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ABSTRACT
In this paper, we propose the first metal-density driven place-
ment algorithm to reduce CMP variation and achieve higher
routability. Based on an analytical placement framework,
we use a probabilistic routing model to estimate the wire
density during the placement. Then, the metal density and
thickness are predicted by a predictive CMP model. The
spreading forces are adjusted according to the metal density
map to reduce the metal density variation. Experimental
results show that our method reduces the topography vari-
ation by 12% and the number of dummy fills by 6% and
achieves much better routability, compared with wirelength-
driven placement.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids

General Terms: Algorithms, Design, Performance

Keywords: VLSI, Physical Design, Placement, Manufac-
turability

1. INTRODUCTION
For 90nm and more advanced process techniques, man-

ufacturability and yield related issues are becoming more
and more important. Especially, topography (thickness)
variation after chemical-mechanical planarization/polishing
(CMP), i.e., CMP variation, is shown to be systematically
determined by wire density distribution [20, 24, 32]. Even
after CMP, intra-chip topography variation can still be on
the order of 20–40% [14, 24]. Such topography variation
leads to not only significant performance degradation due to
increased wire resistance and capacitance, but also serious
manufacturing issues like etching and printability [14,24,28].
If the copper thickness of interconnect is more uniform, the
timing analysis in the early stage can be more accurate, and
the timing can be optimized more effectively.

Cho et al. proposed a wire-density driven global routing
to reduce CMP variation [9]. Their results showed that the
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wire-density driven global router can lead to 7.5% less topog-
raphy variation, 2.2% less dummy fills, and better routabil-
ity with 28.6% less routing overflows. However, the wire
density is highly related to placement since the wire density
optimization in routing is limited by pin locations [8]. Since
a router shall complete all the connections among pins, it
cannot avoid routing through some highly dense region in
which a pin lies. Therefore, effectively distributing pins/cells
into a placement region with wire density consideration can
provide better flexibility for routing, leading to better wire
density topography.

Although there are many recent works on placement op-
timizing for wirelength [4, 5, 7, 15, 18, 25, 27, 29], cell den-
sity [7, 25], congestion [21, 26, 31], and timing [16], none of
them considers the CMP variation. Although the cell den-
sity has been considered for placement [1,7,25], it cannot ad-
dress the metal density well. Since the wire density among
cells of a functional unit is usually much higher than the
wire density between cells of different functional units, sim-
ply evenly distributing cells cannot guarantee uniform metal
density. Congestion and metal density are related, but the
congestion-driven placement still cannot reflect the metal
density directly and effectively. Wire density is computed
for the wires inside a bin, while congestion is computed for
the wires crossing the edges of a bin [9].

In this paper, we propose a metal-density driven place-
ment algorithm for CMP variation and routability. A proba-
bilistic routing model [22,30] and a predictive CMP model [9]
are used to evaluate the metal density. Then, the metal
density map is used to guide the block (cell/macro) spread-
ing to find a uniform metal-density result. The experimen-
tal results based on five adaptec benchmarks [1] show that
our metal-density driven placement can effectively reduce
the topography variation by 12%, compared with the tradi-
tional wirelength-driven placement. In addition, the metal-
density driven placement can also lead to higher routability
since there are fewer high wire-density regions. We used
BoxRouter [8] to perform global routing to evaluate the
routability. All circuits placed by the metal-density driven
placement do not have any routing overflow, while only one
circuit placed by the wirelength-driven placement has no
overflow. Higher routability from our metal-density driven
placement enables BoxRouter to achieve 33.4X speedup, com-
pared with BoxRouter after wirelength-driven placement.
These results show that our metal-density driven placement
is effective in improving both CMP variation and routability.

The remainder of this paper is organized as follows. Sec-
tion 2 gives essential background for the analytical place-
ment, CMP model, and metal density estimation. Our metal-



Table 1: The notations in this paper.
xv, yv center coordinate of block v
wv, hv width and height of block v
wb, hb width and height of bin b

ap
b area of preplaced blocks in bin b

am
b area of movable blocks in bin b

au
b the maximum allowable area in bin b

dv
b , dh

b the wire density in the vertical/horizontal routing layer of bin b

mv
b , mh

b the metal (wire + dummy) density in the vertical/horizontal routing layer of bin b

rh the average metal width for horizontal routings
rv the average metal width for vertical routings
u target cell density

density driven placement algorithm is explained in Section 3.
Section 4 reports the experimental results. Finally, the con-
clusions are given in Section 5.

2. PRELIMINARIES
We describe the placement model, placement metrics, and

the predictive CMP model in the following.

