
Application-Aware NoC Design for Efficient SDRAM Access
Wooyoung Jang and David Z. Pan

Department of Electrical and Computer Engineering
University of Texas at Austin

wyjang@cerc.utexas.edu, dpan@ece.utexas.edu

ABSTRACT
In this paper, we propose an application-aware networks-on-chip
(NoC) design for efficient SDRAM access. In order to provide
short latency for priority memory requests with few penalties, a
packet is split into several short packets which then are scheduled
by the proposed flow controller in a router. Moreover, our NoC
design further improves memory performance by matching
application access granularity to SDRAM access granularity.
Experimental results show that our application-aware NoC design
improves on average 32.7% memory latency for latency-sensitive
cores and on average 3.4% memory utilization compared to [1].

Categories and Subject Descriptors
C.2.1 [COMPUTER-COMMUNICATION NETWORKS]:
Network Architecture and Design - Packet-switching networks.

General Terms
Algorithms, Performance, Design.

Keywords
NoC, on-chip communication, flow control, router, memory, QoS

1. INTRODUCTION
In many-core processors based on networks-on-chip (NoC),

memory quality-of-service (QoS) becomes one of the most
important issues since both memory and on-chip network are
critical shared resources. However, the improvement of memory
performance aided by a memory subsystem independently
working with an on-chip network is severely limited. Therefore,
memory-aware NoC design has attracted great attentions.

Many researchers have developed various QoS approaches [2-
5] for NoC. However, they are not optimized for memory requests
that cause the longest latency. Recently, the responsibility for
high memory performance has been shared not only with memory
subsystems but also with on-chip networks. In [1], each NoC
router instead of memory subsystems schedules memory requests
for a best-effort memory service. As a result, since memory
requests arrive at a memory subsystem in the order more friendly
to SDRAM operations, average memory latency and utilization
(defined as the number of clock cycles used for data transfer
divided by the number of total clock cycles) greatly improve with
lower NoC design cost. However, as different applications
generate their specific memory requests with various latency
constraints and packet lengths, [1] needs to support various
priority services and match application access granularity to
SDRAM access granularity.

In this paper, we propose an application-aware NoC design for
efficient SDRAM access. Our key motivations are two-fold. First,
different applications request various SDRAM latencies. For

example, demand memory requests generated by a
microprocessor are commonly served as a priority packet since
the microprocessor may halt until the demand memory request is
served. However, since the priority packet is served first by
network routers which do not consider SDRAM operations, there
is strong possibility to meet bank conflict and data contention
which makes memory performance worse. In addition, a long
best-effort packet prevents a priority packet being served fast.
Therefore, a priority service which is efficient in accessing
SDRAM should be provided and long best-effort packets should
be split to short packets and then served. Second, different
applications request various lengths of SDRAM data whereas
DDR I/II SDRAM always generates fixed-length data. Even if
DDR III SDRAM can generate variable-length data, it has few
advantages due to long tCCD (CAS to CAS delay time) [6]. As a
result, if the length of data requested by applications is neither the
same as the length of data served by SDRAM nor a multiple of
the length of data served by SDRAM, unnecessary data may be
accessed and then thrown away. Therefore, the access granularity
mismatch problem should be considered. Based on these
motivations, the major novelty and contribution of this paper
include the following.
 A guaranteed SDRAM service (GSS) flow controller is

proposed for applications sensitive to SDRAM latency, which
provides various priority services with few penalties.
 An SDRAM access granularity matching (SAGM) NoC

design is proposed. Based on SDRAM access granularity, a
packet is split to short fixed-length packets and then scheduled by
our GSS flow controller. In addition, our memory subsystem uses
a partially open-page and an auto-precharge (AP) mode.
 We show that our application-aware NoC design significantly

improves not only total memory utilization but also memory
latency for a priority packet.

2. PROBLEM DESCRIPTION
2.1 Priority SDRAM Service in NoC

A microprocessor commonly generates a demand request and a
prefetch request. A demand request should be served as soon as
possible since a microprocessor may stall until a service of the
demand request is received. On the other hand, a prefetch request
does not need to be served with a priority since it may be not
promptly used. Memory requests of multimedia processors and
peripherals are also handled similarly to a prefetch request.

