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Abstract—Clock mesh networks are well known for their
variation tolerance. But their usage is limited to high-end designs
due to the significantly high resource requirements compared
to clock trees and the lack of automatic mesh synthesis tools.
Most existing works on clock mesh networks either deal with
semi-custom design or perform optimizations on a given clock
mesh. However, the problem of obtaining a good initial clock
mesh has not been addressed. Also, the problem of achieving
a smooth tradeoff between variation tolerance and resource
requirements has not been addressed adequately. In this paper,
we present our MeshWorks framework, the first comprehensive
automated framework for planning, synthesis, and optimization
of clock mesh networks that addresses the above issues. Ex-
perimental results suggest that our algorithms can achieve an
additional reduction of 31% in buffer area, 21% in wirelength,
and 23% in power, compared to the best previous work, with
similar worst case maximum frequency. We also demonstrate
the effectiveness of our framework under several practical issues
such as blockages, multiple clocks, uneven load distribution, and
electromigration violations.

Index Terms—Clock mesh optimization, clock mesh synthesis,
robust clock networks, variation tolerant clock network synthesis.

I. Introduction and Motivation

AS the VLSI technology continues to 65 nm and below, the
effects of manufacturing variation, power supply noise,

temperature variations, and so on, on clock skew are becoming
more significant. Clock network is especially sensitive to
such variation effects, resulting in unwanted skews. Since
higher skews directly reduce the maximum frequency of the
circuit, reducing the clock skew variation can improve timing
yield. Some of the approaches proposed to reduce clock skew
variation are variation aware buffer/wire sizing [11], variation
aware routing [12], link insertion in clock trees [13], and leaf-
level meshes [1], [3]–[7]. Among different methods suggested
for skew variation reduction, the leaf-level mesh with a top-
level tree has been shown to be very effective in reducing skew
variation in several commercial chips as noted in [1] and [8].
The variation tolerance of a leaf-level mesh is a direct result
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of its high redundancy, with multiple source to sink paths for
every sink. Fig. 1 shows an example of a clock network with
top-level tree and leaf-level mesh.

The high resource requirements of a leaf-level clock mesh
have historically restricted its use to a few high-end products
such as microprocessors [1], [3]–[6]. However, with variation
becoming a bigger issue at 65 nm technology and below, even
non-microprocessor chips might consider the use of a clock
mesh to improve yield. Nevertheless, most non-microprocessor
chips still cannot use a leaf-level mesh because of two reasons.
First, as noted above, the resource requirements (wirelength,
buffers, and power) might be prohibitively high. Second, there
is a lack of automatic mesh planning/synthesis and opti-
mization tools to help achieve the design objectives without
manual effort [2]. Since application specific integrated circuits
(ASICs) typically have much shorter turn-around times than
microprocessor chips, they cannot afford to have a manually
planned and optimized clock mesh. In fact, the lack of research
on automated clock mesh synthesis was noted as early as in
2001 [10]. However, no comprehensive work has been done
on this important topic in the literature, to our best knowledge.
Even in the recent tutorial on clock distribution networks [8],
no systematic method has been presented for mesh planning1

or optimization. Thus, to make clock mesh a viable option for
non-microprocessor chips, a fully automated framework for
mesh planning, synthesis, and optimization is needed. Such a
framework can enable chip teams to achieve a smooth tradeoff
between performance (skew) and power (area).

It may be noted that fully automated clock mesh plan-
ning/synthesis and optimization will be very useful to mi-
croprocessor chips as well. For example, automated mesh
planning/synthesis can be used to get the preliminary clock
mesh after which finer adjustments can be made manually.
Similarly, mesh optimization can be performed on the indi-
vidual grid zones2 [8] to reduce power/resources used. The
potential difference on the use of such automated methods
between microprocessor and other chips lies in their respective
resource vs. skew tradeoff. While microprocessors might opt
for maximum power reduction with a strict skew require-
ment, other chips might opt for minimum skew with a strict
power/resource target.

Review of existing works: Next, we briefly review the
existing works on clock mesh. The works of [1] and [3]–[5]

1It is called grid floor-planning in [8].
2The individual sub-grids driving small zones of a chip.
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Fig. 1. Clock network with top-level tree driving a leaf-level mesh. The
clock sinks are attached to the mesh.

deal with custom/semi-custom mesh design and do not address
the problem of automatic mesh synthesis/optimization. The
works of [6] and [7] perform optimizations on a given clock
mesh. However, the problem of obtaining a good initial clock
mesh that can be optimized has not been addressed. The
work of [9] deals with the synthesis of hybrid clock network
with a top-level mesh and bottom-level tree. Since the size of
the bottom-level trees are not negligible, they will still have
considerable skew variation. The work of [6] performs clock
mesh sizing considering only the nominal skew targets and
ignores variation. The works in [14] and [15] present efficient
methods for clock mesh analysis and they do not deal with
clock mesh synthesis.

To our best knowledge, [7] is the first work that aims
to achieve a variation tolerance vs. wirelength tradeoff in
a clock mesh. Given a clock mesh and buffer library, [7]
uses a set-cover formulation to obtain the minimum buffer
resource to drive the mesh under slew constraints. Using
this buffered mesh, [7] applies network survivability theory
(used in computer networks) to remove some of the mesh
segments without significantly affecting variation tolerance.
The heuristic in [7] makes sure that every sink has at least a
certain number of paths from certain number of buffers within
a given distance in the clock mesh. The edges not present in
short paths of any sink are removed, resulting in an optimized
clock network. Though the work of [7] is efficient, it has a
few key drawbacks as summarized below.

1) It does not consider the problem of initial mesh plan-
ning/synthesis and relies on manually selected mesh for
performing optimizations.

2) The network survivability formulation requires a fixed
number of buffers to be connected to each sink through
a fixed number of non-overlapping paths. For example, it
does not differentiate between the presence of a lightly
loaded or heavily loaded buffer at a given point. Hence,
the effect of differential loading on buffer delays is not
modeled by the mesh optimization formulation.

3) Electrical characteristics of mesh buffers are ignored and
all buffers are treated identically during mesh optimiza-
tion. Also, the interaction between mesh reduction and
buffering is ignored.

4) Electromigration (EM) issue is totally ignored. The work
of [6] considers EM requirements as a constraint during
mesh sizing. In the context of mesh optimization by
removing mesh segments, the inverse problem of solving
existing EM violation with minimum additional wire-area
is needed.

In this paper, we attempt to address all these drawbacks.
The key components of our MeshWorks framework are the
following.

1) Mesh planning and synthesis: a simple yet effective
method for planning and synthesis of a buffered clock
mesh for a given set of design constraints. This method
can choose a good initial mesh, which can be further
optimized for power/resource reduction.

2) Mesh optimization: an efficient algorithm using network
sensitivity theory to remove mesh edges with little impact
on skew variability. This formulation is more accurate
than the work of [7] because the mesh delay sensitivities
are directly considered during optimization.

3) Buffer modeling for mesh optimization: an efficient buffer
modeling method that is especially suitable for use during
clock mesh optimization.

4) Wire sizing for reliability: an effective heuristic that sizes
relatively few mesh segments to meet the EM constraints
of the optimized mesh.

The above contributions make MeshWorks the first com-
prehensive framework for complete automation of clock mesh
networks synthesis and optimization.

II. Mesh Planning and Synthesis

The mesh planning and synthesis problem can be stated as
follows.

1) Given: sink locations and load capacitance, buffer li-
brary, interconnect parameters, variation models, nomi-
nal/variational skew targets.

2) Problem: obtain an initial clock mesh with minimum
routing and buffering resources such that the given design
constraints are likely to be satisfied. It shall be noted
that our objective is not to get a final clock mesh, but
to quickly get a good mesh that can further be optimized
using the algorithm presented in Section III.