2.1 Placement Model
We use a hypergraph H = (V, E) to model a circuit.

Let vertices V = {v1, v2, ..., vn} represent blocks (cells and
macros), and hyperedges E = {e1, e2, ..., em} represent nets.
Let xvi and yvi be the x and y coordinates of the center of
block vi, respectively. The circuit may contain some pre-
placed blocks which have fixed x and y coordinates and can-
not be moved. Table 1 gives the notation used in this paper.

2.2 Placement Metrics
The main purpose for placement is to find desired po-

sitions for all blocks such that some placement metrics are
optimized. The following gives important placement metrics
for modern circuit designs.

• Wirelength is the main objective for placement. Usu-
ally shorter wirelength leads to better routability and
timing. However, simply considering total wirelength
is not enough for modern circuit designs. For example,
squeezing blocks can reduce total wirelength but may
be harmful for routability.

• Routability is an important metric for both place-
ment and routing. A placement with high routability
can reduce the routing time and result in fewer detour
routes. It is important to have fewer detour routes so
that the wirelength estimation in the placement stage
can be more accurate.

• Cell density is also an important consideration for
modern placement. Since buffer insertion and gate
sizing are commonly used in modern designs, some
whitespace should be reserved for future optimization.

• Manufacturability also needs to be considered in the
placement stage for deep submicron designs. Cell/macro
positions roughly determine the wire density distribu-
tion. To effectively reduce the CMP variation, we shall
change cell/macro positions.

2.3 Predictive CMP model
We use the predictive CMP model proposed in [8]. The

metal thickness variation after CMP is determined by metal
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Figure 1: The predictive CMP model.

density that includes both wires and dummies. The number
of dummy fills depends on the wire density. Thus, we can
predict the resulting normalized copper (Cu) thickness from
the wire density. The normalized Cu thickness tb can be
computed by

tb = α

�
1 − m2

b

β

�
, 0.2 ≤ mb ≤ 0.8, (1)

where mb is the metal density of a bin, α and β are technol-
ogy dependent constants. The metal density mb includes the
wire density and the dummy density in a bin. Figure 1 shows
the required dummy density and the predicted Cu thickness
with respect to the wire density. Given the wire density db,
we can look up the number of dummy fills to be inserted
to obtain the total metal density mb. Then, the final Cu
thickness can be predicted using Eq. (1). This predictive
model is verified with a commercial CMP simulator [3] and
industry test cases.

3. METAL-DENSITY DRIVEN
PLACEMENT

Our metal-density driven placement is based on the an-
alytical placement framework. We use metal-density-aware
spreading forces to guide block spreading to reduce CMP
variation. Figure 2 illustrates our placement flow. The
wire density is first updated during the placement process
based on the predictive CMP model described in Section 2.3.
Then, the metal density topography is fed back to the place-
ment database so that the analytical placement can con-
tinue with metal-density-aware block spreading to reduce
the metal density variation.
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Figure 2: Our metal-density driven placement flow.

3.1 Placement Framework
The analytical placement framework optimizes wirelength

and spreads blocks to reduce the overlaps between blocks [7].
To evenly distribute the blocks, we divide the placement
region into uniform non-overlapping bin grids. Then, the
global placement problem can be formulated as a constrained
minimization problem as follows:

min W (x,y)
s.t. Db(x,y) ≤ au

b , for each bin b,
(2)

where W (x,y) is the wirelength function, Db(x,y) is the
potential function that is the total area of movable blocks
in bin b, and au

b is the maximum allowable area of movable
blocks in bin b. au

b can be expressed as

au
b = u(wbhb − ap

b), u ≤ 1.0, (3)

where u is a user-specified target cell density value for each
bin, wb (hb) is the width (height) of bin b, and ap

b is the base
potential . The base potential equals the preplaced block
area to prevent blocks from being overlapped with preplaced
blocks.

The wirelength W (x,y) is defined as the total half-perimeter
wirelength (HPWL):

W (x,y) =
�
net e

( max
vi,vj∈e

|xvi − xvj | + max
vi,vj∈e

|yvi − yvj |). (4)

Since W (x,y) is not smooth and non-convex, it is hard to
minimize it directly. Thus, several smooth wirelength ap-
proximation functions are proposed, such as quadratic wire-
length [12,19], Lp-norm wirelength [6,18], and log-sum-exp
wirelength [5,17,23].

We express the function Db(x,y) as

Db(x,y) =
�
v∈V

Px(b, v)Py(b, v), (5)

where Px and Py are the overlap functions of bin b and
block v along the x and y directions. However, the overlap
functions Px and Py are neither smooth nor differentiable.