Fig. 1(b) and (c) show two different approaches as to how to
treat a priority request with respect to others, where two demand
requests, two prefetch requests and two requests by a video
processor are filled in input buffers of an NoC router as shown in
Fig. 1(a). BA means a bank address and all requests are read
operations. In addition, RAs (Row Addresses) of all requests are
different except for prefetch 2 and request 2.

A memory scheduler in Fig. 1(b) regards a priority memory
request to have the same priority as others and then schedules
memory requests to avoid bank conflict and data contention and
to encourage row-buffer hit and bank interleaving [1]. As a result,
whereas all memory requests are successively executed with no
bank conflict, the execution of demand 2 is considerably delayed.
On the other hand, in Fig. 1(c), demand memory requests are
executed with a priority. However, since demand 2 accesses the

same bank as demand 1 access with different RA, bank conflict
happens. It makes any data not delivered while a row buffer of
bank 1 becomes idle and is filled with data of demand 2.
Consequently, total execution time of six requests is longer.

We propose a hybrid scheduling algorithm which achieves the
same memory utilization as priority-equal scheduling and the
same memory latency for demand requests as priority-first
scheduling as shown in Fig. 1(d). The scheduling is performed by
a flow controller in each NoC router which is similar to [1].

Moreover, we consider a long best-effort packet. In winner-
take-all bandwidth allocation, it causes a priority packet to be
severely delayed. The reason is that if a long best-effort packet is
already scheduled, a priority packet should wait until the long
best-effort packet finishes being delivered. To solve this problem,
packets are split to short fixed-length packets and then scheduled.
A length of short packets is determined by SDRAM access
granularity. Consequently, priority packets can get more
opportunities to get a channel.

2.2 SDRAM Access Granularity Mismatch
SDRAMs transfer or receive fixed-length data (= number of

data bit ൈ burst length) per read/write. DDR I SDRAM has burst
length (BL) 2, BL4 and BL8 modes and DDR II/III SDRAM has
BL4 and BL8 modes. Especially, DDR III SDRAM has an
additional selectable BL4/BL8 on-the-fly (OTF) mode. For
example, if SDRAM with 16-bit data bus is set to a BL8 mode, it
always generates 16 bytes per read/write. On the other hand,
applications or cores request various data lengths to SDRAM. For
example, H.264 [7] decoders request 4, 8 or 16 bytes per row for
motion compensation to SDRAM. If H.264 decoder reads 4 or 8
bytes, the rest of data are thrown away.

Simple solutions are to reduce the number of data bit or to use
short BL. If the number of data bit is changed to 4 bits, there is no
useless data. However, the entire system does not have enough
memory bandwidth. Therefore, we use short BL to match access
granularity. That is, SDRAM is set to a short BL mode and a
packet is split to short packets based on the BL, which is also
related to Section 2.1. To support a short BL mode, our memory
subsystem operates with a partially open-page and AP mode.

3. APPLICATION-AWARE NOC DESIGN
3.1 GSS Flow Controller

In this section, we propose a GSS flow controller providing
various priority services and achieving similar memory utilization
to a best-effort scheduler. Let h(n) be a packet, which is already
allocated a channel by our GSS flow control at the nth arbitration.
Let hi(n+1) be any packet i of all completing packets, H(n+1) that
may be allocated the same channel as h(n) by our flow controller
at the (n+1)th scheduling. The packets, h(n) and hi(n+1) contain
an address and a command to access SDRAM, denoted by (RAn,
BAn, R/Wn) and (RAn+1,i, BAn+1,i, R/Wn+1,i), respectively, where
the notations are (row address, bank address, read/write

command). Thus, bank conflict, bank interleaving and row-buffer
hit are defined as (BAn=BAn+1,i and RAn≠RAn+1,i), (BAn≠BAn+1,i)
and (BAn= BAn+1,i and RAn=RAn+1,i), respectively. Based on these
notations and definitions, algorithm 1 shows how our flow
controller works for the GSS, which consists of two parts.

First, any packet (i) is given a token (ti) depending on its input
order and priority (line 1-9). Let a new packet, hk(n+1) come in a
router. All old packets are given to one additional token (line 3).
Then, if the new packet has a priority, old best-effort packets
accessing the same bank as the priority packet are except from
H(n+1). It means that best-effort packets which access the same
bank as that of the priority packet are not scheduled until the
priority packet is scheduled. Then, the new packet gets an initial
token. If it is a best-effort packet, one token is given (line 9).
Otherwise, any two to five tokens are given (line 9), called PCT
(Priority Control Token). If one token is given to the priority
packet, it is a priority-equal scheduler and if five tokens are given
to the priority packet, it is a priority-first scheduler.

