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Abstract—Adders are the most fundamental arithmetic units,
and often on the timing critical paths of microprocessors. Among
various adder configurations, parallel prefix adders provide the
best performance vs. power/area trade-off, especially for higher
bit-widths. With aggressive technology scaling, the performance
of a parallel prefix adder, in addition to the dependence on the
logic-level, is determined by wire-length and congestion which
can be mitigated by adjusting fan-out. This paper proposes a
polynomial-time algorithm to synthesize n bit parallel prefix
adders targeting the minimization of the size of the prefix graph
with log2 n logic level and any arbitrary fan-out restriction. A
structure aware prefix node cloning is then applied to the resul-
tant prefix adder solutions to further optimize the size of the
prefix graphs. The design space exploration by our approach
provides a set of pareto-optimal solutions for delay vs. power
trade-off, and these pareto-optimal solutions can be used in
high-performance designs instead of picking from a fixed library
(Kogge–Stone, Sklansky, etc.). Experimental results demonstrate
that our approach: 1) excels highly competitive industry stan-
dard Synopsys design compiler adder, regular adders such as
Sklansky adder and Kogge–Stone adder, and a highly run-
time/memory intensive recent algorithm in 32 nm technology
node and 2) improves performance/area over even 64 bit cus-
tom designed adders targeting 22 nm technology library and
implemented in an industrial high-performance design.

Index Terms—Fan-out, logic synthesis, parallel prefix adder,
performance-power trade-off.

I. INTRODUCTION

ADDERS are the primary building blocks in the datap-
ath logic of a microprocessor, and thus adder design

has been always a fundamental problem in VLSI industry.
Several ad-hoc adder structures such as the carry-skip adder,
the carry select adder and the carry-lookahead adder have
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been proposed in the past [2]. Parallel prefix adders repre-
sent a class of general adder structures that exhibit flexible
performance-area trade-off, where logic-level and fan-out play
a key role. Extreme corners have been realized through regu-
lar parallel prefix structures [2] like Kogge–Stone [3] (minimal
logic level and fan-out), Sklansky [4] (minimal logic level and
wire-tracks), and Brent–Kung [5] (minimal fan-out and wire-
tracks). In addition to these structures, Ladner–Fischer [6],
Han–Carlson [7], and Knowles [8] implemented the trade-
off between each pair of these corners. Custom adders are
typically designed by selecting a regular adder structure fol-
lowed by further refinement in design parameters. So they
are very effective in optimizing power and performance for
a particular technology node [9], [10] but need a significant
engineering effort and so not suitable for today’s aggressive
turn-around-time requirement.

On the contrary, an algorithmic synthesis approach is more
flexible to engineering change orders, but generally does not
achieve the performance of adders designed in a custom
methodology. The traditional parallel prefix adder synthesis
problem is to minimize the size of the prefix graph (s) under
given bit-width (n) and logic-level (L) constraints. A lot of
work [1], [11]–[13] have been done to target this problem.
Most of them achieve the theoretical bound for s for L ≥
2 log2 n − 2, given by Snir [14], but yield sub-optimal result
when L is reduced to log2 n pertaining to high-performance
adders. Moreover, wire-length, load-distribution, and conges-
tion play important roles in determining the performance of
the adders in modern space-constrained designs after place-
ment/routing. At the logic-synthesis level, congestion and
load-distribution can be controlled by constraining fan-out.
However, stringent fan-out restriction with logic-level log2 n
can lead to significant wire-length cost as in Kogge–Stone, and
even Sklansky can give comparable timing to Kogge–Stone
with appropriate buffer-insertion [15]. Therefore, more design
space exploration is necessary to strike the right bal-
ance between congestion, load distribution and wire-length
cost in order to achieve the best performance-area/power
trade-off.

No existing algorithm considers the restriction in fan-out
in synthesizing parallel prefix structures for L = log2 n
until a very recent work [16], [17], where a comprehensive
pruning-based algorithm, exercised on exhaustive bottom-up
enumeration, is presented to explore several parallel prefix
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structures at a time. However, there are certain limitations in
this work.

1) Although this approach scales well to provide minimum
size solutions without any fan-out restriction, it does not
scale to higher bit adders with fan-out restriction. So it
can not explore the wide design space of parallel prefix
adders, especially for n ≥ 64.

2) The algorithmic complexity is exponential in n, so in
spite of several pruning techniques, the run time/memory
overhead is very high.

This paper presents an O(n2 log2 n) algorithm to synthe-
size n-bit parallel prefix adders of logic level log2 n with any
maximum fan-out (mfo) restriction. This is performed by first
constructing a graph computing outputs for odd bit-indices
with fan-out restriction of �(mfo/2)� and then constructing
the prefix graph by computing outputs for even bit-indices
with fan-out restriction of mfo. Although the main problem
has been divided into two subproblems, our algorithm can
still achieve the same solution quality (i.e., the same size of
the prefix graph) with the highly runtime/memory intensive
approach [16] for adders of lower bit-width (n ≤ 32). For
higher bit-widths, such as n ≥ 64, Roy et al. [16] failed to pro-
vide solutions in most cases, whereas this algorithm generates
solution for any n. In addition, we propose an algorithm for
cloning the prefix nodes to achieve further optimization on the
size of the prefix graph keeping the same fan-out and logic-
level constraints. Also, the proposed rewiring of the cloned
nodes is experimentally demonstrated to be placement/routing
friendly. Our main contributions are summarized as follows.

1) A polynomial time algorithm is presented to synthesize
prefix adders of bit-width n with logic level log2 n under
any arbitrary fan-out restriction.

2) A structure aware prefix node cloning algorithm is
proposed to reduce the size of the prefix graphs,
which enables our approach to achieve better perfor-
mance/area/power metrics after placement and routing.

3) The design space exploration by our algorithm has pro-
vided adders which excel in timing, area/power over
highly competitive design compiler (DC) adder and fast
regular adders, such as Sklansky and Kogge–Stone.