We adopt the bell-shaped potential function P̃x to smooth
Px. The bell-shaped function was first proposed in [23] and
then was extended to handle mixed-size blocks in [17]. We

use the later version of the bell-shaped function P̃x, which
is defined by

P̃x(b, v) =��
�

1 − pl2x, 0 ≤ lx ≤ wv
2

+ wb

q(lx − wv
2

− 2wb)
2, wv

2
+ wb ≤ lx ≤ wv

2
+ 2wb

0, wv
2

+ 2wb ≤ lx,

(6)

where

p =
4

(wv + 2wb)(wv + 4wb)

q =
2

wb(wv + 4wb)
, (7)

wb is the bin width, wv is the block width, and lx is the
center-to-center distance of the block v and the bin b in the
x direction.

The quadratic penalty method is used to solve Eq. (2),
implying that we solve a sequence of unconstrained mini-
mization problems of the form

min W (x,y) + λ
�

b

(Db(x,y) − au
b )2 (8)

with increasing λ’s. The solution of the previous problem is
used as the initial solution for the next one. We solve the
unconstrained problem in Eq. (8) by the conjugate gradient
(CG) method.

3.2 Metal Density Estimation
To compute the metal density, we need to know the wire

density first. Based on the bin structure, the wire density
of a bin can be computed by the numbers of tracks going
through four edges of the bin. Let tt

b, tb
b, tl

b, and tr
b be the

numbers of tracks going through the left, top, right, and
bottom edge of the bin b, respectively. In each bin, we use
two layers, a vertical routing layer and a horizontal routing
layer, to compute the wire density. The average wire density
dv

b in the vertical routing layer of bin b can be estimated by

dv
b = rv

�
tt
b + tb

b

2wb

�
+ bv

b , (9)

and the average wire density dh
b in the horizontal routing

layer of bin b is

dh
b = rh

�
tl
b + tr

b

2hb

�
+ bh

b , (10)

where rv
w (rh

w) is the average metal width for vertical (hor-
izontal) routing, wb (hb) is the bin width (height), and bv

b

(bh
b ) is the base density of the vertical (horizontal) routing

layer contributed by the internal routing of the cells/macros.
After obtaining the wire density, we can use the predictive
CMP model to compute the metal density and the resulting
Cu thickness.

To predict the expected horizontal/vertical track usage
for each bin, we first decompose multi-terminal nets into
Steiner trees using FLUTE [10, 11]. Then, the track usage
for each two-pin net is estimated by the probabilistic routing
model [22, 30]. Figure 3 gives an example. For a two-pin
net from S to T , there are two possible L-shaped routes and
three possible Z-shaped routes. The expected track usage for
each edge is computed by the number of possible routes that
go through it divided by the number of the total possible
routes.

3.3 Metal-Density-Aware Block Spreading
To reduce the metal density variation, the placement needs

to have uniform wire density. We use Figure 4 to illustrate
the concept of reducing the wire density variation. Usually
the high wire density region is caused by not only local nets
but also global nets. In Figure 4(a), there are three nets in
the central region, two local nets and one global net. Then,
extra forces are applied to the blocks in the central region
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Figure 3: The probabilistic routing model for a two-
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Figure 4: The concept of reducing the wire density.
(a) The blocks in the high metal-density regions re-
ceive forces to leave the region. (b) After moving
blocks, a more uniform wire density result is ob-
tained.

to push out blocks from this region to obtain the result in
Figure 4(b). As a result, the metal density in the central
region is reduced and a more uniform metal density result
is obtained.

Simply adding extra forces or directly moving blocks dur-
ing the analytical placement may cause the numerical in-
stability. Thus, we add extra forces implicitly by modifying
the base potential to maintain the stability of the nonlinear
solver. The original base potential ap

b considers only pre-

placed blocks; the metal-density-aware base potential ap+m
b

considers both preplaced blocks and metal density,

am
b = mv

b − min
bin b

mv
b + mh

b − min
bin b

mh
b , (11)

ap+m
b = min(ap

b + κam
b , wbhb), (12)

where κ is a parameter to control the strength of the metal-
density-aware forces. The value of ap+m

b is restricted to be
less than the area of bin b to ensure the numerical stabil-
ity. Then, we use the new base potential to compute the

maximum allowable block area au′
b ,

au′
b = u(wbhb − ap+m

b ). (13)

As a result, the placement problem becomes

min W (x,y) + λ
�

b

(Db(x,y) − au′
b )2. (14)

We can adjust κ in Eq. (12) according to the total avail-
able whitespace of the design. The total maximum allowable
block area in a placement region must be large enough to
contain all movable blocks:�

bin b

au′
b ≥ area of all movable blocks. (15)

If we set κ larger, we may have a more uniform metal-density

(a) Preplaced blocks (b) Metal density (c) Spreading potential
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Figure 5: The metal-density-aware base potential
generation. (a) The preplaced block density. (b)
The predicted metal density. (c) The base potential
considering both (a) and (b).

(a)

(b)

(c)

Figure 6: A two-step smoothing example. (a) Origi-
nal density. (b) After Gaussian smoothing. (c) After
level smoothing.

result, but the resulting wirelength may be worse. This
parameter controls the tradeoff between the wirelength and
the metal density variation. The effects of adjusting κ will
be reported in Section 4.