A. Terms and Definitions

Here, we define a few common terms to facilitate our
discussions.

1) S = {s1, s2, ...sN} is the set of all N clock sinks, where si

denotes the ith sink.
2) B = {b1, b2, ...bT } is the set of all T buffer sizes in

the library with the buffers numbered in non-decreasing
order of size/drive strength. For each buffer size bp, the
maximum load that can be driven under a given max-slew
constraint Max Slew is denoted by CLmax

p .
3) Let Dq(Cap) be the delay at the output of a buffer of size

q (1 ≤ q ≤ T ) when it drives a load cap of value Cap.
4) Let IntDel(l, C) denote the delay when an interconnect

of length l drives a load capacitance of value C.
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Fig. 2. Examples of (a) sparse and (b) dense clock meshes. A dense mesh
is likely to have shorter stubs.

5) The leaf-level mesh, by definition, covers the entire chip
area spanned by all the sinks. The X,Y dimensions of
the chip area are given by Xbound ,Ybound . Mesh size is
defined by the number of horizontal, vertical segments
denoted by m,n. Such a mesh will have m ∗ n nodes,
numbered sequentially from 1 to m ∗ n.

6) Each clock sink si is attached to the nearest mesh node
using an interconnect called stub of length Li

stub.
7) The buffers directly driving the mesh are called mesh

buffers.

B. Total Wirelength as a Function of Mesh Size

The total wirelength of the clock mesh along with the stubs
can be written as the following:

Ltot = Lmesh + Lstub = m ∗ Xbound + n ∗ Ybound +
N∑

i=1

Li
stub. (1)

The wirelength of the mesh itself is a linear function of
mesh size. Let us now consider the effect of increasing the
mesh size on the sum of wirelengths of all the stubs. As either
m or n increases, a randomly chosen sink is more likely to
have closer horizontal or vertical mesh segment. Since the
maximum number of stubs is constant, it is very likely that
the total stub length decreases. In a sparse mesh, the mesh
wirelength is less when compared to the dense mesh. However,
the total stub wirelength is likely to be more for a sparse mesh
than a dense mesh because each sink needs to be connected
to the nearby mesh point using a longer interconnect. Fig. 2
illustrates this fact with a simple example.

Fig. 3 shows how the wirelength changes as a function of
mesh size in one of our testcases. The key point to be noted
is that it is easy to get a plot similar to Fig. 3 for a given set
of sinks even though the shape of wire-length function might
differ. From such a plot, choosing an appropriate mesh size
or size range that fits our “wirelength vs. mesh-size” tradeoff
requirement is trivial.

C. Skew as a Function of Mesh Size

Skew variation is typically a decreasing function of mesh
size because of two factors. First, the mesh itself becomes
more dense, resulting in more redundancy, making it more
tolerant to variations. Second, the length of the stub also
decreases, resulting in reduction of the maximum possible

Fig. 3. Determining the right mesh size.

uncontrolled delay variation. In general, skew in a given mesh
can be expressed as a sum of three components as follows:

Skbound = [Max(Dp(CLmax
p )) − Min(Dq(CLmax

q−1))]

+Delay(Dmax) + IntDel(Lmax
stub, C

max
L )

∀p, q : 1 ≤ p, q ≤ T (2)

where Lmax
stub = Min(Xbound

2n
, Ybound

2m
) gives the maximum length of

any stub when the chip area of dimension Xbound, Ybound is
divided equally into m rows and n columns, Cmax

L gives the
maximum value of sink load capacitance for the given set of
sinks and Dmax is the maximum distance between a sink and
the nearest mesh buffer.

The first component in (2) is the skew due to the differential
loading/sizing of the mesh buffers. This is the difference
between the maximum delay of any buffer in the library under
its maximum loading condition and the minimum delay of any
buffer in the library under the maximum loading condition of
the previous sized buffer (q−1). A previous sized buffer for a
given buffer is the nearest smaller buffer when all buffers are
sorted in ascending order of drive strength. We can consider
a load of CLmax

q−1 to be a lower bound of the load for buffer
bq because we assume the smaller sized bq−1 will be used
whenever the load is smaller than what buffer bq−1 can drive
to save buffer area. Please refer to the end of Section II-C on
assumptions made in this regard. Thus, this term gives a tight
upper bound for the maximum skew that can be introduced in
the mesh due to differential buffer loading. As stated in [1],
uneven buffer loading is one of the most important reasons for
the skew in a clock mesh and is typically the most dominant
part of the skew.

The second component in (2) is because of the difference in
proximity of each sink to the buffer that is closest to it. Due
to the redundancy of the mesh, this component will be usually
small for a well-driven mesh satisfying the slew requirements.
If Dmax is the maximum distance for a given buffered clock
mesh, then maximum skew is equal to the delay in the segment
itself. This corresponds to the worst case situation where a
sink is located right next to a mesh buffer, while another is
located at a distance of Dmax from the same buffer with all
other components being identical.

The third component in (2) is due to the difference in the
stub lengths and load capacitance. This component can be
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Fig. 4. Three dominant skew components in a mesh: skew due to buffer
delay imbalance, skew due to difference in distance from closest buffer, and
skew due to different stub length and load capacitance.

significant because it is uncontrolled by the redundancy of
the mesh. It represents the worst case skew that can be caused
when one of the sinks is located on the mesh itself and the
other sink with maximum load capacitance is connected to
the mesh using a stub of maximum length. Fig. 4 illustrates
the situation in which all the three factors discussed above
might combine, resulting in maximum skew between two
sinks shown. For the first case, a big buffer drives a big load
capacitance that is located at a distance Dmax from the buffer.
For the second case, a small buffer drives a small capacitance
located right next to it.

Among the skew components, the first component depends
only on the buffer library and sets a practical limit on the skew
obtainable using the given set of library buffers. The third
component depends only on the mesh size and, hence, can be
obtained for a given mesh size once we get the plots in Fig. 3.
However, to accurately evaluate the second skew component,
the precise location of mesh buffers should be known. But
buffer locations cannot be known unless we choose the mesh
size. Thus, there is a chicken and egg problem in accurate
estimation of the second component.

For a given set of library buffers and slew requirements, as
the mesh is made denser, there will be addition of more mesh
buffers to satisfy the slew requirements. Thus, for a randomly
selected sink, the location of the nearest buffer is likely to
be proportionately closer as we increase the mesh density.
Another useful observation is that the value of Lmax

stub scales in
the same general way as the value of Dmax as the size of the
mesh is increased. Thus, we can approximate the value of Dmax

by a scaled factor of Lmax
stub , where the scaling factor is a func-

tion of the buffer library and the mesh buffer placement/sizing
algorithm. The value of scaling factor can be estimated based
on a few experiments and used for estimating the skew bound
subsequently. Though this approach is an approximation and
we can find corner cases where this observation need not
be true, our experiments on several benchmark circuits show
that this assumption is valid in practice. Also, the choice of
buffer placement/sizing algorithm influences the accuracy of
this approximation. For example, if the buffer placement/sizing
is done in such a way that buffers are placed close to sinks,
then the second factor can even be neglected from skew bound
analysis. Our buffer placement/sizing algorithm, discussed in
Section II-D, enables us to achieve that.

Fig. 5 shows the plot between the skew bound estimated
using the above approximation and the accurate skew ob-

Fig. 5. Plot showing the fidelity of the skew bound (2). Though skew bound
is not perfectly linear of actual worst case skew, it is monotonic.

Fig. 6. Top-level algorithm of selecting the initial mesh size.

tained by running SPICE Monte-Carlo analysis on one of our
benchmark circuits. As we can see, the skew bound, though
not perfectly linear, is still monotonic w.r.t. the changes in
the actual worst case skew and, hence, has high fidelity. We
observe similar curves for all our other benchmark circuits.