Second, when h(n) finishes being delivered, competing packets,
hi(n+1) in a router are scheduled (line 10-17). They are input to
Fig. 2 according to the number of token a packet has. That is, if
any packet has 1, 2, 3, 4 or 5 tokens, the packet is input to Ti(1),
Ti(2), Ti(3), Ti(4) or Ti(5), respectively (line 12). All packets are
also input to Ti(0) in line 15. If there is no packet passing the filter
(line 14), all packets are given one additional token (line 16) and
then filtered again (line 17). Finally, if there are some packets
passing the filter, one among the packets is output to
SPPCT(Scheduled Packet). If PCT is n in line 7, SPn is used in Fig.
2 where To(ti) is the filtered output of Ti(ti). SPn=A?B?C means A
is chosen if A is not 0. If A is 0 and B is not 0, B is selected.
Finally, if both A and B are 0 and C is not 0, C is chosen.

In our NoC design, normal packets are not scheduled by our
GSS flow controller. That is, our GSS flow controller for memory
packets and a conventional flow controller for other packets are
parallelly performed. Then, two resulting packets are scheduled
by a 2-input conventional flow controller. Therefore, other normal
packets are not delayed by our flow controller.

Read to write access?

Write to read acess?

Bank conflict?

no

no

SP5 = To(5)&P ? To(0) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=5
SP4 = To(5)&P ? To(4)&P ? To(0) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=4
SP3 = To(5)&P ? To(4)&P ? To(3)&P ? To(0) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PCT=3
SP2 = To(5)&P ? To(4)&P ? To(3)&P ? To(2)&P ? To(0) ? To(5) ? To(4) ? To(3) ? To(2) ? To(1); // PTC=2

Row-buffer hit?

no

no

Ti(5) Ti(3) Ti(2) Ti(1) Ti(0)

no

Write to read acess?

Read to write access?

no
Bank conflict

& read to
write access?

Ti(4)

yes

Figure 2: Filtering packets for SDRAM scheduling

dem 1 dem 2pref 1 pref 2

bank conflict

req 2

BI

(c) Priority-first scheduling

(b) Priority-equal scheduling (best effort service)

req 1

RBH

(a) Input buffer of router
or memory subsystem

BI BI BI (Bank Interleaving)

dem 1: BA 1

dem 2: BA 1

pref 1: BA 2

req 1: BA 3

pref 2: BA 4

req 2: BA 4

dem 1 dem 2 pref 1 req 1 pref 2 req 2

BI RBHBI BI

dem 1 pref 1 req 1 dem 2 pref 2 req 2

BI RBH (Row-Buffer Hit)BI BIBI

(d) Our approach:
 hybrid of priority-equal and priority-first scheduling

frist
come

increased
excution cycles

CPU halts
longer

Figure 1: Examples of scheduling memory requests

Algorithm 1 Flow Control for GSS
1: if new packet hk(n+1) comes in router then
2: for hi(n+1) א H(n+1) do
3: ti ← ti+1;
4:

if hk(n+1) is priory packet, hi(n+1) is best-effort packet and
BAn+1,i=BAn+1,k then

5: hi(n+1) is except from H(n+1);
6: if hk(n+1) is priority packet then
7: tk ← 2 to 5; // PCT for priority packet
8: else
9: tk ← 1; // for best-effort packet
10: if h(n) is done then
11: for hi(n+1) א H(n+1) do
12: Ti(ti) in Fig. 2 ← hi(n+1);
13: Ti(0) in Fig. 2 ← hi(n+1);
14: if SPPCT = ׎ then
15: for hi(n+1) א H(n+1) do
16: ti ← ti+1;
17: go to line 11;

3.2 SAGM NoC Design
In NoC designs, it is useful to split a packet into shorter packets

since on-chip network resources can be more efficiently reserved.
In the newest video system, a length of packets requested by a
video encoder/decoder gets shorter whereas a length of packets
requested by a video enhancer gets longer. A long best-effort
packet causes a priority packet to be further delayed since a
priority packet wait until the long best-effort packet finishes
transferring. On the other hand, a short packet causes SDRAM
utilization to be deteriorated since most SDRAMs always
generates longer fixed-length data than the short packet. Thus, the
optimal packet length can greatly improve memory performance.