Figure 5 gives an example of computing the metal-density-
aware base potential. Figures 5(a) and (b) show the pre-
placed block density and the predicted metal density, respec-
tively. Summing up the two density values using Eq. (12),
we can obtain the resulting base potential as shown in Fig-
ure 5(c).

3.4 Base Potential Smoothing
A smooth objective function helps the gradient method to

find a desired solution. Thus, we need to smooth the base
potential to achieve better solutions. We apply the two-
stage smoothing technique [7], Gaussian smoothing followed
by level smoothing to smooth metal-density-aware base po-
tential.

We use Figure 6 to explain our smoothing method. First,
Gaussian smoothing is applied to the configuration of Fig-
ure 6(a) and avoid the dramatic change in the landscape to
obtain the configuration of Figure 6(b). Then, level smooth-
ing is applied to reduce the potential levels to obtain the
configuration of Figure 6(c)

Gaussian smoothing works as a low-pass filter, which can
smooth the local potential change. The two-dimensional
Gaussian has the form

G(x, y) =
1

2πσ2
e
− x2+y2

2σ2 , (16)

where σ is the standard deviation of the distribution. Ap-
plying convolution (∗) to the Gaussian function G with the



base potential P ,

S(x, y) = G(x, y) ∗ P (x, y), (17)

we can obtain a smoother base potential S. The value σ
defines the smoothing range. A larger σ leads to a more
smooth potential. In global placement, the smoothing range
gradually decreases so that the smoothed potential approaches
the exact density gradually.

After the Gaussian smoothing, we apply another land-
scape smoothing function [13] to reduce the potential levels.

As a result, the final smoothed based potential P̃ is given
by

P̃ (x, y) =

�
S + (S(x, y) − S)δ if S(x, y) ≥ S
S − (S − S(x, y))δ if S(x, y) < S,

(18)

where S is the average value of S(x, y), and δ ≥ 1. We
normalize S so that every S is between 0 and 1 to ensure
|S(x, y) − S| < 1.0. Smoothing potential levels reduces the
height of high potential regions so that movable blocks can
spread to the whole placement region smoothly.

In summary, there are three parameters for generating
smoothing metal-density-aware base potential. These three
parameters are controlled empirically as follows.

• κ controls the strength of the metal-density-aware forces
by allocating whitespace for the metal-density-aware
base potential. The amount of allocated whitespace
gradually increases to the user-specified whitespace ra-
tio during the placement.

• σ controls the range of the Gaussian smoothing. The
smoothing range starts from 15% of the chip width and
gradually decreases to around 1% of the chip width.

• δ controls the degree of level smoothing. It decrease
from 5 to 1. When δ = 1, there is no level smoothing.

3.5 Placement Flow
Figure 7 shows our placement flow. Our metal-density

driven placement is based on a multilevel analytical place-
ment framework. First, we iteratively cluster blocks to ob-
tain the hierarchy. The cluster positions are initialized by
solving the minimum quadratic wirelength, which is widely
used in quadratic placement.

There are three loops in the placement flow.

• The 1st loop is the multilevel loop (in lines 3–17). The
bin dimension is initialized so that the number of bins
is proportional to the number of clusters in the cur-
rent level. After finding the optimal placement of the
current level, the circuit hierarchy is declustered once.

• The 2nd loop is the block spreading loop (in lines 5–
15). The smoothing parameters, κ, σ, and δ, are up-
dated in this loop. Then, the value of λm in Eq. (8)
gradually increases inside the loop to spread blocks to
the desired positions.

• The 3rd loop is to find the minimal value of Eq. (8) by
the conjugate gradient method (in lines 8–13). Since
all clusters/blocks are moving inside this loop, we need
to update the metal density map (line 10) and corre-
sponding base potential (line 11) inside this loop.

The placement progress continues until all clusters are
declustered and the value of Eq. (8) cannot be further re-
duced. Then, we legalize the placement by removing all
overlaps and report the final result.

Multilevel Metal-Density Driven Placement

Input: a circuit hypergraph
Output: desired block positions

01. create the clustering hierarchy;
02. initialize block positions;
03. do
04. initialize the bin structure and λ;
05. do
06. update smoothing parameters;

07. // find min W (x,y) + λ
�

(Db − au′
b )2;

08. do
09. compute the conjugate gradient direction;
10. update current block positions;
11. estimate wire and metal density;
12. update base potential;
13. until (the minimal value is found);
14. increase λ by 2;
15. until (spreading enough);
16. decluster blocks;
17. until (all clusters are declustered);
18. legalize the placement;
19. return block positions;

Figure 7: Our placement flow.