Thus, (2) can be used to get a high fidelity estimation of
skew bound for a mesh of given size. Because of the closed
form nature of this equation, skew bounds for a given mesh
size can be estimated quickly under the assumptions discussed
above. The steps to obtain the size of the initial mesh are
summarized in Fig. 6. We start off with mesh sizes near
minimum total wirelength in Step 1 of Fig. 6 because it enables
us to reach a mesh size with minimum size that also satisfies
the skew limits. Also, in Step 5 (else part), we increment both
the values of m and n by 1. This assumes that the density of
sinks in both horizontal and vertical directions are similar.
If this is not the case, then m and n can be incremented
independently depending on whether the current mesh segment
density is lower in the horizontal or vertical directions.

In practice, the value of Smax parameter used as input to
Fig. 6 should be chosen such that it is not too tight. This
is because the value of Skbound obtained from (2) is always
pessimistic since it is a bound for the worst possible skew for
a given mesh size.
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Fig. 7. Example where the buffer insertion algorithm of [7] might not take the better choice. The shaded circles represent buffers of proportional size. (a)
New buffering solution. (b) Solution of [7].

A note on (2): It may be noted that (2) inherently makes
the following assumptions.

1) Several buffers of incrementally different sizes/drive
strengths are available to make the target skew physically
possible. As noted in [17], most practical libraries will
have hundreds of different buffer sizes to choose from.
Hence, this assumption is valid in practice.

2) The buffer placement/sizing is done such that the smallest
buffer that can drive a given set of loads will be used. In
other words, we assume that all the buffers in the library
have a valid capacitance range, which is used to choose
the smallest buffer for a given load. This assumption is
also valid in practice as power/area reduction is a key
objective of any clock network synthesis algorithm.

D. Mesh Optimization Friendly Buffer Placement/Sizing

The buffer insertion heuristic of [7] has two main draw-
backs. First, the potential impact of buffer insertion on mesh
optimization is not considered. This might result in buffer
insertion at nodes that could have been optimized away if
the buffer were not present. Second, the cost function used
in the set-cover formulation of [7] ignores the low-pass filter
characteristics of an RC mesh [14], [15]. For an RC mesh, the
attenuation of a ramp signal applied at a given node increases
exponentially as a function of distance from the node. This
attenuation is constant for a given clock frequency. Hence,
inserting several small buffers distributed throughout the clock
mesh instead of fewer big buffers might result in lesser buffer
area and improve slew at the clock sinks. This is illustrated
in Fig. 7. The solution in Fig. 7(a) uses two smaller buffers
to drive the same amount of load instead of one big buffer
in Fig. 7(b). Considering the attenuation characteristics of an
RC mesh, the solution in Fig. 7(a) will result in lesser slew
rate for a given buffer area. In other words, for a given slew
requirement at the clock sinks, the solution in Fig. 7(a) will
result in lesser buffer area. However, the work of [7] might
randomly pick one of them.

To address the above drawbacks, we propose the following
cost function for the greedy set-cover algorithm of [7]. The
cost of inserting a buffer of size p at node i of the clock mesh
is given as follows:

Cost
p
i =

bp
2

bT
2 ∗ 1

Nuncov

∗ 1

Ci
Load

(3)

where bT is the biggest buffer in the given library, Nuncov is the
number of uncovered nodes that can be covered by the buffer

under consideration, and Ci
Load is the value of capacitance at

the mesh node i, including the capacitance of all the sink nodes
attached to it. The advantages of using the new cost function
are the following.

1) Use of bp
2

bT
2 term instead of bp term of [7] forces the cost

of several small buffers to be less than the cost of one
big buffer even if the two solutions have the same total
area. Thus, this cost function indirectly considers the RC
attenuation effect of the mesh.

2) The 1
Ci

Load

term lowers the cost of adding a given buffer
closer to the sinks even if coverage can be done from a
farther node. This reduces the RC attenuation by placing
the buffers closer to the sinks. Also, this makes the buffer
locations optimization friendly as the edges connected to
buffers are less likely to be removed because of the close
proximity to the sinks. Section III-D has more details on
this.

3) Similar to the work of [7], the cost function is inversely
proportional to the number of new, uncovered mesh nodes
that can be covered by the buffer under consideration.

The other aspects of the set-cover formulation are same as
in [7]. It may be noted here that the above cost function can
lead to lower slews at the clock sinks compared to the cost
function of [7] since more smaller buffers are placed closer
to the sinks. This can allow the buffering algorithm to aim
for a relaxed slew target to get a mesh comparable to [7] in
terms of the maximum slews at the clock sinks. For example,
let us assume that by using the cost function of [7], we aim
to get 50 ps slew in the buffering algorithm and we get 50 ps
actual slew based on SPICE analysis. Then, we may be able
to aim for a higher slew target (say 60 ps) and still get a clock
mesh with all sinks below 50 ps slew when we use the new
cost function.

Impact of mesh buffer placement on top-level clock tree:
The increased number of mesh buffer from the above buffer
placement method might increase the wirelength of the top-
level clock tree. However, this effect is compensated by
two opposite effects that are explained next. Comparing the
situations in Fig. 7(a) and (b), case (b) will have fewer mesh
buffers and, hence, lesser top-level wirelength. However, the
capacitance of the single end point will be high because of
bigger buffer. Also, the mesh optimization cannot remove
the edges that connect the big buffer to the two clusters of
sinks on either side, increasing the wirelength of the mesh.
In contrast, the situation in case (a) has more end points
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Fig. 8. Network sensitivity theory can be applied for clock mesh optimiza-
tion. (a) Original network. (b) Auxiliary network.

in the top-level, which can increase the top-level wirelength.
However, the total pin capacitance is lower than in the first
case because, to achieve comparable slew rates at the sinks,
case (a) can use smaller buffers with lesser total area. Also,
several extra mesh edges can be optimized away, resulting in
lesser mesh wirelength. Thus, case (a) reduces both the top-
level tree pin capacitance and the mesh wirelength at the cost
of increasing the top-level tree wirelength. In many cases, the
increase in top-level wirelength might be compensated by the
potential new mesh edges that can be removed. For example,
let us assume that each big mesh buffer is replaced by two
smaller buffers due to the new cost function as in Fig. 7. In
this case, the increase in top-level tree wirelength is bounded
by the distance connecting the old mesh buffer location to
the locations of the two new buffers. This is because any
old tree driving the original mesh buffers can be extended
along the mesh edges to reach the new mesh buffers. Thus,
for the example in Fig. 7, the maximum increase in top-
level tree wirelength is two edges, one each to connect the
old buffer location in Fig. 7(b) to the two new buffers in
Fig. 7(a). However, the potential number of new optimization
that can done on this mesh due to the new buffer locations is
clearly more than two edges. Thus, the increase in top-level
tree wirelength can be reduced back in mesh optimization,
if required, to obtain a mesh that is more comparable to the
original mesh in terms of wirelength.

III. Network Sensitivity Based Mesh Optimization

In this section, we will first review the concepts of network
sensitivity theory that is at the root of our mesh optimization
approach. Next, we present our efficient buffer model that
is used during the mesh optimization. Finally, using these
concepts, we present our network sensitivity based mesh
optimization algorithm.

A. Network Sensitivity Theory

Given a RC network, network sensitivity theory aims to
efficiently evaluate sensitivities of a given output parameter
(voltage or current) to changes in the circuit parameters. A
straight forward and inefficient method to obtain the sensi-
tivities is to perturb each circuit parameter and observe the
changes in the output. However, in the case of RC networks
with no active elements, the sensitivities of a given output can
be obtained w.r.t. every parameter in the network using the
method of [18] without perturbing any circuit parameters.

Fig. 9. Accurate buffer used for clock mesh optimization. S is the size of a
given buffer.