4) Our approach even beats 64 bit custom designed adders
implemented in an industrial high-performance design.
It also improves in power/performance/area over a recent
highly run-time/memory intensive algorithmic synthesis
approach [16].

In the next section, we give the background of the binary
addition problem. The problem formulation is illustrated in
Section III. Section IV describes our algorithm to synthesize
an n bit adder with log2 n level and arbitrary fan-out restriction,
succeeded by prefix node cloning algorithm. Finally, Section V
presents the experimental results at both logic-synthesis level
and after placement/routing followed by the conclusion in
Section VI.

II. PRELIMINARIES

Binary addition problem is defined as follows: given two
n bit numbers A = an−1..a1a0 and B = bn−1..b1b0, compute

Fig. 1. Example 8 bit prefix graph.

the sum S = sn−1..s1s0 and carry out Cout = cn−1, where
si = ai ⊕ bi ⊕ ci−1 and ci = aibi + aici−1 + bici−1.

With bitwise (group) generate function g (G) and propagate
function p (P), n bit binary addition can be represented by the
Weinberger’s recurrence equations as follows [18].

1) Pre-processing: Bitwise generation of g, p

gi = aibi and pi = ai ⊕ bi. (1)

2) Prefix Processing: This part is the carry-propagation
component where the concept of generate/propagate is
extended to multiple bits and G[i : j], P[i : j] (i ≥ j) are
defined as

P[i : j] =
{

pi if i = j
P[i : k]P[k−1 : j] otherwise

(2)

G[i : j] =
{

gi if i = j
G[i : k] + P[i : k]G[k−1 : j] otherwise.

(3)

The associative operation o is defined for (G, P) as

(G, P)[i:j] = (G, P)[i : k] o (G, P)[k−1 : j]

= (
G[i : k] + P[i : k]G[k−1 : j], P[i:k]P[k−1 : j]

)
.

(4)

3) Post-processing: Sum/carry-out generation

si = pi ⊕ ci−1, ci = G[i : 0] and Cout = cn−1. (5)

The “Prefix processing” part can be mapped to a prefix
graph problem with inputs xi = (pi, gi) and outputs yi = ci,
such that yi depends on all previous inputs xj (j ≤ i). Fig. 1
shows an example of such prefix graph of eight bit and we
can see that Cout = c7 = y7 is given by

y7 = ((x7 o x6) o (x5 o x4)) o ((x3 o x2) o (x1 o x0)). (6)

In Eqn. (6) or Fig. 1, we have grouped two inputs at
a time. This is called the radix-2 implementation of pre-
fix network, since the number of fan-ins for each of the
associative operation o is two. However, there exist radix
3, radix 4 or mixed-radix implementations. For instance,
Ketter et al. [19] presented a mixed-radix Jackson adder
implementation, but it is shown to be inefficient in terms
of energy/area. On the contrary, radix-2 implementation has
been demonstrated as the most energy-efficient option in [20].
In addition, Ling adders [18], [21] have been proposed by
transforming the Weinberger’s recurrence equations provid-
ing better performance. Since there is direct mapping between
Weinberger’s equations and Ling’s equations [21], any opti-
mized prefix network can be further explored for Ling imple-
mentation. As another design alternative, Mathew et al. [22]
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proposed sparse tree-adders for specific applications, however,
it needs conditional sum generators as additional design
blocks.

III. PROBLEM FORMULATION

The performance of a parallel prefix adder depends on how
efficiently the prefix-processing unit is realized in terms of
logic-level, fan-out, and size. Size (s) and mfo of any pre-
fix graph are, respectively, defined as the number of prefix
nodes and the mfo in that prefix graph. For instance, mfo = 3,
s = 13, and L = 3 in Fig. 1.

Lower logic level helps in improving timing and size of the
prefix graph gives a measure of area and wire-length at the
logic-synthesis stage. Also, smaller size of prefix graph offers
better flexibility during post-synthesis optimizations, such as
gate sizing, buffer-insertion, etc., thus indirectly improving
timing as well. Lower fan-out gives better timing by improv-
ing wire-congestion and load-distribution. So logic-level, size,
and mfo of the prefix graph at the logic-synthesis stage
altogether determine the area/performance of an adder after
placement/routing.

To target high-performance designs, we fix L = �log2 n	,
i.e., the minimum feasible logic level, and focus to explore
the design space of adders by optimizing s under different
fan-out restrictions. We formulate our problem as follows.
Given mfo constraint of a parallel prefix adder of bit-width
n with L = �log2 n	, minimize the size (s) of the prefix
graph. However, this �log2 n	 logic level restriction can be
realized in two ways: 1) the maximum level for each output
bit-index m is �log2 n	, which can be termed as fixed level
restriction and 2) the maximum level for each output bit-index
m is �log2(m + 1)	, which can be termed as bit-wise level
restriction.

IV. OUR APPROACH

A prefix graph of bit-width n computes output bits for bit-
indices 0 to n−1. An n bit prefix graph will have �(n/2)� odd
bit-indices, i.e., 1, 3, . . . (2 × �(n/2)� − 1), and �(n/2)	 even
bit-indices, i.e., 0, 2, . . . (2 × �(n/2)�). We divide the main
problem into two sub-problems: 1) construct a graph (Godd)
which computes the outputs for odd bits with fan-out restric-
tion of �(mfo/2)� and 2) construct the prefix graph G from
Godd by computing the even bit outputs with fan-out restriction
of mfo [23]. This division of the problem into two subprob-
lems of computing odd and even bit outputs is motivated
by the regular adder structures, such as Han–Carlson [7] or
Brent–Kung [5], where the computation of odd bit outputs is
followed by that of even bit outputs. Once a prefix graph (G)
solution is obtained, we exercise a structure aware prefix node
cloning mechanism to further improve the size of the pre-
fix graph and rewire the cloned nodes which is favorable to
placement and routing for any P&R tool.