3.6 Extension of Handling Multiple Metal
Layers

In modern VLSI designs, there are usually multiple metal
layers. Our method can be extended to optimize multiple
metal layers directly. First, a fast global router with layer
assignment is needed to find the number of tracks used for
each edge of the bin in each layer. Based on the track usage,
we can use using Eq. (9) and Eq. (10) to compute the wire
density for each layer. Then, Eq. (11) can be modified as

am
b =

�
Layer l

wl
�
ml

b − min
bin b

ml
b

	
, (19)

where ml
b is the metal density of bin b in layer l, and wl is the

weight of the layer l. Because it is important to have smaller
metal density variation for lower layers, we can set higher
weights for lower layers than those of upper layers. After
computing the new am

b , we can use Eq. (12) to compute the
new potential and Eq. (14) to solve the multi-layer metal-
density driven placement problem.

4. EXPERIMENTAL RESULTS
We implemented the proposed algorithm in C++ by aug-

menting the placer NTUplace3 [7]. All the experiments
were performed on a 2.2GHz AMD Opteron machine. The
adaptec benchmarks are taken from the ISPD’06 placement
contest [1]. The circuit information is shown in Table 2.
The number of movable blocks ranges from 211K to 842K,
and the number of nets ranges from 221K to 868K. The de-
sign utilization rate ranges from 27% to 57%. We follow
the routing configurations used in the ISPD 2007 routing
contest [2]. Six metal layers are assumed, and only 20%
wire tracks are available for routing in metal layers 1 and 2.
The size of the global routing tile in terms of track numbers
(Track#) and macro block porosity (Blk.) is shown in the
last two columns of Table 2. The block porosity defines the
remaining amount of routing resource above macro blocks in
metal layers 3 and 4. Two experiments were conducted. In
the first experiment, we studied the tradeoff between HPWL
and metal density standard deviation by adjusting the para-
meter κ described in Section 3.3. In the second experiment,



Table 2: Benchmark statistics.
Placement Routing

Mov Fixed Net Util. Track B.P.†

Circuit # # # (%) # (%)
adaptec1 211k 543 221k 57 35 50
adaptec2 254k 566 266k 44 35 20
adaptec3 451k 723 467k 33 30 50
adaptec4 495k 1329 516k 27 30 50
adaptec5 842k 646 868k 49 50 20
† macro block porosity
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Figure 8: The metal density standard deviation and
HPWL versus κ for adaptec5.

we compared our metal-density driven placement with two
other placement methods. For this experiment, BoxRouter
was used to perform global routing,1 and Cu thickness vari-
ation was evaluated by the predictive CMP model [8].

4.1 Tradeoff Between HPWL and Metal
Density Variation

Since κ controls the force strength to even the metal den-
sity implicitly in Eq. (12), we can adjust the force strength
by controlling κ. Figure 8 gives the resulting HPWL and
the metal density standard deviation using different κ’s for
the circuit adaptec5. We only show the results of adaptec5
since all other circuits have the same trend. The x-axis
is normalized by the amount of whitespace used. For ex-
ample, the number 0.9 means that κ is adjusted to use 90%
whitespace for metal-density-aware base potential. From the
figure, when κ is larger, the resulting metal density standard
deviation is smaller but the HPWL is longer. The resulting
metal density standard deviation can be reduced by 15%
while HPWL is increased by 18% when 90% whitespace is
used for metal-density-aware spreading forces.

4.2 Comparison Between Different Placement
Algorithms

Since there is no previous work on CMP-aware placement,
we compared three different placement modes based on our
placer, wirelength-driven (WLD), cell-density driven (CDD),
and metal-density driven (MDD) modes. The WLD place-
ment optimizes wirelength alone with the target cell density
u = 1.0. For CDD placement, we set the target cell den-
sity to its design utilization rate to evenly spread blocks to
the whole chip region. The MDD placement algorithm is
described in Section 3. The parameter κ is set to use 90%

1We used the default parameters for BoxRouter, which may
spend more runtime to achieve fewer overflows. Note that
BoxRouter completed the routing for most circuits with zero
overflows in the ISPD’07 routing contest [2].

whitespace for the metal-density-aware base potential. Ta-
ble 3 gives the placement, routing, and CMP results on the
adaptec benchmarks. “HPWL” is the half-perimeter wire-
length after placement, while “WL” is the total wirelength
after global routing. “WL/HPWL” is the ratio of WL and
HPWL, which stands for the wirelength increase after global
routing. “Overflow” is the number of total routing overflows
after global routing. The overflow is defined as the sum
of the number of tracks that exceeds the routing capacity
for each edge of the global routing tiles. “Dummy” is the
number of dummy fills based on the predictive CMP model.
“Cu-Avg” and “Cu-Std” are the average and standard de-
viation of the normalized copper thickness, respectively.

