
6

0.
04

14
5

12
4

15
7.

4
5.

61
12

0
94

12
9.

4
8.

67
C

13
55

22
7

50
23

2
0.

05
14

4
12

0
15

6
13

.3
6

12
4

85
13

2.
5

21
.7

7
C

19
08

28
7

51
29

2.
1

0.
08

18
4

10
5

19
4.

5
13

.6
5

15
8

83
16

6.
3

20
.9

7
C

26
70

80
9

11
9

82
0.

9
0.

14
47

1
31

6
50

2.
6

45
.1

7
43

2
23

3
45

5.
3

38
.2

6
C

35
40

81
0

15
1

82
5.

1
0.

19
52

5
51

1
57

6.
1

24
.9

3
41

0
39

3
44

9.
3

34
.6

3
C

53
15

13
06

19
7

13
25

.7
0.

26
95

1
48

5
99

9.
5

36
.5

2
85

6
40

2
89

6.
2

49
.2

C
62

88
87

9
21

9
90

0.
9

0.
24

70
4

44
7

74
8.

7
42

.2
7

67
4

30
3

70
4.

3
69

.3
6

C
75

52
15

85
37

1
16

22
.1

0.
36

11
66

82
7

12
48

.7
45

.2
3

97
4

62
4

10
36

.4
72

.9
5

S
14

88
61

5
10

7
62

5.
7

0.
08

45
0

27
4

47
7.

4
11

.3
41

2
22

4
43

4.
4

13
.4

4
S

38
41

7
77

49
52

2
78

01
.2

1.
41

48
90

29
99

51
89

.9
22

3.
7

41
16

24
56

43
61

.6
20

1.
9

S
35

93
2

23
76

7
13

77
23

90
4.

7
5.

24
14

38
0

88
78

15
26

7.
8

15
43

12
30

6
73

21
13

03
8.

1
75

5.
47

S
38

58
4

20
10

6
13

77
20

24
3.

7
5.

4
12

28
7

79
07

13
07

7.
7

97
4

10
16

2
65

36
10

81
5.

6
50

2.
4

S
15

85
0

22
55

9
19

04
22

74
9.

4
5.

32
14

54
1

89
58

15
43

6.
8

10
65

12
50

4
72

00
13

22
4

54
8.

7
av

g.
54

68
.3

1.
26

36
28

.2
27

1.
5

30
80

.6
15

7.
3

ra
ti

o
1.

77
5

0.
00

8
1.

17
8

1.
72

6
1.

00
0

1.
00

0

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:21

Table V. Justifying that the Bi-Coloring Conflict Subgraph is Nearly Planar with d = 120nm

Gs of {R, G} Gs of {G, B} Gs of {B, R}
Design |Es| |Ds| per (%) |Es| |Ds| per (%) |Es| |Ds| per (%)
C432 2199 8 0.36 2090 11 0.53 2348 12 0.51
C499 4212 15 0.36 4398 7 0.16 4688 6 0.13
C880 3718 11 0.3 4362 41 0.94 4465 36 0.81

C1355 6284 57 0.91 6848 85 1.24 7162 57 0.8
C1908 9985 107 1.07 10476 112 1.07 11185 94 0.84
C2670 15322 160 1.04 15833 120 0.76 16245 150 0.92
C3540 18323 141 0.77 19218 152 0.79 20214 169 0.84
C5315 27830 279 1 28444 332 1.17 29468 290 0.98
C6288 25413 108 0.42 27955 69 0.25 29178 80 0.27
C7552 39274 323 0.82 40928 367 0.9 43023 309 0.72
S1488 7558 81 1.07 8288 78 0.94 8063 61 0.76
S38417 93912 293 0.31 99063 319 0.32 105858 348 0.33
S35932 254796 976 0.38 247197 899 0.36 237433 912 0.38
S38584 231773 515 0.22 241418 445 0.18 258044 471 0.18
S15850 234015 241 0.1 245222 925 0.38 255484 944 0.37

avg. 64974 221 0.34 66783 264 0.39 68858 263 0.38

Table VI. Justifying that the Bi-Coloring Conflict Subgraph is Nearly Planar with d = 160nm

Gs of {R, G} Gs of {G, B} Gs of {B, R}
Design |Es| |Ds| per (%) |Es| |Ds| per (%) |Es| |Ds| per (%)
C432 2799 99 3.54 2919 80 2.74 3009 72 2.39
C499 5787 194 3.35 5890 172 2.92 6057 206 3.4
C880 5440 94 1.73 5368 82 1.53 5603 88 1.57
C1355 8415 182 2.14 8696 197 2.27 8464 175 2.07
C1908 12669 214 1.69 13419 277 2.06 13458 276 2.05
C2670 19717 485 2.46 20157 504 2.5 20206 469 2.32
C3540 23697 473 2 23784 449 1.89 24949 481 1.93
C5315 35848 853 2.38 36693 887 2.42 36669 763 2.08
C6288 36411 1047 2.88 38840 987 2.54 38682 1092 2.82
C7552 50641 964 1.9 52131 1027 1.97 52855 969 1.83
S1488 10217 200 1.96 10339 166 1.61 10267 136 1.32
S38417 126486 1891 1.5 129343 2028 1.57 131684 1773 1.35
S35932 320671 5462 1.7 325986 5897 1.81 330223 5486 1.66
S38584 310558 4780 1.54 319364 5117 1.60 326537 4870 1.49
S15850 314970 4820 1.53 323085 5333 1.65 326956 4866 1.49