A. Constructing Output for Odd Bit-Indices

We first generate a seed-structure for an n bit prefix graph
(Gseed(n)) computing the odd bit outputs with a fan-out restric-
tion of 2. This is followed by a heuristic which restructures

Algorithm 1 Generating Seed Structure Gseed(n)

1: Step I:
2: for lv = 1 to �log2n	 do
3: if lv = 1 then
4: loopIndex(lv)← 3;
5: else
6: loopIndex(lv)← 2lv + 2lv−1 + 1;
7: end if
8: for i = 2× � n

2� − 1 to loopIndex(lv) do
9: msb(trNode)← i;

10: lsb(trNode)← i− 2lv−1 + 1;
11: msb(nonTrNode)← lsb(trNode)− 1;
12: lsb(nonTrNode)← i− 2lv + 1;
13: node← trNode+ nonTrNode;
14: bitSpan(index)← lsb(node);
15: i← i− 2;
16: end for
17: end for
18: Step II:
19: for i = 1 to 2× � n

2� − 1 do
20: msb(trNode)← i;
21: lsb(trNode)← bitSpan(i);
22: msb(nonTrNode)← lsb(trNode)− 1;
23: lsb(nonTrNode)← 0;
24: node← trNode+ nonTrNode;
25: i← i+ 2;
26: end for

Gseed(n) to generate Godd by relaxing the fan-out restriction to
�(mfo/2)� (where �(mfo/2)� > 2), thereby reducing several
prefix nodes. Please note that, we do not add any prefix node of
even indices at this stage. By prefix node of an odd/even index,
we mean a prefix node whose most significant bit (MSB) is
an odd/even index.

1) Generating Seed Structure: The generation of the seed
structure is divided into two steps as shown in Algorithm 1.
Fig. 2 shows the graph Gseed(16), in which the prefix nodes
generated in the first step are separated from that in the second
by a dotted line. Note that 16 bit prefix adder is from bit-
index 15 to 0. In the 1st step, two “for” loops are run, one
within another. The outer loop runs for each level (lv), i.e.,
from level 1 to �log2 n	. For each lv, the inner for loop adds
nodes at odd indices starting from n− 1 or n− 2 (whichever
is odd) to loopIndex(lv) (Line 8). At the end of step I, for
any prefix node Nx,l of bit-index x at level l, MSB and least
significant bit (LSB) are, respectively, given by msb(Nx,l) = x
and lsb(Nx,l) = x− 2l + 1 and Nx,l is obtained by combining
Nx,l−1 (trivial fan-in node) and Nx−2l−1,l−1 (nontrivial fan-in
node). Here, by trivial fan-in node (trNode) of a prefix node N,
we mean the fan-in node sharing the same MSB as that of N.
For instance, N13,2 and N9,2 are, respectively, the trivial and
nontrivial fan-ins of N13,3 in Fig. 2. It should be stressed that
this Nx,l notation has been used to specifically illustrate the
construction of the prefix nodes in Godd. However, we have
mostly used the MSB:LSB notation to specify a prefix node.
For instance, N9,2 indicates the prefix node 9:6.
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Fig. 2. Seed structure for 16 bit prefix graph.

In the second step, we add �(n/2)� prefix nodes in the
increasing order of odd-indices to generate the outputs for
�(n/2)� odd bit-indices. To do this, we keep a map (bitSpan)
from the bit-index to the lsb of the highest-level prefix node of
that bit-index in the existing structure. For instance, in Fig. 2,
after step I, the highest level node of bit-index 7 is N7,2, and its
lsb is 4. So bitSpan(7) = 4 at the end of step I of Algorithm 1
and thus at step II, we add N7,2 and N3,2 to get the output node
for bit-index 7.

It is worth-mentioning to draw an analogy of this seed
structure with Han–Carlson adder. Suppose GHC

odd(n) be the
graph structure for the computation of odd output bits in n
bit Han–Carlson adder. In line 6 of Algorithm 1, if we modify
the loopIndex(lv) from 2lv+2lv−1+1 to 2lv+1, then the pre-
fix nodes after step I would correspond to the black nodes in
Han–Carlson adder, and the resultant Gseed(n) would be same
as GHC

odd(n).
Lemma 1: Complexity of Algorithm 1 is O(n log2 n).
Proof: Algorithm 1 runs in two steps. In the first step, outer

loop runs for �log2 n	 times, the inner loop runs for �(n/2)�
times and O(1) operations are executed in the inner loop. So
the complexity of first step is O(n log2 n). The second step
runs in O(n) time, so the overall complexity of Algorithm 1
is O(n log2 n).

2) Fan-Out Relaxation Heuristic: Algorithm 2 shows the
steps of this heuristic. We define the last fixed node for any
bit-index i(lfn(i)) as the node of bit-index i with minimum
level, such that any node of the same bit-index i with higher
level has no nontrivial fan-out. This variable implies that any
node of bit-index i with higher level than that of lfn(i), hav-
ing no nontrivial fan-out, is more flexible to be removed in
the graph-structure. If none of the node of bit-index i has
nontrivial fan-out, then the node with level 1 is considered
as the lfn(i). For instance in Fig. 2, lfn(13) = N13,1 as N13,2
and N13,3 have no nontrivial fan-out. Algorithm 2 reconstructs
the outputs of odd bit-indices in a decreasing order. For each
odd bit-index i, it removes the nodes with higher logic level
than that of lfn(i) and introduces minimum number of prefix
nodes at that i keeping the fan-out restriction of �(mfo/2)�
and level restriction (fixed or bit-wise). The condition checks
for level/fan-out restriction are not shown in Algorithm 2. As
we are not changing the nodes of bit-index i with lower levels
than that of lfn(i), including itself, we need to find a list of
bit-slices spanning from lsb(lfn(i))− 1 to 0. This is found by
calling a procedure “searchRecursive.”