Fig. 10. Comparison of sink delays in SPICE obtained using buffers and the
buffer model for a clock mesh testcase.

Consider [18, Fig. 8], which shows a generic electrical
network with three identified elements for illustrative purposes.
The elements can be any of the passive components such as
R, C, and L. Let IA and IB be the currents through these
elements in the nominal circuit. The element Vin represents all
the sources in the RC network. Let the voltage across element
B be considered as the output of this network. According to
[18], to obtain the sensitivities of the output voltage w.r.t. all
the parameters of the circuit, irrespective of the number of
circuit parameters, we need to construct an auxiliary network
for the original network as follows: all the independent current
sources are opened, voltage sources are shorted, a unit current
source is applied across the element B, and the voltages across
all the components in the network are measured. According
to [18], the relationship between the currents of the original
network, element values, and voltages in the auxiliary network
is given as follows:

Ea =
∂Eb

∂A

A

IA

(4)

where Ea is the voltage across any element in the auxiliary
network, ∂Eb

∂A
is of sensitivity of the output voltage Eb w.r.t.

parameter A (the required value), and IA is the current flowing
through the element A in the original network. Thus, using
only two simulations, the sensitivities of a given output w.r.t.
all the network parameters can be obtained, irrespective of the
number of parameters. Though the method of [18] is efficient
when compared to the perturbation method, it still requires
one simulation for each output. Thus, a direct application of
this method is not practical for multioutput networks, such
as clock networks. Our method to overcome this drawback is
explained in Section III-C.

B. Accurate Buffer Modeling for Mesh Optimization

The sensitivity calculation method of [18] can be applied
only for a passive network. To apply the concepts of sen-
sitivity theory to a clock mesh, all the clock buffer must
be modeled using a combination of voltage/current sources
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and passive elements such as resistors and capacitors. The
typical switch resistance modeling of buffers is becoming
increasingly inadequate to approximate the buffers in the sub
100 nm technologies. This inadequacy is compounded by the
inherent difficulty in modeling the effective capacitance of a
mesh because of its multiple paths and multiple drivers that
can possibly interact in highly non-linear fashion. Thus, we
need a buffer model that is accurate, independent of the load
and also captures the non-linear behavior of the buffers. The
buffer model proposed in [19] satisfies all these requirements.
The basic idea behind the work of [19] is the use of a two-pole
approximation for modeling a buffer instead of the single pole
approximation of a switched resistance modeling. As a result,
it can be characterized almost independent of the load that it
drives and captures the non-linear behavior of the buffers. An
example of this model is shown in Fig. 9 where S is the size
of the buffer. The values of R1, R2, C1, C2 are obtained by
using the OPTIMIZE function in HSPICE [20] to approximate
the delay characteristics of a given buffer. The parameter To

is the constant delay that might be added to model the delay
of the buffer. In this paper, we adapt the work of [19] to make
it suitable for the problem approximating a library of buffers.

The work of [19] concentrates on modeling a single buffer.
Though this can be trivially extended for a library of buffers,
the values of the parameters R1, R2, C1, C2 can differ drasti-
cally based on the initial values used in the OPTIMIZE func-
tion of HSPICE. Ideally, we would want monotonic changes in
the values of R1, R2, C1, C2 for monotonic changes in buffer
sizes. This requirement is feasible under the assumption that a
bigger buffer is used to drive proportionally bigger load under
a given slew target. The monotonic property of R1, R2, C1, C2
parameters ensures that the any buffer resizing done with these
models will be accurate. The monotonic characteristic of the
RC parameters can be guaranteed by first obtaining a good
approximation for either the smallest or the biggest buffer
size in the library using large search space. For all the other
buffers, the approximations are obtained by constraining the
maximum or minimum values of R1, R2, C1, C2 to the values
of the previous or next sized buffers using the OPTIMIZE
function in HSPICE. From our experiments, we observed that
this always preserves the monotonic nature of the parameters
while resulting in accurate approximations.

Accuracy of the buffer model: Fig. 10 compares the clock
sink delays for one of our mesh testcases with original buffers
and the buffer models. As seen from this figure, the two delay
curves track well across the clock sinks. We observe similar
results for all our testcases. For all the testcases, the error
because of our buffer models is around 4% for delays and
1% for skews. Thus, any optimization done using our buffer
models is likely to be accurate.

C. Mesh Optimization Algorithm

To minimize the mesh wirelength without significantly
affecting the variation tolerance, the mesh segments that are
not critical for variation tolerance should be removed. Consider
Fig. 11 where a mesh drives several clock sinks. In this case,
the edges shown in dashed lines can be safely removed without
significantly affecting the skew characteristics of the original

Fig. 11. Simple example of network sensitivity based mesh optimization.

mesh because they are far away from all the clock sinks.
Similarly, we would like to have a dense mesh in places
where the clock sink distribution is high and a sparse mesh in
locations where the density is much lower.

In this paper, we attempt to achieve the above objectives
using network sensitivity theory as explained below. Let Deli
denote the delay of a sink si and let a mesh segment connected
between mesh nodes p and q be denoted by Seg(p, q). The
delay sensitivity for the sink si w.r.t. width W(p, q) of the
mesh segment Seg(p, q) can be expressed as follows:

∂Deli

∂W(p, q)
=

∂Deli

∂R(p, q)

∂R(p, q)

∂Wp, q
+

∂Deli

∂C(p, q)

∂C(p, q)

∂Wp, q
. (5)

In the above equation, the terms ∂Deli
∂R(p,q) and ∂Deli

∂C(p,q) are the
values of delay sensitivity w.r.t. the resistance and capacitance
of the mesh segment. There is no closed form expression
for evaluating these terms. The terms ∂R(p,q)

∂Wp,q
and ∂C(p,q)

∂Wp,q

are the changes in resistance and capacitance values of the
mesh segment as a function of width. These terms can be
easily obtained though the relationship between interconnect
width and resistance/capacitance values. For the simple case
of R(p, q) = R0(p,q)

W
, and C(p, q) = C0(p, q) ∗ W , these

expressions are −R0(p,q)
W2 and C0(p, q) respectively. In order

to select mesh edges for removal, we first quantify the effect
of removing each edge by defining the following cost function
for each mesh segment Seg(p, q)

Cost(p, q) = Max

(
∂Delj

∂W(p, q)
− ∂Delk

∂W(p, q)

)
W(p, q) (6)

∀j, k ∈ sinks S.

The above cost function approximates the maximum change
in skew in the entire mesh when a given segment is removed.
The criticality of each mesh segment w.r.t. variation tolerance
will be proportional to the value of cost function. The basic
idea of our approach is to remove the segments that have a low
cost function, resulting in an optimized mesh. However, the
following sub-problems must be solved for efficient applica-
tion of network sensitivity toward solving mesh optimization
problem.
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1) As stated in Section III-A, the method of [18] is inefficient
for clock network which has many output (sink) nodes.

2) The method of [18] can be used only to obtain voltage
sensitivities and cannot be directly used to obtain delay
sensitivity.

3) The sensitivities for a given segment assumes that all the
other mesh segments are held constant.

The above sub-problems can be easily solved when the
following key observations are considered.

1) The RC mesh network behaves as a low-pass filter [14],
[15], in which the attenuation of a ramp input signal
applied at a given node increases exponentially as a
function of distance from the source node. So, the delay
sensitivities of closely located sinks will be almost the
same w.r.t. most clock segments.

2) According to [21], the effects of most variation can be
modeled using linear approximation without any signifi-
cant effect on the accuracy. As a result, we can obtain the
delay sensitivity terms of (5) using Elmore delay without
accuracy loss.