We split a packet to shorter packets considering an SDRAM
access granularity. Since our routers communicate through OCP
(Open Core Protocol) [8] or AMBA protocol [9] widely used,
packets consist of only body flits. Instead, information in head
and tail flits is included in additional controls and address buses.
Therefore, network loads do not increase whereas the number of a
core or a different router interconnected to each router is limited.

DDR I/II SDRAM always transfers/receives fixed-length data
per read/write operation. Most memory subsystems prefer a BL8
mode in DDR I/II SDRAM since BL2 and BL4 modes can cause
command efficiency to be worse critically. As shown in Fig. 3, let
a PRE command for BA1 and a CAS command for BA2 issued to
SDRAM at the same time. In Fig. 3(a), the PRE command is
performed earlier than the CAS command. Consequently, data of
Packet 2 are written with some delays. In Fig. 3(b), the CAS
command is performed earlier than PRE command. Consequently,
the bank 1 gets idle with some delays. Fortunately, SDRAM can
omit a PRE command if a CAS command is executed with AP.
Consequently, the PRE command and the CAS command are not
delayed as shown in Fig. 3(c).

Under this operation, it is useful that a BL (granularity) of best-
effort packets is 2 and a BL mode in DDR I/II SDRAM is set to 4.
Now that DDR III SDRAM has a selectable BL4/BL8 OTF mode,
it is useful that a BL (granularity) of packet is 4. For example, if a
BL of any packet is 9, it is split to five packets which BLs are 2, 2,
2, 2 and 1 for DDR I/II SDRAM and three packets which BLs are
4, 4 and 1 for DDR III SDRAM. It is efficient not only to match
the access granularity but also to serve a priority packet faster in
winner-take-all bandwidth allocation. If the length of best-effort
packet is 9, a priority packet waits until all 9 BLs of the packet
are transferred. On the other hand, if it is split to the short packets,
a priority packet just waits until 2, 2 and 4 BLs of the short packet
are transferred in DDR I, II and III SDRAM, respectively.

To implement this idea, we make a core generate short packets
and the last packet has a tag to execute AP. Since the relation of

split packets is row-buffer hit, there is no loss of memory
utilization. Our router proposed in Section 3.1 prefers row-buffer
hit to bank interleaving even if both cause no loss of memory
utilization. Therefore, if best-effort packets split do not meet any
priority packet, they are delivered successively.

Fig. 4 is our memory subsystem only with a memory command
generator. It makes DDR SDRAM work for a partially open-page
mode. A bank keeps activating (open-page) after an access of
packets without any tag indicating the last packet. However, if a
bank is accessed by a packet with a tag, the bank is deactivated
(closed-page) by AP. In addition, when a priority packet is bank
conflict with a previous best-effort packet, the bank may be
closed even if the previous best-effort packet has no tag.

A packet that is input to our SDRAM command generator is
decoded to extract SDRAM access information such as BA, RA,
CA (Column Address), a length of data and a type of command.
Then, they are stored in a PRE buffer. A PRE buffer issues a PRE
command only when a priority packet meets bank conflict with an
open bank accessed. Then, the packet is stored to a RAS buffer. A
RAS buffer issues a RAS command if a packet does not have the
relation of a row-buffer hit with an open bank accessed. Then, the
packet is stored in a CAS buffer. A CAS buffer always issues a
read/write command. If a tag is attached to a packet, a command
is executed with AP. Finally, an SDRAM command controller
schedules all PRE, RAS and CAS commands and generates
SDRAM interface signals.

4. EXPERIMENTAL RESULTS
Our application-aware NoC design is implemented in a Verilog

hardware description language, where DDR I/II SDRAM are set
to a BL4 mode and DDR III SDRAM is set to a selectable BL4/
BL8 OTF mode. It is compared to [1] and conventional NoC
including a round-robin based NoC router and a full memory
subsystem, called CONV. A full memory subsystem employs a
design concept from Sonics’ MemMax [10] and Denali’s
Databahn [11] which are an SDRAM scheduler and an SDRAM
command generator, respectively. Moreover, a conventional NoC
design and [1] use a BL8 mode in a memory subsystem.

All NoC designs are applied to a Blu-ray [7], a single DTV [1]
and a dual DTV model, which consist of 9, 9 and 16 subsystems,
respectively. They are mapped to a 3ൈ3, 3ൈ3 and 4ൈ4 mesh grid
by [12], respectively. All simulations run for one million cycles.