The procedure “searchRecursive” is a recursive subroutine
with two arguments: 1) “sliceList,” the existing list of bit-
slices and 2) “node”, the last node in the sliceList, except

Algorithm 2 Generating Godd From Gseed(n) With �(mfo/2)�
1: for i = 2× � n

2� − 1 to 1 do
2: for all node ∈ nodes(i) do
3: if level(node) > level(lfn(i)) then
4: delete node;
5: end if
6: end for
7: sliceList← createEmptyList;
8: searchRecursive(lfn(i), sliceList);
9: add nodes from finalSliceList to the prefix graph;

10: i← i− 2;
11: end for
12: Procedure searchRecursive(node, sliceList)
13: if lsb(node) = 0 and sliceList.size() < minSize then
14: finalSliceList← sliceList;
15: minSize← sliceList.size();
16: end if
17: nextIndex← lsb(node)− 1;
18: for all nextNode ∈ nodes(nextIndex) in decreasing level

do
19: if level(nextNode) ≤ level(node) then
20: break;
21: end if
22: sliceList.insert(nextNode);
23: searchRecursive(nextNode, sliceList);
24: sliceList.erase(nextNode);
25: end for
26: end Procedure

when “searchRecursive” is called from the main algorithm
(Line 8), node is lfn(i). It also maintains a list of bit-slices
finalList, which is the best bit-slice found at any instant. At
any time, if the sliceList spans to bit 0, it compares the size
of current sliceList and current finalList and if it finds that the
former is less or equal to the latter, then finalList is changed
to sliceList (Lines 13–16). However, there could be a number
of choices for forming this bit-slice. We impose the restric-
tion in the sliceList that if two nodes N1, N2 ∈ sliceList and
N1 appears before N2 in sliceList, then level(N2) > level(N1).
Line 19 in Algorithm 2 imposes this restriction. This search-
space restriction makes Algorithm 2 polynomially bounded in
bit-width.

Let us illustrate this procedure with an example. Fig. 3 rep-
resents Gseed(20) and suppose we are interested in finding a
prefix graph structure of bit-width 20 with mfo of 8. We can
see that lfn(19) = N19,1 and �(mfo/2)� = 4. So the marked
nodes in Fig. 3 are deleted and to find the bit-slices spanning
from bit-index 17 to 0, “searchRecursive” explores the follow-
ing set of bit-slices in order—[17:10 + 9:0], [17:14 + 13:0],
[17:16 + 15:0], maintaining the restriction in logic level, fan-
out and our imposed search-space restriction. Now there is
a tie-breaking situation since these three options are of same
size and Algorithm 2 prefers the last one ([17:16 + 15:0]). The
intuition behind choosing this set of bit-slices is that this makes
N17,1 to be lfn(17). The other two choices ([17:10 + 9:0],
[17:14 + 13:0]) make lfn(17) to be N17,3 and N17,2,
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Fig. 3. [19:18 + 17:16 + 15:0] is the choice of bit-slices for bit-index 19
in Algorithm 2.

respectively. This preference offers more flexibility in reducing
the number of prefix nodes for bit-index 17, as less is the level
of lfn(17), more is the scope to reduce the number of prefix
nodes at the later stage.

Lemma 2: “searchRecursive” procedure with a level restric-
tion of p is an O(p · 2p) operation.

Proof: “searchRecursive” procedure finds the bit-slices
spanning from any bit-index to bit-index 0. For instance, we
see in Fig. 3 that 19:18 is the last fixed node for bit-index
19, i.e., lfn(19) and “searchRecursive” finds the bit-slices
17:16 and 15:0, spanning from bit-index 17 to bit-index 0,
thereby constructing the output node for bit 19.

Let x be the level of any bit-slice and y = p− x. Since the
level of the bit-slices are in strictly increasing order, the level
of the next bit-slice can be in the range [x+ 1, p− 1]. So we
can write the recursion relation in terms of y as T(y + 1) ≤
T(y)+ T(y− 1)+ T(y− 2)+ · · · + T(1)+O(y), with T(1) =
O(1). Solving this recurrence relation we get, T(y) = O(y·2y).
Since the maximum value of y can be p, “searchRecursive”
procedure with level restriction p is O(p · 2p).

Corollary 1: With log2 n level restriction, “searchRecur-
sive” procedure is an O(n · log2 n) operation.

Proof: This follows from Lemma 2 by putting
p = log2 n.

Lemma 3: The complexity of Algorithm 2 is O(n2 log2 n).
Proof: The inner for loop (Lines 2–6) is executed in

O(log2 n) time and each “searchRecursive” procedure (in
Line 8) is an at-most O(n log2 n) operation (by Corollary 1).
Also, the outer loop runs �(n/2)� times. So the complexity of
Algorithm 2 is O(n2 log2 n).

B. Constructing Output for Even Bit-Indices

The generation of output for even bit-indices consists of two
stages as described in Algorithms 3 and 4. In Algorithm 3, the
outputs of the even bit-indices are constructed by taking nodes
from odd-bit indices using the same procedure “searchRecur-
sive”, mentioned in Algorithm 2. It is to be noted that, for
outputs of odd bit-indices we modify a seed structure and then
apply the procedure “searchRecursive”, where the nodes of a
particular bit-index are traversed in decreasing level (Line 18)
to provide more flexibility in reducing the number of prefix-
nodes for lower bit-indices. On the other-hand, the output for
even bit-indices are generated without modifying the existing

Algorithm 3 Generating Prefix Graph G From Godd

1: for i = 2× � n
2� to 0 do

2: node← inNode(i);
3: searchRecursive(node, sliceList);
4: add nodes from finalSliceList to the prefix graph;
5: i← i− 2;
6: end for

Algorithm 4 Reducing Size of G by Local Transformations
1: for i = 2× � n

2� to 0 do
2: if numOfNodes(i) < 2 then
3: continue;
4: end if
5: oddOutBitNode← outNode(i− 1);
6: if fo(oddOutBitNode) < mfo and

level(oddOutBitNode) < maxLevel(i) then
7: deleteNodes(i);
8: outNode(i)← oddOutBitNode+ inNode(i);
9: continue;

10: end if
11: evenOutBitNode← outNode(i− 2);
12: if level(evenOutBitNode) < maxLevel(i) then
13: deleteNodes(i)
14: Add node: node1← inNode(i)+ inNode(i− 1);
15: Add node: node2← node1+ evenOutBitNode;
16: end if
17: end for

nodes in Godd. So the traversal of nodes in “searchRecursive”
is not mandatory to be in the order of decreasing level. At the
end of Algorithm 3, a prefix graph of bit-width n is generated
with the desired fan-out restriction. Note that in certain cases
(for example, mfo = 2, 3) it is not possible to construct the
output bit of an even index p with the fan-out restriction, and
then Algorithm 1 is run with the variable i iterating from p
to 2 in steps of 2. This does not increase the fan-out count
of any prefix node of odd bit-index and bounds the fan-out of
any prefix node of even bit-index to 2 as well.

