
RegPlace: A High Quality Open-source Placement
Framework for Structured ASICs

Ashutosh Chakraborty, Anurag Kumar, David Z. Pan
ECE Dept. Univ. of Texas at Austin, Austin, TX 78712

{ashutosh, anurag}@cerc.utexas.edu, dpan@ece.utexas.edu

ABSTRACT
Structured ASICs have recently emerged as an exciting al-
ternative to ASIC or FPGA design style as they provide a
new trade-off between the high performance of ASIC design
and low non-recurring engineering (NRE) costs of FPGA de-
sign. To fully utilize the benefits of structured ASICs, key
physical design stage like placement should be made aware of
modularity of their architecture. In this work, we propose a
novel solution to placement for structured ASICs. In partic-
ular, we propose creation of intermediate virtual platform
to exploit the regularity of structured ASIC, Integer Lin-
ear Program and network flow formulations for satisfying
constraints associated with typical structured ASIC clock
architectures. A preliminary version of this work recently
won the structured ASIC placement contest by eASIC [1].
Our placer achieves 35% and 5% wirelength improvement
over other placers and can place a design of 1 million cells
in approximately 4 hours.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit]: Design Aids

General Terms
Algorithms, Design

Keywords
Placement, Structured ASIC, FPGA, Regular ASIC, Global
Placement, legalization

1. INTRODUCTION
Skyrocketing costs and increasing variability associated

with an ASIC design flow and unacceptable power and delay
penalty associated with FPGA design flow have forced semi-
conductor companies to look for alternatives. One viable
alternative that has emerged over time is the use of struc-

tured ASICs. Structured ASICs provide an exciting middle-
ground between high performance of ASIC designs and short
time-to-market FPGA designs. They exploit the fact that
not all mask-layers provide equal value for the customers
and these layers can be pre-fabricated amortizing their cost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$10.00.

over multiple designs [2]. Structured ASIC flow is much
simpler than that for traditional ASICs because majority of
deep submicron issues such as signal integrity, power grid
optimization, low skew clock tree distribution are already
taken care of by the structured ASIC vendors. Structured
ASICs can be used to implement designs consisting of mil-
lions of gates in contrast to FPGAs which can implement
designs with much lesser number of gates. There are a wide
variety of structured ASIC architectures, but all of them
have a fundamental repeated logic element called tile which
may contain pre-defined combinational logic, small RAM,
and registers [3].

To fully utilize the benefits of structure ASICs, tools for
high quality placement and routing need to be developed.
Placement for structured ASIC requires cells to be mapped
exactly on a compatible site, similar to the case for FPGA.
However, since the problem size of structured ASIC can be
an order of magnitude bigger than FPGA [2], the existing
FPGA tools cannot be used for structured ASICs. Not only
does the placer have to handle millions of cells along with the
site compatibility requirement, the task is made much more
difficult due to the clocking schemes in structured ASICs.
The clocks are built with pre-allocated resources to provide
low skew clocking and simplified design flow. This restricts
the number of clocked elements which can be placed in prox-
imity of each other. In this work we present RegPlace [4],
a high quality open source placement tool for structured
ASICs which can deal with the above mentioned legality
and clock constraints.

The rest of the paper is organized as follows: We describe
the intricacies of placement for structured ASIC in Section 2.
Section 3 discusses the previous work done and our key in-
novations. We present our placement solution in Section 4.
The efficacy of our solution is demonstrated by experimental
results in Section 5. Section 6 concludes our paper.

2. PROBLEM DESCRIPTION
As discussed earlier, large problem size, site compatible re-

quirements, whitespace requirement for routing tracks and
strict clock constraints make the task of placement in struc-
tured ASICs very challenging. In this work, we propose a
solution to the placement problem of structure ASICs. We
base our work on the architecture of the popular Nextreme
line of structured ASICs from eASIC Corporation [1]. Nex-
treme is the most structured of structured ASIC solutions
with only one via layer available for customization. How-
ever, our formulations are very generic and can be applied
to any structured ASIC.

There are four types of cells in Nextreme line of struc-

1

tured ASICs. They are SRAM programmable Logic cells
(LCELLS), flip flops (DFF), registers (REG) and memories
(BRAM). In the rest of the paper, we will refer to these types
of cells with their short names and all these types will collec-
tively referred to as cells. The placement problem requires
that a cell can only be placed on a location which is reserved
for that type of cell. In the basic repeating tile of Nextreme
architecture, the space reserved for LCELL, DFF, REG and
BRAM are as shown in Figure 1 (figure is only for illustra-
tion and not drawn to scale). There are 36 LCELL and 24
DFF columns in each tile. Each of these columns accommo-
date 64 LCELLs and DFFs respectively. A total of 4 REG
and 1 BRAM can be accommodated in each tile. This tile
repeats all over the chip with some horizontal and vertical
inter-tile whitespace between adjacent tiles. Depending on
the size of the netlist to be placed, the number of times these
tiles need to be repeated can be configured. Table 1 shows
the details of two such configured platforms along with the
maximum cells of each type that can be accommodated in
them.