4.1 No Priority Memory Request
Our application-aware NoC design is experimented when there

is no priority packet. Our NoC design is implemented to two
versions. One is that a GSS flow controller is just employed and
the other is that both GSS flow controller and SAGM NoC design
are employed, called GSS and GSS+SAGM, respectively. Table 1
shows their memory performance.

Our GSS flow controller achieves slightly better average
memory utilization and latency than [1]. On the other hand, the
GSS flow controller shows slightly worse latency of demand
packets compared to [1]. However, the latency of demand packets
is not important since demand packets are not assigned to a
priority packet. Our NoC design employing a GSS flow controller
and an SAGM design further improves memory performance.

clock

 DDR II SDRAM @200MHz (BL4 mode)

read, 64 bits
BA1

write, 128 bits
BA2packet

RAS
BA1

CAS
BA1

R
1

R
2

W
1

W
2

R
3

R
4

W
3

W
4

PRE
BA1

RAS
BA2

RAS
BA1

RAS
BA1

CAS
BA1

R
1

R
2

W
1

W
2

R
3

R
4

W
3

W
4

CAS
BA2

RAS
BA2

RAS
BA1

CAS
BA1

R
1

R
2

W
1

W
2

R
3

R
4

W
3

W
4

CAS
BA2

RAS
BA2

RAS
BA1

command

data

command

data

command

data
autoprecharge

(a) Delay of CAS command (BA2)

(b) Delay of PRE command (BA1)

(c) No delay of command

CAS
BA2

PRE
BA1

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

CAS
BA2

CAS
BA2

CAS
BA2

RAS
BA1

tRCD

CL

tRP

Figure 3: SDRAM Operations when BL=4

PRE buffer

RAS buffer

CAS buffer

SDRAM
command
controller

Control

Address

Data

Input

Output

Figure 4: SDRAM Command Generator

Our NoC design is synthesized by DesignVision from
Synopsys with an industrial process technology library. The gate
count of our NoC design is about 6.2% smaller than [1] in a 3×3
mesh platform. The reason is that a PRE buffer in our SDRAM
command generator is smaller than [1] and eight counters per
router needed in [1] is not used.

4.2 Priority Memory Request
Our application-aware NoC design is tested when a demand

packet is assigned to a priority packet. We implement a
conventional NoC design and [1] with a priority-first scheduler,
called CONV+PFS and [1]+PFS, respectively. Table 2 shows
their memory performance, where the performance ratio is based
on [1].

Our application-aware NoC design proves more merits when
there is a priority packet on NoC. [1]+PFS improves on average
20.7% latency of priority packets compared to [1]. However, total
memory utilization and latency are 8.3% and 23.3% worse than
[1]. On the other hand, our GSS flow controller improves on
average 23.7% latency of priority packets compared to [1]. Total
memory utilization and latency are just 1.7% and 2.9% worse
than [1]. Therefore, our GSS flow controller has fewer penalties
to support a priority service.

Our (GSS+SAGM)-algorithm improves not only 32.7% latency
of priority packets but also 3.4% memory utilization and 7.8%
memory latency compared to [1]. It also improves 12.7% memory
utilization, 25.2% latency of all packets and 15.2% latency of
priority packet on average compared to [1]+PFS.

5. CONCLUSION
We propose an application-aware NoC design for efficient

SDRAM access, which includes a flow controller for GSS and an
NoC design for SAGM. It greatly improves latency of priority
memory requests, memory utilization and latency of all packets in
several industrial video systems. In conclusion, our NoC design
provides more opportunity for bandwidth-hungry SoC designs
with a guaranteed priority service.

6. REFERENCES
[1] W. Jang and D. Z. Pan, “An SDRAM-aware router for networks-on-

chip,” Proc. Design Automation Conference, 2009.
[2] K. Goossens, J. Dielissen and A. Rădulescu, “Æthereal network on chip:

concepts, architectures and implementations,” IEEE Design and Test of
Computers, vol. 22, no. 5, pp. 414–421, Sep. 2005.

[3] M. Millberg, E. Nilsson, R. Thid and A. Jantsch, “Guaranteed bandwidth
using looped containers in temporally disjoint networks within the
nostrum network on chip,” Proc. DATE, 2004.