In Algorithm 4, it is further restructured by either of the two
transformations, specifically useful for fixed level restriction.
The first one checks the condition (Line 6) whether it is pos-
sible to construct the output for even bit-index by connecting
the output node of its previous odd-bit index [outNode(i−1)]
and the input node for i [inNode(i)] without violating the
level/fan-out constraints. If it returns “true” value, this trans-
formation is applied and continue with the next even bit-index
in decreasing order. If unsuccessful at this transformation, the
possibility of another local transformation is explored. It con-
sists of adding two nodes: 1) node1 derived from inNode(i)
and inNode(i − 1) and 2) node2 derived from node1 and
outNode(i− 2). This transformation is also applied if it does
not violate the level/fan-out constraint. The advantage of the
first transformation is that it reduces the number of prefix-
nodes, where as for the second one the benefit is two-fold.
The first is that it can reduce the number of prefix nodes, if
there were more than two prefix nodes at that bit-index before
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Fig. 4. Second transformation facilitating first transformation by reducing
fan-out at N1.

the transformation, and the second is that this step reduces
the fan-out count for output node of an odd-index, thereby
facilitating the first transformation for lower bit-indices.

This situation is illustrated in Fig. 4, where the output of an
even bit-index x+1 is constructed by adding node1 and node2
and this transformation reduces the fan-out count for the output
node of odd bit-index y, i.e., N1. Consequently, the output for
bit-index y+ 1 can be now constructed by connecting N1 and
the input node of y + 1 through first transformation, which
might not have been feasible if the second transformation was
not applied earlier reducing the fan-out count of N1.

Lemma 4: The complexities of Algorithms 3 and 4 are
O(n2 log2 n) and O(n log2 n), respectively.

Proof: Algorithm 3 constructs a prefix graph of bit-width
n from Godd. The for loop runs for O(n) times. Within the
for loop Lines 2 and 5 are O(1) operations, Line 4 is at most
O(log2 n) operation and Line 3 is an O(n log2 n) operation.
Therefore, complexity of Algorithm 3 is O(n2 log2 n).

For Algorithm 4, the for loop runs for O(n) times and each
of the operation inside the loop is either O(1) or O(log2 n)

operation (Line 7). So the complexity of Algorithm 4 is
O(n log2 n).

C. Structure Aware Prefix Node Cloning

For any n-bit prefix graph with a given level restriction, the
size of the prefix graph increases as the fan-out is restricted
more and more, i.e., there is a trade-off between s and mfo.
The average fan-out of the prefix nodes in the prefix graph
foav = (2s/(s+ n)) ≤ 2, where s is the size of the prefix
graph. This is so because there are s prefix nodes, each having
two fan-ins, equals to 2s fan-ins which are derived from total
n+ s nodes (n input nodes and s prefix nodes). So only a few
prefix nodes in a prefix graph (having higher mfo) can have
higher fan-out. For instance, 16 bit Sklansky prefix structure
have mfo = 8, but only 7:0 node have fan-out of 8, and except
3 prefix nodes, all prefix nodes have less than 4 fan-out. In
this context, we introduce the concept of prefix node cloning,
which clones the prefix nodes with higher fan-out to reduce
its fan-out count. This technique can be used to reduce the
mfo of the prefix graph by adding several cloned nodes, and
thereby increasing s. This approach also performs a trade-off
between s and mfo, however, happens to be a better trade-off
than that without prefix node cloning. Before explaining this
in detail, we will first illustrate the operation of prefix node
cloning by an example.

Fig. 5 shows such an example. The node N is derived from
the prefix nodes N1 and N2, and driving four prefix nodes N3,
N4, N5 and N6. So the fan-out count of N is 4. A cloned node

Fig. 5. Prefix node cloning.

(a)

(b)

(c)

Fig. 6. Cloning reduces size by 1 with same mfo constraint for n = 16 and
L = 4. (a) Size = 34 and mfo = 4. (b) Size = 31 and mfo = 8. (c) With
prefix node cloning: Size = 33 and mfo = 4.

of N is generated, called Ncloned, and each of N and Ncloned
is derived from N1 and N2. In addition, Ncloned drives N5 and
N6, and N drives only N3 and N4. So the fan-outs of N are
distributed among N and Ncloned reducing the fan-out count
from 4 to 2 by adding one prefix node. It should be noted that
the prefix node cloning preserves the functionality.

Fig. 6 illustrates the operation of prefix node cloning in n =
16 bit prefix graph with L = 4. The prefix graphs with mfo = 4
and mfo = 8 are shown in Fig. 6(a) and (b), respectively. The
sizes of the prefix graphs are 34 and 31, respectively. Now
in Fig. 6(b), there are only two nodes which have fan-out
higher than 4 (11:8 and 7:0), which are marked. If we do clone
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Algorithm 5 Structure Aware Prefix Node Cloning on
Guncloned

1: for node ∈ prefix nodes from higher index and level to
lower index and level in Guncloned do

2: if fanout(node) > mfo then
3: numPartition = � fanout(node)

mfo 	;
4: (P1, P2, . . . .PnumPartition) = partition

(fanoutNodes(node));
5: numClonedNodes = numPartition− 1;
6: (c1, c2, . . . cnumClonedNodes) = clone(node);
7: for i ∈ 1 to numClonedNodes do
8: disconnect node to prefix nodes in Pi;
9: connect ci to prefix nodes in Pi;

10: end for
11: end if
12: end for

these two nodes and perform the reconnections as shown in
Fig. 6(c), mfo is reduced from 8 to 4, the size becomes 33,
which is still one less than the prefix graph with mfo = 4
without cloning. The benefit of this prefix node cloning is
two-fold. First, the size of the prefix graph with cloning is less
than that without cloning for same n, L, and mfo. It should be
stressed that although the improvement in s is very small for
the illustrated case, the prefix graph size reduction becomes
higher as n increases. Second, it can help to reduce wire-length
cost for a regular structured placement. For instance, 11:8 is
driving 11:0, 13:8, 14:8, and 15:8 in Fig. 6(a) which are more
distributed than the case when 11:8 is driving 14:8, 15:8 and
its cloned node is driving 13:8, 12:8, and 11:0 in Fig. 6(c).
As a result, the interconnect delay is expected to be smaller
in case of cloning.