avg. 85628 1451 1.69 87734 1547 1.76 89041 1448 1.63

available color sets. After a tri-coloring process, Gs is the bi-coloring conflict subgraph
of the corresponding pairing colors. There are three bi-coloring conflict subgraphs for
TPL. “|Es|” indicates the number of edges of Gs. In order to find the maximum planar
subgraph, the number of edges to be removed is denoted as “|Ds|”. The percentage of
“|Ds|” over “|Es|” is denoted by “per (%)”. According to Table V, the average of “per”
is smaller than 0.4%. Therefore the assumption is valid with d = 120nm. With d =
160nm, the assumption is justified again. The results are shown in Table VI. With
a larger d, “|Es|”, “|Ds|”, and “per” all increase. However, the average of “per” is still
smaller than 2%. Therefore, the assumption that the bi-coloring conflict subgraph is
nearly planar is reasonable with d = 120nm or 160nm. Note that a removed edge does
not necessarily introduce a conflict or a stitch.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:22 Y. Zhang et al.

Fig. 15. The average cost and the average running time versus ns with different values of d.

Next, we conducted an experiment to show the trade-off between the solution quality
and the runtime. With d = 120nm and 160nm, Figure 15 shows the graph of “avg.
COST” and “avg. TIME” versus ns, where “avg. COST” and “avg. TIME” indicate the
average cost and the average runtime on all ISCAS-85 and 89 benchmarks, respectively.
It is obvious that as ns increases, the average cost decreases while the average runtime
increases. Therefore our method possesses the potential to achieve better solutions if
more CPU resources are given.

All the previous benchmarks are cell-based structures without power/ground (P/G)
tracks. To further evaluate our method, we decomposed the metal-1 layer of a more
complicated layout of 45nm with P/G tracks, 400k features, and 90% utilization with
d = 160nm. Figure 16 shows part of the layout decomposition result. In practice, the
P/G tracks are preferred with no stitch, which can be implemented by assigning a large
weight to the stitch candidates on the P/G tracks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:23

Fig. 16. Layout decomposition result for a portion of a layout with P/G tracks.

6. CONCLUSION

We have presented a layout decomposition method using the pairwise coloring for
TPL. It reduces the tri-coloring problem to a set of bi-coloring problems which can
be solved with the existing bi-coloring methods. In order to alleviate the intrinsic
problems of the pairwise coloring approach, we incorporated an SPQR-tree-based bi-
coloring method and an adaptive multi-start approach. By comparing against two
state-of-the-art works with different coloring spacing, our method is demonstrated to
be competitive both on the solution quality and the runtime performance. Our method is
of practical significance because the existing DPL techniques can be reused effortlessly.
Consequently, the tool development cost would be remarkably reduced.

REFERENCES

Giorgio Ausiello. 1999. Complexity and Approximation: Combinatorial Optimization Problems and their
Approximability Properties. Springer.

Kenneth D. Boese, Andrew B. Kahng, and Sudhakar Muddu. 1993. On the big valley and adaptive multi-
start for discrete global optimizations. Tech. rep. TR-930, 15. http://ftp.cs.ucla.edu/tech-report/1993-
reports/930015.pdf.

Kenneth D. Boese, Andrew B. Kahng, and Sudhakar Muddu. 1994. A new adaptive multi-start technique for
combinatorial global optimizations. Oper. Res. Lett. 16, 2, 101–113.

Zihao Chen, Hailong Yao, and Yici Cai. 2013. SUALD: Spacing uniformity-aware layout decomposition in
triple patterning lithography. In Proceedings of the 14th IEEE International Symposium on Quality
Electronic Design (ISQED’13). 566–571.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



2:24 Y. Zhang et al.

Charles Chiang, Andrew B. Kahng, Subarna Sinha, and Xinnu Xu. 2005. Fast and efficient phase con-
flict detection and correction in standard-cell layouts. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’05). 149–156.

Jason Cong and Sung Kyu Lim. 1998. Multiway partitioning with pairwise movement. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’98). 512–516.

Shao-Yun Fang, Yao-Wen Chang, and Wei-Yu Chen. 2012. A novel layout decomposition algorithm for triple
patterning lithography. In Proceedings of the 49th Annual IEEE/ACM Design Automation Conference
(DAC’12). 1185–1190.

Shao-Yun Fang, Yao-Wen Chang, and Wei-Yu Chen. 2014. A novel layout decomposition algorithm for triple
patterning lithography. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 33, 3, 397–408.