3) The Elmore delay sensitivities can be obtained efficiently
by evaluating the voltage sensitivities of the DC equiv-
alent network of the original mesh network. The DC
equivalent circuit can be obtained by shorting all voltage
sources and replacing all the capacitances by current
sources of equal magnitude [22]. The node voltages in this
circuit represent the Elmore delays of the original mesh
networks and the voltage sensitivities are the sensitivities
of the Elmore delays.

4) The sensitivities of several output voltages in the DC
equivalent circuit can be evaluated efficiently by reusing
the results of LU factorization. This is because the only
change made in solving the different auxiliary networks
for different output nodes is the location of the unit
current source [22].

5) The analysis efficiency can be further improved by ex-
ploiting the sparse nature of the nodal admittance matrix
for most RC mesh networks [22].

Using the above observations, the value of cost function of (6)
can be evaluated for each mesh edge efficiently.

Overall mesh optimization algorithm:

1) Identify the different sink clusters such that sinks in each
cluster are closely located.

2) Obtain an approximate circuit by merging all the sinks in
each cluster into a single merged sink with capacitance
equal to the total capacitance of all the merged sinks.
The resulting mesh will be a good approximation of
the initial mesh as far as sensitivity calculations are
concerned and will have far fewer end points compared
to the original mesh.

3) Replace all the mesh buffers with the accurate buffer
model values presented in Section III-B.

4) Obtain Elmore delay sensitivities of every merged sink
w.r.t. all the mesh segments by efficient reuse of the
results of LU factorization and making use of sparse
matrix methods. Using the delay sensitivities, obtain the
Cost(p, q) for each mesh segment as defined in (6).

5) Sort mesh segments in increasing order of Cost(p, q)
value and remove the required number of segments to
satisfy the wirelength reduction target. It may be noted
here that we can sort the mesh nodes instead of mesh
segments using the same framework as above and start
by removing the mesh nodes with minimum cost. In this
case, the cost of a mesh node can be given as a sum of
cost of all mesh edges attached to that node. When a
mesh node is removed, all the mesh segments attached
to it are simultaneously removed.

D. Buffer-Resizing for Mesh Optimization

A key drawback of [7] is that the optimized mesh uses
the same buffer placement/sizing as the initial mesh. This
can result in buffer area and power wastage. In this paper,
we propose an efficient buffer resizing heuristic to reduce the
buffer area/power for a given optimized mesh. The main steps
in our approach are as follows.

1) For each clock buffer, obtain the rectangular covering
region in the mesh where the total capacitance (including
sink capacitance) is less than buffer load limit under the
given slew constraint.

2) For each buffer that has an overlap with another buffer,
consider resizing to the previous sized buffer such that
the total covering region for all clock buffers is main-
tained.

3) Repeat this process till there exists no buffer that can be
sized down without reducing the total coverage.

The amount of buffer area reduction obtained by the above
heuristic is proportional to the reduction in mesh wirelength.
However, the proportional reduction in power is likely to be
less because the redundant buffers in the optimized mesh were
driving light loads.

IV. Wire Sizing for Reliability

As noted in [25]–[30], EM is increasingly becoming a
significant issue in the deep sub-micrometer IC designs. In
general, EM is relevant to clock mesh because of the signifi-
cant current flowing in it. EM is especially relevant to clock
mesh optimization because removing any mesh segment can
potentially increase the current density in a nearby segment.
Thus, we need a systematic approach to address any EM
violations that might occur due to mesh optimization. This
section proposes an efficient method to address this issue
systematically. According to the empirical model developed
in [31], the mean time to failure (MTTF) of a wire considering
EM issue is given as follows:

MTTF =
C

Jn
∗ exp(

Ea

k.T
) (7)

where C and n are empirical constants, J is the average current
density, Ea is the activation energy for the EM mechanism, k

is the Boltzmann constant, and T is the temperature. Thus, the
only parameter that can be adjusted during mesh optimization
is the current density. The current density can be adjusted
either by controlling the mesh edges that are removed during



RAJARAM AND PAN: MESHWORKS: A COMPREHENSIVE FRAMEWORK FOR OPTIMIZED CLOCK MESH NETWORK SYNTHESIS 1953

optimization or by wire-sizing after mesh optimization. Accu-
rate implementation of the first method requires analysis of the
mesh for EM violations after removing every mesh segment
and hence is very costly in terms of run-time. The second
method of wire-sizing is better because only mesh segments
with EM issues in the optimized mesh need to be sized. As a
result, we choose the second strategy.

The central fact used in our wire-sizing scheme is based on
the observation that EM depends primarily on the asymmetric
bidirectional currents as described in [26]. Thus, to a large
extent, the value of current density J in a given mesh segment
can be derived from the average DC current in it. This fact
is used in [6] where it has been shown that the average DC
current can be computed from node voltages of the equivalent
RI network of the mesh RC network. The equivalent RI
network of a given RC network is obtained by replacing all
capacitors with current sources of equal value and retaining
the same resistance values. Thus, from [6], for a given pair
of nodes i and j, the average current in the mesh segment
between nodes i and j is given as follows:

Iij =
2VDD

Tclk

(
Ti − Tj

Rij

) (8)

where i, j are the two nodes connected by the mesh segment
under consideration, the factor 2 assumes a 50% duty cycle
clock, VDD is the supply voltage, Tclk is the time period of
the clock signal, Ti and Tj are the first order (single pole)
approximations of voltage at nodes i and j respectively and
Rij is the value of resistance of the mesh segment. The values
of first order approximations of voltages at the mesh nodes
can be obtained [6] as follows:

T = [T0 T1 . . . Tn]T = G−1C (9)

where G is the N X N admittance matrix of the mesh network
and C is [C0 C1 . . . Cn]T is the vector of node capacitances.
Thus, the average current and hence the current density of
a given mesh segment can be efficiently obtained from (8)
and (9). We wish to point out here that the main difference
between our work and the work of [6] is in the way we
use (8). The work of [6] uses the equation to prevent EM
issues while recovering area, while we use it to solve EM
issues that arise after our mesh optimization. Our overall
wire-sizing scheme for solving EM violations is shown in
Fig. 12. We iteratively identify all the mesh segments with
current density issues using (8) and then increase the widths
in linear proportion to the magnitude of violation. The linear
increase is motivated by the fact that, for a given current, the
current density reduction is directly proportional to the width
increase. In this algorithm, we ignore the interactions between
the different mesh segments while sizing up a given segment.
Also, the linear relationship between changes in wire-width
to changes in current density is only an approximation. As a
result, we may need more than one iteration to fix all the EM
violations. However, since all the mesh segments with EM
problems are sized-up in each iteration, the number of mesh
segments with more EM violations after a given iteration is
usually very small. Hence the total number of iterations for a
given optimize mesh is also very small.

Fig. 12. Iterative wire-sizing flow to fix EM violations.

Integration in MeshWorks flow: the wire-sizing based
solution for solving EM violations is a natural addition to
the rest of the MeshWorks flow since the input to this
step is the optimized mesh. One potential issue that might
arise because of the wire-sizing is that the increase in mesh
capacitance might result in slew violations due to overloading
of the mesh buffers. As a result, we might need one more
round of mesh buffer sizing, which might in turn trigger new
EM violations. Thus, in theory, the loop between wire-sizing
and buffer sizing might not be closed. However, this does
not happen frequently in practice as long as the increase in
capacitance of mesh segments due to wire-sizing is small.
This is confirmed by our experimental results presented in
Section VI-C.

V. Practical Considerations in the Use of

MeshWorks

A. Blockages

An important issue to be considered during clock network
synthesis is the presence of blockages. The MeshWorks frame-
work can work seamlessly even for chips with blockages. This
is because the mesh optimization problem with blockages is
identical to the optimization problem obtained by replacing the
blockage with only the clock pins of the blockages connected
to the mesh. Since the area of the blockage will not have
any other clock sinks, the mesh segments within this area will
naturally get optimized away.