Algorithm 5 presents the steps of structure aware prefix
node cloning on a prefix graph generated by Algorithms 1–4.
We call this graph as Guncloned hereafter on which Algorithm 5
is exercised. The prefix nodes in Guncloned are traversed from
higher to lower index, and for the same index more prece-
dence is given to higher level. For instance, the traversal order
in Fig. 6(b) is 15:0, 15:8, 15:12, 15:14, 14:0, 14:8. . . and so
on. For each node in that order, the fan-out count is checked
(Line 2). If it is greater than mfo, fan-out nodes of node
are partitioned in order of decreasing bit-index. The num-
ber of partitions (numPartition) is �(fanout(node)/mfo)	, so
that after partition, the number of nodes in the partition is
≤ mfo. So (numPartition-1) prefix nodes are cloned and the
nodes in each partition, except the last one, are connected to
each of the cloned nodes after disconnecting them from node
(Lines 7–10). The connections for the prefix nodes in the last
partition are untouched. Also, the partition with nodes which
are closer to node are treated as the last partition. For instance,
in Fig. 6(c), the fan-out nodes of 7:0 are partitioned into
P1= (15:0, 14:0, 13:0, 12:0) and P2= (11:0, 10:0, 9:0, 8:0).
The nodes in P1 are connected to the cloned node, whereas
the nodes in P2 are kept connected to the actual node 7:0.
Please note that a partition in random order of bit-index such
as (15:0, 13:0, 10:0, 9:0) and (14:0, 12:0, 11:0, 8:0) might not
be a good option, as that would increase the wire-length cost.

It should be emphasized that the closeness to a prefix node
or distance between two prefix nodes is not well-defined as
the prefix graph generation is much before actual placement,
and even before the gate-level synthesis. However, the close-
ness here refers to the pictorial closeness which can map well
with a structured regular placement. In Section V-B, we have
experimentally demonstrated how the structure aware ordered
partition can help in improving the solution quality in com-
parison to random partition which does not take into account
the structure of the prefix graph.

When a node is cloned, the fan-out count of the fan-in nodes
increases. For instance, in Fig. 6(c), when the node 7:0 is
cloned, the fan-out counts of 3:0 and 7:4 increase from 3 to 4
and 1 to 2, respectively. So it may be possible that some prefix
nodes have fan-out lesser than or equal to mfo initially before
the cloning, but the fan-out count may go beyond mfo after
cloning. However, traversal order of the prefix node ensures
that once any prefix node is traversed and the fan-out count
is reduced to mfo, if required, the fan-out count of that node
can not increase. For instance, once we visit the node 7:0,
after that the fan-out count of 7:0 can not increase since the
nodes visited after 7:0 are the nodes either with indices lower
than 7 or with index 7 but lower level. Note that at the end
of this algorithm, the fan-out count of some input nodes may
go beyond mfo, particularly when mfo = 2.

Lemma 5: Complexity of Algorithm 5 is O(n2 log2 n).
Proof: Size of a prefix graph or the total number of prefix

nodes in a prefix graph with n bit and log2 n logic level is upper
bounded by n log2 n. This is because, maximum number of
prefix nodes with MSB equal to a particular bit-index = log2 n,
otherwise the level of the prefix graph would exceed log2 n.
So the for loop in Algorithm 5 will run at most n log2 n times.
If fc be the fan-out count for any node, then the complexity
of Lines 3-10 would be O(fc), as there will be O(fc) recon-
nections (Lines 7–10) and Lines 3–6 would be also O(fc).
Since fc ≤ n always, the operations inside the for loop will
be at most O(n). Therefore, the complexity of Algorithm 5 is
O(n× n log2 n) = O(n2 log2 n).

Theorem 1: Our approach of generating an n bit parallel
prefix graph with bounded fan-out mfo and logic level restric-
tion log2 n is a polynomial algorithm in n, viz. O(n2 log2 n).

Proof: It directly follows from Lemmas 1 and 3–5.

V. EXPERIMENTAL RESULTS

We have implemented our approach in C++ and executed on
a Linux machine with 72GB RAM and 2.8GHz CPU. We com-
pare our approach at the logic synthesis stage with the most
recent algorithmic adder synthesis approach [16], and after
placement/routing with regular adders, [1], [16], DC adder and
custom adders.

A. Comparison at Logic-Synthesis Level

Table I compares our approach with [16] for 32, 64, 96,
and 128 bit adders in terms of the size (which is unit less) of
the prefix graph under different mfo and bit-wise/fixed level
restriction. Please note that this comparison does not include
the cloning (Algorithm 5). For n = 32, Roy et al. [16] can
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TABLE I
COMPARISON WITH [16] IN TERMS OF THE SIZE OF THE PREFIX GRAPHS

generate solutions under different mfo (except for mfo = 2, 4
under fixed level restriction), and our approach can also
provide the same solution quality. However, as n increases,
Roy et al. [16] failed to give solutions in most of the cases.
Apart from providing solutions in all cases, the most impor-
tant advantage of our algorithm is its fast run-time (0.02 s for
n = 64 and 0.08 s for n = 128) due to its polynomial-time
complexity in n.