CMP. The average Cu thicknesses are similar for the
three placement modes. Compared with WLD’s variation,
CDD averagely reduces 13% variations of the Cu thickness,
and MDD can further reduce 3% more, 11–12% in total,
variations. In addition to Cu thickness variation reduction,
the total number of dummy fills for MDD is 2% less than
CDD’s and 6% less than WLD’s. It is important to have
fewer dummy fills because it not only can increase circuit
performance by reducing coupling capacitance, but also can
save manufacturing cost by decreasing its mask data volume.

Wirelength. The MDD’s HPWL is 8% longer than CDD’s
and 19% longer than WLD’s. After global routing, The
MDD’s WL is 4% longer than CDD’s and 11% longer than
WLD’s. However, it should be noted that since there are
still some overflows in CDD’s and WLD’s routing results,
it is not fair to simply compare the WL, as each overflow
can cause significant overheads in final (detailed) wirelength.
For the ratio of WL/HPWL, MDD incurs only a 17% in-
crease while CDD and WLD incur 22% and 29% increases
in wirelength, respectively. The difference in wirelength in-
creases is mainly because of detour routes, implying that
there are more detours in CDD’s and WLD’s routing results
than in MDD’s.

CPU time. The CDD placement time is 14% more than
the WLD one since it takes more time to spread block to
the whole chip. The MDD placement time is the longest,
24% more than WLD’s; the major placement time penalty
comes from the computation for the metal density. However,
the routing time of MDD is the smallest, 4.67X faster than
CDD, and 33.42X faster than WLD. If we consider both
placement and routing, MDD used the least runtime since
routing time dominates the total runtime.

Routability. A placement with better routability usually
has fewer routing overflows, less routing time, and less wire-
length increase. All placements obtained by MDD do not
have any overflow, while only 3 (1) placements obtained by
CDD (WLD) have no overflow. MDD also has the smallest
routing time and wirelength increase, implying that MDD’s
placement results have higher routability. We also found
that pure wirelength-driven placement usually generates non-
routable results for modern circuit designs. Controlling the
cell density can result in better routability, but metal-density
driven placement has the best routability among the three
modes because there are fewer high wire-density regions in
its resulting placement.

The aforementioned results all show that metal-density
driven (MDD) placement leads to not only more uniform
metal density distribution, but also better routability. Fig-
ures 9 and 10 give the respective resulting normalized Cu
thickness maps in the vertical and horizontal routing layers
for adaptec5, using the three placement modes. The stan-
dard deviation of the topography variations is shown below
the figures.



Table 3: The comparisons of our placer using different modes for the adaptec benchmarks.
Wirelength-Driven (WLD)

Placement Routing CMP (Hori. Layer) CMP (Vert. Layer)
HPWL CPU WL WL/ Over- CPU Dummy Cu-Avg Cu-Std Dummy Cu-Avg Cu-Std

Circuit (× e7) (min) (× e7) HPWL flow (min)
adaptec1 8.15 14 11.87 1.46 0 711 5984 0.95 3.16 6034 0.95 3.09
adaptec2 9.02 15 12.38 1.37 2758 2279 13567 0.96 3.84 13644 0.96 4.03
adaptec3 22.35 32 26.27 1.18 938 140 45432 0.96 7.48 43843 0.96 7.78
adaptec4 20.02 29 22.38 1.12 31 1839 51258 0.96 7.81 50322 0.96 7.73
adaptec5 36.09 76 47.36 1.33 26672 2386 16766 0.96 5.73 16462 0.96 5.70
Comp. 0.81 0.76 0.89 1.29 — 33.42 1.06 1.00 1.12 1.06 1.00 1.11

Cell-Density Driven (CDD)
Placement Routing CMP (Hori. Layer) CMP (Vert. Layer)

HPWL CPU WL WL/ Over- CPU Dummy Cu-Avg Cu-Std Dummy Cu-Avg Cu-Std
Circuit (× e7) (min) (× e7) HPWL flow (min)

adaptec1 9.20 15 12.12 1.32 0 130 5929 0.95 3.09 5986 0.95 3.14
adaptec2 10.32 17 13.08 1.27 0 208 13166 0.96 3.50 13248 0.96 3.83
adaptec3 27.42 28 31.19 1.14 28 1119 43575 0.96 7.24 42096 0.96 7.44
adaptec4 22.61 52 24.67 1.09 0 30 49078 0.96 7.36 48174 0.96 7.18
adaptec5 38.90 67 49.62 1.29 875 1788 15972 0.96 4.58 15560 0.96 4.54
Comp. 0.92 0.90 0.96 1.22 — 4.67 1.02 1.00 1.03 1.02 1.00 1.03

Metal-Density Driven (MDD)
Placement Routing CMP (Hori. Layer) CMP (Vert. Layer)