B. Multi-Clock Floorplans

One of the main reasons why clock meshes are not used
even in high performance ASICs is that they typically require
multiple clocks to interact heavily and so they will have sinks
of multiple clocks interspersed in the same floorplan. As a
result, using a mesh structure for the clocks will require
two separate meshes covering the entire floorplan, which
is obviously unaffordable due to power/resource constraints.
However, our clock mesh optimization scheme can recover
most of the unnecessary clock mesh segments even if starting
from complete meshes. This can make the use of clock meshes
in multi-clock floorplans a viable option.
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TABLE I

Comparison of Different Mesh Optimization Approaches with Maximum Skew of ±50 ps Between Mesh-Buffers

and a Slew of 50 ps ± 10 ps

Case Method Size BA WL PWR µsk σsk Fmax CPU

(#Sinks) µm2 % Red µm % Red. (mW) % Red. (ps) (ps) MHz %Red (s)

s9234 MM 9X9 36.6 0.0 44 156 0.0 10.7 0.0 13.2 2.5 979.8 0.0 –

(135) MO[7] 9X9 36.6 0.0 38 656 12.5 9.6 10.2 18.7 4.5 968.7 1.1 0.02

NSMO OB 9X9 36.6 0.0 31 983 27.6 8.6 19.6 26.4 5.6 958.5 2.2 0.05

NSMO OBS 9X9 33.1 9.4 31 983 27.6 8.3 22.1 26.2 5.0 960.5 2.0 0.05

NSMO NBS 9X9 32.2 12.1 31 157 29.4 7.9 25.6 19.7 4.3 968.4 1.2 0.07

MP&S 7X7 29.8 18.5 42 013 4.9 9.9 6.9 10.8 2.9 980.9 −0.1 –

MPSO 7X7 28.7 21.5 30 843 30.2 7.7 28.2 24.9 6.1 958.5 2.2 0.05

s5378 MM 10X10 38.6 0.0 46 852 0.0 11.3 0.0 12.0 2.7 980.2 0.0 –

(165) MO[7] 10X10 38.6 0.0 38 952 16.9 9.8 13.4 21.3 4.3 967.0 1.3 0.03

NSMO OB 10X10 38.6 0.0 33 787 27.9 9.0 20.5 25.0 5.5 960.1 2.0 0.07

NSMO OBS 10X10 35.6 7.9 33 787 27.9 8.7 23.0 22.8 5.3 962.9 1.8 0.07

NSMO NBS 10X10 34.5 10.7 35 590 24.0 9.0 20.1 18.3 4.0 970.7 1.0 0.08

MP&S 8X8 32.1 17.0 44 299 5.4 10.3 8.7 8.7 2.2 985.0 −0.5 –

MPSO 8X8 31.4 18.8 32 126 31.4 8.0 28.8 22.8 5.3 962.9 1.8 0.05

s13207 MM 30X30 156.0 0.0 175 564 0.0 43.0 0.0 8.6 1.7 986.4 0.0 –

(500) MO[7] 30X30 156.0 0.0 136 987 22.0 36.2 15.8 21.5 7.2 958.8 2.8 0.95

NSMO OB 30X30 156.0 0.0 129 813 26.1 36.0 16.2 22.5 4.4 965.4 2.1 1.13

NSMO OBS 30X30 146.3 6.2 129 813 26.1 35.6 17.3 19.6 3.7 970.2 1.6 1.13

NSMO NBS 30X30 148.6 4.7 135 506 22.8 36.0 16.2 21.7 2.9 970.5 1.6 1.53

MP&S 13X13 83.9 46.2 116 738 33.5 27.5 36.1 10.0 2.3 983.5 0.3 –

MPSO 13X13 82.5 47.1 85 369 51.4 21.5 49.9 27.1 4.0 962.4 2.4 0.47

s15850 MM 30X30 167.5 0.0 191 556 0.0 46.9 0.0 8.2 1.9 986.2 0.0 –

(566) MO[7] 30X30 167.5 0.0 148 124 22.7 39.0 16.9 26.2 7.7 953.1 3.4 1.22

NSMO OB 30X30 167.5 0.0 140 227 26.8 38.6 17.7 19.0 3.9 970.2 1.6 1.35

NSMO OBS 30X30 159.1 5.0 140 227 26.8 36.9 21.3 16.8 3.3 974.1 1.2 1.35

NSMO NBS 30X30 155.1 7.4 142 708 25.5 38.5 18.0 17.3 3.0 974.4 1.2 1.77

MP&S 15X15 99.5 40.6 137 211 28.4 31.9 31.9 9.8 2.3 983.6 0.3 –

MPSO 15X15 98.1 41.4 98 377 48.6 25.0 46.7 28.2 5.3 957.8 2.9 0.60

s38584 MM 40X40 381.4 0.0 455 352 0.0 110.5 0.0 12.8 2.2 980.9 0.0 –

(1426) MO[7] 40X40 381.4 0.0 341 834 24.9 89.7 18.8 32.4 8.1 946.4 3.5 8.05

NSMO OB 40X40 381.4 0.0 335 094 26.4 89.2 19.3 30.4 4.7 957.5 2.4 6.47

NSMO OBS 40X40 357.1 6.4 335 094 26.4 88.4 20.0 27.4 4.4 960.9 2.0 6.47

NSMO NBS 40X40 351.1 8.0 343 178 24.6 89.0 19.5 22.3 3.3 968.7 1.2 7.95

MP&S 25X25 268.4 29.6 367 575 19.3 85.1 23.0 10.7 2.1 983.1 −0.2 –

MPSO 25X25 264.3 30.7 259 989 42.9 66.2 40.1 30.9 5.0 956.1 2.5 4.22

s35932 MM 40X40 450.0 0.0 543 890 0.0 130.9 0.0 14.8 2.3 978.9 0.0 –

(1728) MO[7] 40X40 450.0 0.0 440 401 19.0 112.9 13.7 32.5 4.6 955.6 2.4 21.03

NSMO OB 40X40 450.0 0.0 398 742 26.7 105.2 19.7 34.8 5.4 951.4 2.8 8.27

NSMO OBS 40X40 420.3 6.6 398 742 26.7 102.6 21.6 30.2 4.6 957.9 2.1 8.27

NSMO NBS 40X40 417.0 7.3 399 654 26.5 102.7 21.6 26.8 3.3 964.8 1.4 10.60

MP&S 26X26 331.4 26.4 459 780 15.5 105.4 19.5 13.1 2.3 980.5 −0.2 –

MPSO 26X26 322.2 28.4 325 256 40.2 81.8 37.5 32.8 4.8 955.0 2.4 5.83

The results are for the clock mesh only (i.e., mesh buffers, mesh edges, and all the sinks connected to the mesh).

C. Highly Uneven Load Distribution

The practically significant issue of uneven load distribution
in different parts of a large chip can be addressed effectively
using the MeshWorks framework. Such a situation can
happen in reality when different IPs from different vendors
are merged to create large system-on-a-chip designs. Even in
situations like this, the MeshWorks framework can be used
effectively. One method is to start the mesh optimization with
a dense mesh that will work for the most dense region of
the chip. Since our method will automatically optimize away
unnecessary edges that do not contribute to skew variation
tolerance, the mesh segments in the regions with light
load distribution will be optimized away naturally. Another
method is to divide the entire chip area into several regions
of different flop densities and use mesh works independently
on each of them. This last approach is similar to the method
described in the tutorials on clock distribution networks [8] in
which the chip area is divided into several grid zones which
differ in loading and density.

Experimental results to verify the working of our mesh
optimization scheme under each of the above issues are
presented in Section VI-D.