Roy et al. [16] proposes a comprehensive pruning based
exhaustive and exponential time algorithm, which scales well
without any fan-out restriction by setting the pruning param-
eter � = 3 till 128 bit adders and the run-time for 128 bit
adder is 25 s. But � needs to be increased for getting solutions
with fan-out restriction as discussed in [16] and consequently
it becomes intractable. Although it can generate solutions for
bit-wise level restrictions in a few cases, it fails to provide
solutions in other cases such as for mfo = 8, 10, 12 (for
n = 64). The reason is setting � beyond 6/7 becomes infea-
sible even with 72 GB RAM due to the generation of millions
of solutions at intermediate bit-widths. For fixed level restric-
tion, this intractability is more severe, and it can not provide
solutions as n goes beyond 32 (Note that mfo = 32/64 for
n = 64/128 is equivalent to no fan-out restriction).

However, it is counter-intuitive that it could get the solutions
for more stringent fan-out restriction, such as mfo = 2. This is
because even with setting � = 30, the number of intermediate
solutions do not go beyond 100k. In [16], additional pruning,
such as storing bounded number of solutions at each bit-width,
helps to achieve solutions for mfo = 4, 6 (n = 64). But it costs
in compromising the solution quality, in addition to its high
memory-overhead (around 1.8 GB) and run-time (mentioned
in Table V).

TABLE II
SIZE IMPROVEMENT BY PREFIX NODE CLONING ON 64 BIT

PREFIX GRAPHS WITH DIFFERENT mfo

TABLE III
SIZE IMPROVEMENT BY PREFIX NODE CLONING ON 128 BIT

PREFIX GRAPHS WITH DIFFERENT mfo

Next, we present the impact of cloning on the prefix graphs
obtained by Algorithms 1–4 in Tables II and III, respectively,
for 64 and 128 bit adders. In each table, Columns 2 and 3,
respectively, show the size of the prefix graphs for bitwise
and fixed level restriction with the fan-out restriction of mfo.
Now, for cloning we apply Algorithm 5 on a prefix graph with
higher mfo. For instance, we can apply Algorithm 5 on a prefix
graph with mfo = 8, 12, 16, 32, etc., and finally generate the
prefix graphs with mfo = 4. Column 4 presents the mfo of the
prefix graph Guncloned which acts as the input to Algorithm 5.
Columns 5 and 6, respectively, show the size of the resultant
prefix graph after cloning with the desired mfo (in Column 1).
For instance, with bitwise level restriction, mfo = 4 and 64 bit
adders, the size of the prefix graph without cloning is 227,
whereas after cloning we can get prefix graphs with size 223,
220, 220, and 215, respectively, when the mfos of Guncloned,
input to Algorithm 5, are 8, 12, 16, and 32.

In general, the trend of prefix node cloning is that more
is the mfo of Guncloned, more is the total savings in size.
This is because, the total size after cloning is the sum of size
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TABLE IV
COMPARISON BETWEEN WITH AND WITHOUT PREFIX NODE CLONING FOR 128 BIT ADDERS

of Guncloned before cloning and the number of cloned nodes
(cntcloned). For instance, consider the case mfo = 4, n = 128
and fixed level restriction. Algorithms 1–4 could get a size
of 512. If the mfo of Guncloned is 8, then size(Guncloned) = 447
and cntcloned = 25, totaling 447 + 25 = 472. But if the size
of mfo of Guncloned is changed from 8 to 16, size(Guncloned)

decreases to 413, and cntcloned increases from 25 to 44 totaling
413+ 44 = 457. This is intuitive that when mfo of Guncloned
increases, we need to clone more to achieve our desired mfo
constraint. But since size(Guncloned) typically decrease faster
with relaxing (or increasing) mfo of Guncloned, we get over-
all savings in size with increasing mfo of Guncloned. However,
there are some exceptions where cntcount increase more than
the decrease in size(Guncloned) causing lesser savings with
increase in mfo of Guncloned. For instance, for n = 64, mfo = 6
and fixed level restriction, size(Guncloned) reduces from 180 to
178 when mfo of Guncloned is changed from 12 to 16, but
cntcloned increase from 6 to 10 causing overall increase in size
from 186 to 188.

B. Comparison After Placement/Routing

The adder architectures provided by our approach are
synthesized in Synopsys DC (version H-2013.03-SP5), func-
tionally verified by Verilog Compiler Simulator, and placed,
routed and timed by IC Compiler (ICC) to compare with other
approaches ([1], [16], Kogge–Stone, Sklansky, etc.) and behav-
ioral adder implementation (Y = A+B) by DC. The behavioral
adder implementation of DC generates modified Sklansky
structure [19] providing delay almost close to Kogge–
Stone at much lower area/power. For all reported DC/ICC
results, “compile_ultra” command is used for adder synthesis.
“tt1p05v125c” corner in 32 nm SAED cell-library [24] (avail-
able through Synopsys University Program) has been used for
technology-mapping. FO4 delay in this corner is 36 ps and
area of a unit-sized inverter is 1.27 μm2. The target delay
specified for 64 and 128 bit adders are, respectively, 100 and
200 ps, the operating frequency is 1 GHz and the activities at
the primary input are 0.1.

First, we demonstrate the benefit of prefix node cloning in
our approach. Table IV compares our solutions with and with-
out prefix node cloning for 128 bit adders. Column 1 shows the
mfo of the prefix graph. The multicolumns 2–4, 5–7, and 8–10
compare, respectively, the delay, area, and power between
them. As illustrated in Table III, there can exist several pre-
fix graph solution in our approach with prefix node cloning
for same mfo. In general, we obtain similar or better delay in
comparison with the uncloned version with improvements in
area/power. For comparison in Table IV, we pick up the solu-
tion with the best delay. The mfos of Guncloned in Table IV are
not the same for all the entries, and are, respectively, 4, 64,

32, and 64. Note that the solution with the best delay does not
typically have the best area/power numbers, so we have some
solutions which are minutely worse compared to the reported
delay, but they have better area/power than the reported ones.