HPWL CPU WL WL/ Over- CPU Dummy Cu-Avg Cu-Std Dummy Cu-Avg Cu-Std
Circuit (× e7) (min) (× e7) HPWL flow (min)

adaptec1 9.41 17 11.54 1.23 0 42 5914 0.95 3.02 5927 0.95 3.03
adaptec2 11.63 23 13.63 1.17 0 28 12913 0.96 3.36 12952 0.96 3.69
adaptec3 30.35 38 34.10 1.12 0 121 42253 0.96 7.06 40525 0.96 7.24
adaptec4 26.40 35 28.69 1.09 0 28 46481 0.96 7.05 45741 0.96 7.03
adaptec5 39.82 110 48.73 1.22 0 707 16198 0.96 4.52 15687 0.96 4.45
Comp. 1.00 1.00 1.00 1.17 — 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(a) Cu-Std = 5.70 (b) Cu-Std = 4.54 (c) Cu-Std = 4.45

Figure 9: The normalized Cu thickness map in the vertical routing layer for adaptec5 using (a) wirelength-
driven placement, (b) cell-density driven placement, and (c) metal-density driven placement.

(a) Cu-Std = 5.73 (b) Cu-Std = 4.58 (c) Cu-Std = 4.52

Figure 10: The normalized Cu thickness map in the horizontal routing layer for adaptec5 using (a) wirelength-
driven placement, (b) cell-density driven placement, and (c) metal-density driven placement.



5. CONCLUSIONS
Metal density is an important issue for manufacturabil-

ity of nanometer circuit designs. We have presented the
first metal-density driven placement to reduce CMP vari-
ation and improve routability. Experimental results have
shown that the proposed metal-density driven placement al-
gorithm reduces the copper thickness variation by 12% and
dummy fills by 6%, compared with the wirelength-driven
placement. In addition, the results generated by our metal-
density-driven placement algorithm lead to higher routabil-
ity.

6. ACKNOWLEDGMENTS
This research is supported in part by SpringSoft, Inc.,

National Science Council of Taiwan under Grant No’s NSC
96-2221-E-002-245, NSC 96-2628-E-002-248-MY3, NSC 96-
2628-E-002-249-MY3, NSC 96-2917-I-002-031, NSC 95-2752-
E-002-008-PAE, NSF Career Award CCF-0644316, SRC un-
der contract TJ-1321, IBM Faculty Award, and Intel equip-
ment donations.

7. REFERENCES
[1] ISPD 2006 Placement Contest.

http://www.sigda.org/ispd2006/contest.html.
[2] ISPD 2007 Global Routing Contest.

http://www.sigda.org/ispd2007/ispd07 contest.html.
[3] Praesagus, Inc. http://www.praesagus.com/.
[4] A. R. Agnihotri, S. Ono, C. Li, M. C. Yildiz, A. Khatkhate,

C.-K. Koh, and P. H. Madden. Mixed block placement via
fractional cut recursive bisection. IEEE Trans.
Computer-Aided Design, 24(5):748–761, May 2005.

[5] T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie. mPL6:
Enhanced multilevel mixed-size placement. In Proc. ACM
Int. Symp. on Phys. Des., pages 212–214, San Jose, CA,
Apr. 2006.

[6] T. Chan, J. Cong, and K. Sze. Multilevel generalized
force-directed method for circuit placement. In Proc. ACM
Int. Symp. on Phys. Des., pages 185–192, San Francisco,
CA, Apr. 2005.

[7] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, and Y.-W. Chang. A
high-quality mixed-size analytical placer considering
preplaced blocks and density constraints. In
Proc. IEEE/ACM Int. Conf. on Comput.-Aided Des., San
Jose, CA, Nov. 2006.

[8] M. Cho and D. Z. Pan. BoxRouter: a new global router
based on box expansion and progressive ilp. In
Proc. ACM/IEEE Des. Autom. Conf. , pages 373–378, San
Francisco, CA, July 2006.

[9] M. Cho, H. Xiang, R. Puri, and D. Z. Pan. Wire density
driven global routing for cmp variation and timing. In
Proc. IEEE/ACM Int. Conf. on Comput.-Aided Des.,
pages 487–492, San Jose, CA, Nov. 2006.

[10] C. Chu and Y.-C. Wong. Fast and accurate rectilinear
steiner minimal tree algorithm for vlsi design. In
Proc. ACM Int. Symp. on Phys. Des., pages 28–35, 2005.

[11] C. C. N. Chu. FLUTE: Fast lookup table based wirelength
estimation technique. In Proc. IEEE/ACM Int. Conf. on
Comput.-Aided Des., pages 696–701, 2004.

[12] H. Eisenmann and F. M. Johannes. Generic global
placement and floorplanning. In Proc. ACM/IEEE
Des. Autom. Conf. , pages 269–274, June 1998.