Rani S. Ghaida, Kanak B. Agarwal, Lars W. Liebmann, Sani R. Nassif, and Puneet Gupta. 2012. A novel
methodology for triple/multiple-patterning layout decomposition. Proc. SPIE 8327.

Rani S. Ghaida, Kanak B. Agarwal, Sani R. Nassif, Xin Yuan, Lars W. Liebmann, and Puneet Gupta. 2013.
Layout decomposition and legalization for double-patterning technology. IEEE Trans. Comput.-Aid. Des.
Integr. Circ. Syst. 32, 2, 202–215.

Fred Glover and Gary A. Kochenberger. 2003. Handbook of Metaheuristics. Springer.
Kevin D. Gourley and Douglas M. Green. 1983. Polygon-to-rectangle conversion algorithm. IEEE Comput.

Graph. Appl. 3, 1, 31–32.
Carsten Gutwenger and Petra Mutzel. 2001. A linear time implementation of SPQR-trees. In Proceedings of

the 8th International Symposium on Graph Drawing (GD’01). 77–90.
F. Hadlock. 1975. Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4, 3,

221–225.
Lars W. Hagen and Andrew B. Kahng. 1997. Combining problem reduction and adaptive multistart: A new

technique for superior iterative partitioning. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 16, 7,
709–717.

John E. Hopcroft and Robert E. Tarjan. 1973. Dividing a graph into triconnected components. SIAM J.
Comput. 2, 3, 135–158.

Andrew B. Kahng, Chul-Hong Park, Xu Xu, and Hailong Yao. 2008. Layout decomposition for double pattern-
ing lithography. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’08). 465–472.

Jian Kuang and Evangeline F. Y. Young. 2013. An efficient layout decomposition approach for triple pat-
terning lithography. In Proceedings of the 50th Annual IEEE/ACM Design Automation Conference
(ICCAD’13). 69–74.

Wai-Shing Luk and Huiping Huang. 2010. Fast and lossless graph division method for layout decomposition
using SPQR-tree. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’10). 112–115.

Edward M. Mccreight. 1985. Priority search trees. SIAM J. Comput. 14, 2, 257–276.
Kurt Mehlhorn, Stefan Naher, and Christian Uhrig. 1997. The LEDA platform for combinatorial and ge-

ometric computing. In Proceedings of the 24th International Colloquium on Automata, Languages and
Programming (ICLAP’97). 7–16.

Jian Sun, Yinghai Lu, Hai Zhou, and Xuan Zeng. 2011. Post-routing layer assignment for double pat-
terning. In Proceedings of the 16th IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC’11). 793–798.

Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 2, 146–160.
Haitong Tian, Yuelin Du, Hongbo Zhang, Zigang Xiao, and Martin D. F. Wong. 2013. Constrained pattern

assignment for standard cell based triple patterning lithography. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’13). 178–185.

Haitong Tian, Hongbo Zhang, Qiang Ma, Zigang Xiao, and Martin D. F. Wong. 2012. A polynomial time triple
patterning algorithm for cell based row-structure layout. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’12). 57–64.

Yue Xu and Chris Chu. 2010. A matching based decomposer for double patterning lithography. In Proceedings
of the 19th International Symposium on Physical Design (ISPD’10). 121–126.

Jae-Seok Yang, Katrina Lu, Minsik Cho, Kun Yuan, and David Z. Pan. 2010. A new graph-theoretic, multi-
objective layout decomposition framework for double patterning lithography. In Proceedings of the 15th

IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC’10). 637–644.
Bei Yu, Yen-Hung Lin, Luk-Pat Gerard, Duo Ding, Kevin Lucas, and David Z. Pan. 2013. A high-performance

triple patterning layout decomposer with balanced density. In Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD’13). 163–169.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.



Layout Decomposition with Pairwise Coloring and Adaptive Multi-Start 2:25

Bei Yu and David Z. Pan. 2014. Layout decomposition for quadruple patterning lithography and beyond. In
Proceedings of the 51st Annual IEEE/ACM Design Automation Conference (DAC’14). 1–6.

Bei Yu, Kun Yuan, Boyang Zhang, Duo Ding, and David Z. Pan. 2011. Layout decomposition for triple
patterning lithography. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’11). 1–8.

Kun Yuan, Jae-Seok Yang, and David Z. Pan. 2010. Double patterning layout decomposition for simultaneous
conflict and stitch minimization. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 29, 2, 185–196.

Ye Zhang, Wai-Shing Luk, Hai Zhou, Changhao Yan, and Xuan Zeng. 2013. Layout decomposition with
pairwise coloring for multiple patterning lithography. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’13). 170–177.

Wei Zhao, Hailong Yao, Yici Cai, Subarna Sinha, and Charles Chiang. 2014. Fast and scalable parallel layout
decomposition in double patterning lithography. Integr. VLSI J. 47, 2, 175–183.

Received December 2014; revised March 2015; accepted April 2015

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 1, Article 2, Pub. date: November 2015.