VI. Experimental Results

A. Experimental Setup

In theory, we can use the results of both [6] and [7] to
compare against our work. However, the work of [6] only sizes
a given clock mesh considering EM to reduce the resources.
Also, there is no algorithm in [6] to determine the starting
widths of the mesh segments. In contrast, the work of [7]
is both more recent and more comparable to our work. For
example, in both our work and in [7], minimum width wires
are used to construct the mesh while in [6], the initial mesh
is of non-minimum width (that is why they are able to size
the mesh segments to reduce power). So, we compare our
results only with [7]. First, we obtained the results of the
method of [7] for our buffer library and slew constraints. The
number of buffer types used in [7] was 4, much less than
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TABLE II

Average of Optimization Results for Different Skew/Slew Values for Mesh Buffer Input Signals

MB-Skew MB-Slew Method % BA % WL % PR µskew σskew Fmax % Fmax

(ps) (ps) Red Red Red Avg. Avg. (MHz) Red

MM 0.00 0.00 0.00 9.21 1.57 986.3 0.00

MO [7] 0.00 19.65 13.53 19.80 5.22 965.8 2.07

NSMO OB 0.00 26.90 18.78 21.76 5.29 963.8 2.28

NSMO OBS 6.91 26.90 20.24 19.01 4.39 968.9 1.77

±10 10±10 NSMO NBS 8.37 25.49 19.92 17.32 3.44 973.1 1.34

MP&S 29.73 17.82 20.49 8.07 1.74 986.9 −0.06

MPSO 31.32 40.78 38.11 22.07 7.20 958.2 2.85

MM 0.00 0.00 0.00 9.87 1.74 985.1 0.00

MO [7] 0.00 19.65 14.53 20.92 4.72 966.1 1.93

NSMO OB 0.00 26.90 18.75 21.95 4.08 967.0 1.84

NSMO OBS 6.91 26.90 21.03 19.59 3.29 971.4 1.40

±30 30±10 NSMO NBS 8.37 25.49 20.28 17.71 2.71 974.8 1.05

MP&S 29.73 17.82 21.15 8.49 1.74 986.5 −0.13

MPSO 31.32 40.78 37.89 21.13 4.27 967.2 1.82

MM 0.00 0.00 0.00 11.60 2.23 982.1 0.00

MO [7] 0.00 19.65 14.80 25.43 6.07 958.2 2.42

NSMO OB 0.00 26.90 18.84 26.34 4.94 960.5 2.19

NSMO OBS 6.91 26.90 20.88 23.84 4.37 964.4 1.80

±50 50±10 NSMO NBS 8.37 25.49 20.16 21.00 3.46 969.6 1.27

MP&S 29.73 17.82 21.02 10.50 2.34 982.8 −0.08

MPSO 31.32 40.78 38.55 27.79 5.07 958.8 2.37

MM 0.00 0.00 0.00 10.22 1.85 984.50 0.00

MO [7] 0.00 19.65 14.28 22.05 5.34 963.40 2.14

NSMO OB 0.00 26.90 18.79 23.35 4.77 963.78 2.11

Average NSMO OBS 6.91 26.90 20.71 20.81 4.02 968.23 1.65

NSMO NBS 8.37 25.49 20.12 18.68 3.21 972.50 1.22

MP&S 29.73 17.82 20.89 9.02 1.94 985.38 −0.09

MPSO 31.32 40.78 38.18 23.66 5.51 961.38 2.35

Improvement MPSO–MO [7] 31.32 21.13 23.90 1.62 0.17 −2.02 0.21

what is available/used in most practical libraries/designs [17].
Also, the nominal slew constraint used in [7] was 150 ps,
which is 15% of even a GHz clock frequency. As mentioned
in [1], a slew of around 10% of the clock frequency is
common considering all process corners. Also, clock nets are
typically well buffered to maintain tighter slews than signal
nets. Considering these facts, we used 12 different buffer
sizes with max-capacitance limit ranging from 60 fF to 300 fF
and a nominal slew constraint of 75 ps for all the different
methods. All other experimental conditions are identical to [7].
In particular, we use the same 65 nm technology parameters
and transistor models from PTM [23] and the same set of
benchmark circuits. Other variation parameters considered are
buffer channel lengths, interconnect width, power supply varia-
tion and sink load capacitance variation. The above parameters
are varied with 5% standard deviation around the nominal
value. The spatial correlation in variation is accounted by the
method of principal component analysis [24].

Top-Level Tree Modeling: We model the effects of vari-
ation on the top-level clock tree in a similar way as in [7] by
modeling the input arrival time for the mesh buffers by a ran-
dom variable. In our preliminary work [16], we used a range
of ±25 ps for the skew between two mesh buffers and used the
same slew for all the mesh buffers. In this paper, we use both
the skew and slew random variables so that the input signals
to the mesh buffers are more realistic compared to both [7]
and [16]. We also repeat our experiments with different sets
of bounds for the skew and slew random variables to measure
the impact of the quality of the top-level on our results.

B. Mesh Planning, Synthesis, and Optimization Results

The complete results of different mesh optimization
methods are shown in the Table I for ±50 ps skew between

the mesh buffers and a slew value of 50 ps ±10 ps. Table II
shows the average improvement for all six testcases in
Table I and also shows how the average results change with
the quality of the top-level tree is changed by changing
the bounds of the skew and slew random variables of the
mesh buffer input signals. The different mesh optimization
approaches of our work and that of [7] are compared w.r.t.
the manually selected mesh used in [7].

1) According to the authors of [7], the mesh sizes were
chosen in such a way that a target nominal skew is
obtained with minimum mesh wirelength. This manual
mesh is denoted by “MM” in our tables. We directly
compare the effectiveness of our optimization algorithms
with the method of [7] by performing optimizations on
this initial mesh.3

2) The mesh optimization method of [7] is denoted by
“MO” [7].

3) We use network sensitivity mesh optimization + old
buffering (NSMO OB) to denote the results of using
our network sensitivity based algorithm along with the
old buffering method from [7]. Please note that this
method does not do sizing of mesh buffers after mesh
optimization.

4) The label network sensitivity mesh optimization + old
buffering + sizing (NSMO OBS) is used to identify
results of using network sensitivity based optimization
along with old buffering method of [7] along with sizing
of mesh buffers post mesh optimization.

5) Mesh optimization using network sensitivity method
along with the new cost function proposed in this paper is

3Only the mesh itself is identical to the one used in published results of [7]
and not the buffer placement, buffers and slew constraint used. Also, the
wirelength reported in [7] did not include the stub wirelengths.
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denoted by network sensitivity mesh optimization + new
buffering + sizing (NSMO NBS).

6) In order to measure the effectiveness of our mesh plan-
ning and synthesis approach, we obtain the best mesh
chosen by the algorithm in Fig. 6 for the same set of
benchmark circuits and design constraints. This approach
is denoted by mesh planning and synthesis (MP&S) in
the tables.

7) Finally, we run our optimization algorithm on the mesh
obtained from our mesh planning and synthesis algorithm.
This approach is denoted by “MPSO” in our tables. The
columns under “%Red” are the relative reductions w.r.t.
“MM.”

The different parameters in Table I are buffer area (BA),
total wirelength (WL), power (PWR), and mean/standard de-
viations of skew (µsk, σsk) considering variations (obtained by
SPICE Monte-Carlo simulations). The second-to-last column
in Table I gives the worst case maximum frequency, Fmax,
at which the clock network can be run in the presence of
µsk + 3σsk skew variation assuming the ideal target frequency
to be 1 GHz. Similar to [7], we also use the percentage
reduction in max frequency under variation as the measure of
variation tolerance instead of changes in skew. This enables
us to directly compare the power/area vs. frequency tradeoff.
Instead, if we directly consider the increase in skew, even a
change from a skew of 1 ps to 2 ps will be a 100% change
but it does not convey the actual tradeoff between frequency
of operation and resources. The definitions of most of the
parameters in Table II are the same as in Table I. The new
parameters are mesh buffer skew (MB-Skew), which gives
the maximum skew between any two mesh buffers and mesh
buffer slew (MB-Slew), which gives the variation range of the
slew of the mesh buffers. Both these random variables are
used to simulate the impact of the top-level clock tree driving
the mesh buffers. We use this method to simulate the impact
of top-level clock tree since constructing a near-zero SPICE
skew clock tree is a non-trivial problem by itself and beyond
the focus of this paper.
The key observations from the Tables I and II are as follows.