[13] J. Gu and X. Huang. Efficient local search with search
space smoothing: A case study of the traveling salesman
problem (TSP). IEEE Trans. Syst., Man, Cybern.,
24(5):728–735, 1994.

[14] L. He, A. B. Kahng, K. Tam, and J. Xiong. Design of IC
interconnnects with accurate modeling of CMP. In Int.
Society for Optical Engineering (SPIE) Symp. on
Microlithopraghy, Mar. 2005.

[15] B. Hu, Y. Zeng, and M. Marek-Sadowska. mFAR:
fixed-points-addition-based VLSI placement algorithm. In
Proc. ACM Int. Symp. on Phys. Des., pages 239–241, San
Francisco, CA, Apr. 2005.

[16] A. B. Kahng and Q. Wang. An analytic placer for
mixed-size placement and timing-driven placement. In
Proc. IEEE/ACM Int. Conf. on Comput.-Aided Des.,
pages 565–572, San Jose, CA, Nov. 2004.

[17] A. B. Kahng and Q. Wang. Implementation and
extensibility of an analytic placer. IEEE Trans.
Computer-Aided Design, 24(5), May 2005.

[18] A. B. Kahng and Q. Wang. A faster implementation of
APlace. In Proc. ACM Int. Symp. on Phys. Des., pages
218–220, San Jose, CA, Apr. 2006.

[19] M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich.
Gordian: VLSI placement by quadratic programming and
slicing optimization. IEEE Trans. Computer-Aided Design,
10(3):356–365, 1991.

[20] S. Lakshminarayanan, P. J. Wright, and J. Pallinti.
Electrical characterization of the copper CMP process and
derivation of metal layout rules. IEEE Trans. Semiconduct.
Manufact., 16(11):668–676, 2003.

[21] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden.
Routability-driven placement and white space allocation. In
Proc. IEEE/ACM Int. Conf. on Comput.-Aided Des.,
pages 394–401, San Jose, CA, Nov. 2004.

[22] J. Lou, S. Thakur, S. Krishnamoorthy, and H. S. Sheng.
Estimating routing congestion using probabilistic analysis.
IEEE Trans. Computer-Aided Design, 21(1):32–41, Jan.
2002.

[23] W. C. Naylor, R. Donelly, and L. Sha. US patent 6,301,693:
Non-linear optimization system and method for wire length
and dealy optimization for an automatic electric circuit
placer. 2001.

[24] X. Qi, A. Gyure, Y. Luo, S. C. Lo, M. Shahram, and
K. Singhal. Measurement and characterization of pattern
dependent process variations of interconnect resistance,
capacitance and inductance in nanometer technologiesn. In
Proc. ACM Great Lakes Symp. on VLSI, pages 14–18, New
York, NY, 2006.

[25] J. Roy, D. Papa, A. Ng, and I. Markov. Satisfying
whitespace requirements in top-down placement. In
Proc. ACM Int. Symp. on Phys. Des., pages 206–208, San
Jose, CA, Apr. 2006.

[26] J. A. Roy, J. F. Lu, and I. L. Markov. Seeing the forest and
the trees: Steiner wirelength optimization in placement. In
Proc. ACM Int. Symp. on Phys. Des., pages 78–85, San
Jose, CA, Apr. 2006.

[27] P. Spindler and F. M. Johannes. Fast and robust quadratic
placement combined with an exact linear net model. In
Proc. IEEE/ACM Int. Conf. on Comput.-Aided Des.,
pages 179–186, San Jose, CA, Nov. 2006.

[28] R. Tian, D. F. Wong, and R. Boone. Model-based dummy
feature placement for oxide chemical-mechanical polishing
manufacturability. IEEE J. Technol. Computer Aided
Design, 20(7):902–910, 2001.

[29] N. Viswanathan, M. Pan, and C. Chu. FastPlace 2.0: An
efficient analytical placer for mixed-mode designs. In
Proc. IEEE/ACM Asia South Pacific Des. Autom. Conf.,
pages 195–200, Yokomaha, Japan, Jan. 2006.

[30] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic
congestion prediction. In Proc. ACM Int. Symp. on
Phys. Des., pages 204–209, Phoenix, AZ, 2004.

[31] X. Yang, B.-K. Choi, and M. Sarrafzadeh.
Routability-driven white space allocation for fixed-die
standard-cell placement. In Proc. ACM Int. Symp. on
Phys. Des., pages 42–47, Del Mar, CA, Apr. 2002.

[32] P. Zarkesh-Ha, S. Lakshminarayanan, K. Doniger, W. Loh,
and P. Wright. Impact of interconnect pattern density
information on a 90nm technology ASIC design flow. In
Proc. IEEE/ACM Int. Symp. on Quality of Electronic
Des., Nov. 2003.