We can see that the maximum improvement in power could
be upto 14.6% with cloning and same mfo restrictions, with
slightly better delay. In general, the power/area improvement is
higher for lower mfo, because the percentage reduction in size
is higher for lower mfo (Tables II and III). The improvement
in delay is not significant, since we have run DC/ICC with
an aggressive target delay, and those tools will try the best to
get the fastest circuit implementation. However, it would need
more aggressive post-synthesis optimizations, such as gate-
sizing and buffering etc. which cost more area/power. So we
have obtained significant improvement in area/power.

In order to demonstrate the benefit of the structure aware-
ness during the cloning mechanism, we take an example
solution of 128 bit adder with mfo = 8. In the first case, we
apply our regular structure-aware cloning mechanism to reduce
its mfo to 4. In the second case, instead of doing an ordered
partition as in our cloning mechanism, we perform a random
partition. Then we pass these two solutions through DC/ICC,
and observe that the area/power numbers are very similar for
the two solutions. But the first solution has better (2%) criti-
cal path delay than the second solution (with random partition
during cloning). Similar observations have been made with
64 bit adders as well. So although the two solutions are sim-
ilar in terms of logic-level, fan-out, and size, the prefix graph
structure aware cloning solution with the ordered partition of
the nodes achieves better delay. This can be illustrated as the
placement/routing tools are capable of exploiting the structure-
aware prefix node cloning, and placing the actual logic gates
accordingly.

Next, we compare our approach with [16] in Table V for
n = 64. Column 1 denotes the mfo, and the multicolumns 2–4,
5–7, 8–10, and 11–13, respectively, present the delay, area,
power, and run-time for both approaches. In terms of run-
time, our approach is much faster (800×–12 050×) than [16]
due to its polynomial time complexity. In case of mfo = 2,
our approach excels [16] in performance by 4.5%, area by
12.8% and power by 15.4%. For mfo = 4, our approach
improves performance by 1.5% with, respectively, 17.2% and
15.3% improvement in area and power over [16]. The general
trend is that as mfo increases more, the comparative perfor-
mance/area/power benefit of our approach decreases. In case
of mfo = 16, we got minor degradation (1.7%) in performance
with 6%–7% improvement in area/power.

Typically, adders are synthesized with a target
delay constraint. Since our algorithm works at the
technology-independent stage, it is difficult for the algorithm
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TABLE V
COMPARISON WITH [16] FOR 64 BIT ADDERS

Fig. 7. Delay vs. power plot for 128 bit adders.

to adapt to the target timing constraint which is relevant
after technology-mapping/placement/routing. However, under
a certain timing constraint, the solutions provided by our
approach can search for pareto-optimal points for delay vs.
power. Fig. 7 shows such delay vs. power pareto-front for 128
bit adder solutions provided by our approach. For comparing
with [16], we plot two solutions of [16] with, respectively,
best performance and best power number. We can see that
the solutions from other approaches are on the right and/or
above this pareto curve. P1 provides better solution than
Kogge–Stone, behavioral DC adder and the best performance
solution of [16], P2 provides better solution than Sklansky
and the best power solution of [16], and P3 provides better
solution than [1].

Table VI compares our approach with other approaches for
128 bit adders. Our approach (solution P1) improves over
Kogge–Stone adder in area by 16.4% and power by 20.7%,
excels behavioral DC adder in area by 10.2% and power by
15.6%, and improves over [16] (best performance version) in
area by 11.2% and power by 14.6% with slight improvement
in performance over all the approaches. Our another solu-
tion (P2) excels Sklansky adder in performance by 4.6%, area
by 7.8% and power by 6.3%. It also improves over [16] (with
best power number) in performance by 8.1%, area by 3.2%
and power by 3.3%. Our best power solution (P3) achieves
same power in comparison to [1] with a slight improvement in
area and performance. Note that the points P1, P2, and P3 are
the same solution points in the delay vs. power pareto-optimal
curve in Fig. 7.

C. Comparison With Custom Adders

The designers come up with detailed gate-level verilog/
VHDL netlist to build custom adders. This takes a lot

TABLE VI
COMPARISON WITH OTHER APPROACHES FOR 128 BIT ADDERS

427.5427.5 3618.23618.2 11.411.4

Fig. 8. Comparison with 64 bit custom adder blocks.

of engineering effort but achieves good performance/area
trade-off for target technology node. In order to compare
with such 64 bit custom adders implemented in an industrial
high-performance design and targeting a cutting-edge tech-
nology node (CMOS SOI 22 nm), we have integrated our
algorithm to an industrial placement driven synthesis [25] tool.
Fig. 8 compares our approach with 64 bit custom adder blocks
after placement in terms of area, worst negative slack and
wire-length. Our approach improves area by 9.4% and wire-
length by 17.5% over custom Kogge–Stone adder with same
performance, improves area by 3.8%, performance by 2.1%
and wire-length by 3.3% over custom Han–Carlson adder
and improves area by 1%, performance by 2.5% over cus-
tom Ladner–Fischer adder with 4% overhead in wire-length.
Note that the performance improvement has been calculated
based on the actual critical path delay of the adders.

VI. CONCLUSION

In this paper, a novel polynomial-time algorithm is pre-
sented to synthesize n bit parallel prefix adder structures with
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the objective of minimizing the size of the prefix graph for
log2 n level and any fan-out constraint. A post-processing
cloning mechanism is also proposed which further optimizes
the size maintaining the same constraints, and takes into
account the structure of the prefix graph. This makes the pre-
fix graph more friendly to placement/routing tools, which has
been experimentally demonstrated. The design space explo-
ration by our algorithm has provided high-performance adders
which are more power/performance/area efficient than regu-
lar adders, industry-standard DC adder and adders generated
by the state-of-the-art adder synthesis algorithms [1], [16].
It even beats 64 bit custom designed adders targeting 22
nm technology library and implemented in industrial designs.
Furthermore, since our algorithm is highly scalable, it can be
integrated into any commercial logic synthesis tool to synthe-
size designs containing thousands of adders and could provide
the flexibility of performance-area/power trade-off in industrial
designs. Currently, our algorithm focuses on adders of log2 n
logic level to target high-performance designs, but in future
we plan to extend it for relaxed logic levels to achieve more
area/power efficient solutions.
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