[4] T. Bjerregaard and J. Sparso, “A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-chip,”
Proc. Design, Automation and Test in Europe, 2005.

[5] Y.-C. Lan, S.-H. Lo, Y.-C. Lin, Y.-H. Hu and S.-J. Chen, “BiNoC: a
bidirectional NoC architecture with dynamic self-reconfigurable
channel,” Proc. International Symposium on Networks on chip, 2009.

[6] “Device operations & timing diagram,” Samsung Electronics,
http://www.samsung.com/global/business/semiconductor.

[7] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Trans. on Circuits and
System for Video Technology, vol. 13, no. 7, July 2003.

[8] Open Core Protocol Specification, Release 2.0, 2003,
http://www.ocpip.org.

[9] “AMBA open specifications,” ARM, http://www.arm.com.
[10] “MemMax Scheduler,” Sonics Inc., http://www.sonicsinc.com.
[11] “Databahn DRAM Memory Controller IP,” Denali Software Inc.,

http://www.denali.com.
[12] W. Jang and D. Z. Pan, “A3MAP: Architecture-Aware Analytic

Mapping for Networks-on-Chip,” Proc. ASPDAC, 2010.

Table 1: Comparison on Benchmarks without Priority Memory Request

Bench
mark

DDR
DRAM

Memory utilization Avg. latency of all packets (cycle) Avg. latency of demand packets (cycle)

CONV [1] GSS
GSS+
SAGM

CONV [1] GSS
GSS+
SAGM

CONV [1] GSS
GSS+
SAGM

Blu-ray
133MHza 0.755 0.763 0.771 0.774 121 81 74 69 111 63 65 60
266MHzb 0.651 0.691 0.717 0.761 157 109 101 86 153 91 89 74
533MHzc 0.505 0.592 0.600 0.619 216 134 140 131 216 113 124 113

Single
DTV

166MHza 0.717 0.737 0.766 0.776 144 101 86 71 140 80 74 61
333MHzb 0.625 0.673 0.715 0.756 173 120 108 91 171 96 94 77
667MHzc 0.463 0.554 0.577 0.596 244 154 143 140 248 126 127 119

Dual
DTV

200MHza 0.696 0.707 0.708 0.712 154 104 89 80 128 73 67 57
400MHzb 0.555 0.627 0.627 0.682 246 149 141 115 196 107 104 85
800MHzc 0.426 0.559 0.531 0.547 364 191 195 184 266 133 144 128

Average 0.599 0.656 0.668 0.691 202 127 120 107 181 98 99 86
Ratiod 0.914 1.000 1.018 1.054 1.591 1.000 0.942 0.846 1.847 1.000 1.007 0.878

Table 2: Comparison on Benchmarks with Priority Memory Request

Bench
mark

DDR
DRAM

Memory utilization Avg. latency of all packets (cycle) Avg. latency of demand packets (cycle)
CONV
+PFS

[1]+
PFS

GSS
GSS+
SAGM

CONV
+PFS

[1]+
PFS

GSS
GSS+
SAGM

CONV
+PFS

[1]+
PFS

GSS
GSS+
SAGM

Blu-ray
133MHza 0.729 0.742 0.77 0.774 141 106 77 72 97 59 42 38
266MHzb 0.612 0.621 0.699 0.75 176 134 112 96 123 73 72 60
533MHzc 0.454 0.517 0.561 0.608 248 166 151 138 179 88 98 90

Single
DTV

166MHza 0.676 0.699 0.755 0.779 163 124 96 76 105 64 57 41
333MHzb 0.58 0.613 0.684 0.738 192 143 116 107 128 74 72 66
667MHzc 0.387 0.489 0.534 0.559 309 182 158 151 213 94 98 95

Dual
DTV

200MHza 0.655 0.675 0.7 0.709 183 124 103 80 131 62 55 36
400MHzb 0.521 0.577 0.608 0.657 280 178 153 127 156 81 78 68
800MHzc 0.405 0.481 0.518 0.53 389 252 210 207 198 104 101 99

Average 0.558 0.602 0.648 0.678 231 157 131 117 148 78 75 66
Ratiod 0.85 0.917 0.987 1.034 1.821 1.233 1.029 0.922 1.508 0.793 0.763 0.672

a DDR I SDRAM b DDR II SDRAM c DDR III SDRAM dRatio is based on the SDRAM-aware NoC design [1]