1) Mesh Optimization: Our network sensitivity based opti-
mization (NSMO NBS) yields consistently better results than
the approach of [7] for identical starting mesh. On an average,
our approach yields 8.37%, 5.84%, and 5.84% extra reduction
in buffer area, wirelength, and power respectively with almost
1.0% improvement in Fmax. Thus, our methods achieve better
maximum frequency with lesser resources compared to [7].
This proves the effectiveness of our overall mesh optimization
approach.

2) Mesh Planning: Our mesh planning and synthesis
algorithm (MP&S) is effective in choosing a good initial mesh.
In most cases, the quality of this initial mesh is close to the
final, optimized results of [7]. Also, the size of the initial mesh
obtained from our mesh planning approach is significantly
smaller when compared to the manually obtained mesh of
[7] for the bigger testcases. This illustrates the importance of
having a good methodology to obtain an initial mesh.

3) Combined Mesh Planning and Optimization: By per-
forming our network sensitivity based optimizations on the

mesh selected by our mesh planning algorithm (MPSO),
we are able to achieve, on an average, 31.32% buffer area
reduction, 21.13% wirelength reduction and 23.90% power
reduction with 0.21% reduction in the worst case maximum
frequency. This proves that our overall framework can be
used to significantly reduce the mesh resources with negligible
impact on the worst case maximum frequency.

4) Resources vs. Frequency Tradeoff: From Table II,
we see that the bigger the reduction in power, buffer area
and wirelength, the higher is the skew degradation, which
is expected. But what is noteworthy is that the degradation
in skew is insignificant because it results in less than 3%
reduction in Fmax (w.r.t. the original mesh of [7]) while
achieving significant reduction in power and area.

5) Impact of Top-Level Clock Tree: By comparing the
average results with different skew/slew bounds for the mesh
buffer input signals, we see that the overall results does
not change much. This demonstrates that our results are not
affected significantly by the quality of the top-level clock tree,
as long as the skew and slew are bounded by reasonable values.

C. Wire-Sizing for Reliability

To demonstrate the effectiveness of our wire-sizing scheme
for meeting EM requirements, we first obtain the target current
density value. The existing literature [27]–[30] has a wide
range of values for the current density that can be used for
copper interconnects. For example, the works of [27]–[30]
recommend values of 90 mA/µm2, 16 mA/µm2, 8 mA/µm2,
and 160 mA/µm2, respectively. In order to be conservative,
we set 90% of the most aggressive value of 8 mA/µm2 as our
current density target. Thus, any mesh segment with a current
density value above 7.2 mA/µm2 is treated as a single EM
violation. The goal is to ensure that no mesh segment in the
final optimized mesh exceeds this current density requirement.
Next, we use the methodology described in Section IV to
identify and fix the violations found in the optimized mesh
from the MPSO rows of Table I. The complete results for this
procedure is shown in Table VI-B.

From Table VI-B, we can see that our method is able to fix
all EM violations with an average 1% increase in total wire-
area. Please note that all the results in Table I use minimum
wire-widths and the increase in wire-area in Table VI-B is
from the wire-sizing. It may be noted here that we do attempt
to resize mesh buffers after mesh segment sizing to ensure we
do not overload the mesh buffers. However, in all our testcases,
we found this to be unnecessary as the amount of extra loading
on the mesh buffers was very small, i.e., no maximum load
violation happened after wire sizing for EM fixing. As a result,
there was no change in the buffer area even after fixing all the
EM violations. Also, the impact of EM fixing on skew, slew,
delay etc. are also negligible since the number of violations
we have fixed in our testcases is just a handful.

D. Results for Practical Issues in MeshWorks Usage

1) Blockages: To test our mesh optimization in the pres-
ence of blockage, we first created a testcase as described next.
We picked a rectangular floorplan and randomly generated the
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TABLE III

Results of EM Violation Fixed by Wire-Sizing

Testcase Before EM Fix After EM Fix Difference #Iterations

#EMV %BA %WA #EMV %BA %WA %#EMV %BA %WA to Fix EM

s9234 1 14.0 23.8 0 14.0 23.24 100 0 0.56 1

s5378 0 22.1 33.8 0 22.1 33.8 100 0 0.00 0

s13207 11 42.1 52.7 0 42.1 51.09 100 0 1.60 2

s15850 7 39.5 56.1 0 39.5 55.36 100 0 0.73 1

s38584 11 22.4 43.6 0 22.4 42.95 100 0 0.64 2

s35932 33 22.1 35.7 0 22.1 33.78 100 0 1.91 4

#EMV denotes the number of EM violations. WA = wire-area.
BA and WA are % reduction w.r.t. MM row in Table I.

Fig. 13. Mesh optimization result on a testcase with blockage.

Fig. 14. Results on a testcase with two clocks. Clock-A is shown.

Fig. 15. Results on a testcase with two clocks. Clock-B is shown.

sink locations in it. The center of the floorplan was assumed to
have a rectangular blockage and so any random sinks located
in the smaller square was removed. A complete 10 × 10 mesh
was selected arbitrarily for this floorplan. Buffering & mesh
optimization were done on this complete mesh without giving
any explicit information about the presence of the blockage to
them. The final mesh edges post mesh optimization are shown
in Fig. 13. Visual inspection confirms that all mesh segments
that were present in the blockage area have been removed. This
demonstrates that our optimization framework can be used in
the presence of blockages.

2) Multiple Clocks: We generated our multi-clock testcase
as follows. A rectangular floorplan was selected and clock

sinks were randomly generated with constraints such that sinks
on the left side of the square were assigned to Clock-A and the
sinks on the right side of the square were assigned to Clock-B.
Exceptions to this rule were allowed with a small probability
when the Y-coordinate of the sinks was between a selected
band (between 30% and 50% of the maximum Y distance).
This setup enabled us to get a floorplan such that majority of
sinks belonging to Clock-A were located on the left-side with a
few on the right side of the block and vice-versa. This imitates
the conditions in many ASIC designs where registers belong-
ing multiple clocks interact. For this testcase, two sets of
buffering and mesh-optimization were done on a 10×10 mesh,
one for Clock-A and another for Clock-B. The final mesh
edges after mesh optimization for these clocks are shown in
Figs. 14 and 15. As expected, the mesh for Clock-A has most
of the mesh segments on the right side removed, except for the
segments attached to the few Clock-A sinks on the right side
and vice-versa for Clock-B. This demonstrates that our mesh
optimization can reduce resource utilizations on multi-clock
floorplans even if the initial mesh covers the entire floorplan.

3) Highly Uneven Load Distribution: As the results from
the previous experiment demonstrated, our mesh optimization
scheme works as expected even when the clock sinks are
distributed to one side of the chip predominantly over the
other. This can be directly inferred from both Figs. 15 and 14.
Thus, our scheme works well even in cases with uneven
distribution of clock sinks.

VII. Conclusion

In this paper, we have presented an efficient, fully automated
framework for planning, synthesis, and optimization of clock
mesh networks. Experimental results suggest that our algo-
rithms can achieve an additional reduction of 31% in buffer
area, 21% in wirelength, and 23% in power, compared to the
results of [7] with similar worst case maximum frequency of
operation. Our overall framework is very powerful and can
address several practical issues including blockages, multiple
clocks, uneven load distribution and EM violations.
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