LCELL BRAM DFF REG

Inter-tile
space

Tile

LCELL BRAM DFF REG

Inter-tile
space

Tile

Figure 1: Structured ASIC platform.

Table 1: Platform Characteristics
Plat. Max Max Max Max Intertile Space

LCELL DFF REG BRAM Horz Vert
A 1M 675k 1760 440 8.00 6.45
B 1.2M 811k 2112 528 8.00 8.92

The sizes of each LCELL, DFF, REG and BRAM in the
mapped design netlist are 1x1, 1x1, 8x32 and 16x64. These
cells are to be placed according to the reserved column loca-
tions described above. The presence of these four different
types of cells require that the global placement ensure that
the density requirement for each type of cells is met. The
presence of whitespaces and interleaving of space for each of
the cell types makes the physical location available for each
type of cell very discrete.

Because of architectural constraints, only a certain num-
ber of different clocks can go inside a tile. For example,
in Figure 1, each tile can have N(=4 in our benchmarks)
different clocks. Moreover, all the cells in one column of
DFF can have only one clock type. The clock constraint on
placement has big impact on final placement because clock
violations may require that the violating cells be reallocated
to another region far away from their optimal location.

3. PREVIOUS WORKS AND OUR CONTRI-
BUTION

There are several commercial and academic placers for
ASIC designs e.g. [5] [6] [7] [8] [9]. These placers imple-
ment sophisticated mathematical or min-cut formulations to
generate very good quality results for ASIC designs. How-
ever, due to site compatibility and hard clock constraints
they cannot be directly used for placement of structured
ASIC designs. Nevertheless, we note that if the key algo-
rithms in these placers can be somehow used to solve the
structured ASIC placement problem, the solutions would
be of good quality. Another class of placement tools which
are designed for FPGAs can take care of site constraints.
However, due to smaller sizes of FPGA based designs, the
existing FPGA placement approaches such as [10] [11] rely
on slow algorithms like simulated annealing which cannot
scale to problem sizes frequently encountered in structured
ASIC designs.

There is limited research in the domain of placement for
structured ASICs. The work in [12] only addresses incre-
mental placement issues in structured ASICs. Industries are
currently using existing row-based placers with product spe-
cific legalizers or heuristics [13]. However, there is a dearth
of tools which can handle the clock constraints or exploit
the modularity of structured ASIC platforms.

Our main technical contributions in this work are

• We propose row-based placer friendly virtual platform
generation. This method achieves even density distri-
bution and much faster placement.

• An integer linear program (ILP) formulation is pro-
posed to satisfy clock constraints on the number and
type of clocks that can appear in a tile as well as each
column of a tile.

• A detail placement flow is proposed specifically for tile
based structured ASIC architectures.

4. OUR PLACEMENT FLOW
Our complete placement flow is depicted in Figure 2. We

outline the major steps here while the highlights of each step
are discussed in next sections. In the first phase, given a
design netlist and physical platform specification, we trans-
form them into virtual netlist and virtual platform. This
key step mitigates the problems arising due to severely dis-
cretized space available to the placer. A high quality row-
based placer is run to place the virtual netlist on the virtual
platform which generates an initial solution for our problem.
In the second phase, we transform the placement solution
back to the real platform while minimizing the impact on
solution quality due to this transformation. The third stage
performs the key step of satisfying clock and density require-
ment at the platform level using efficient mathematical for-
mulation. This is followed by intra-tile clock assignment and
perform aggressive wirelength reduction while maintaining
the site legality of the solution. The key highlights of the
above stages are presented below.

4.1 Virtual Platform Generation
The physical space available for placement of each type of

cell is very discrete in our placement problem. One obvious
method to take care of this is through the use of blockages.
Though some existing placement tools do have the capabil-
ity to consider blockages, we cannot specify our placement

2

Figure 2: Flow of RegPlace. Different colored columns on platform represent different compatible sites.

problem with blockages because blockages for one type of
cell can be valid site for another type of cell. Further, the
solution quality and the time required by placers degrade sig-
nificantly when considering several thousands of blockages.
To overcome this challenge, we generated a virtual platform
and corresponding virtual netlist. The virtual platform is
a physically shrunk copy of the real platform with only the
reserved space for one type of cell adjacent to each other.
Since majority of the cells are of the type LCELLs, we made
the virtual platform by stacking together all spaces reserved
for LCELLs. In other words, the inter-tile spacing and the
space reserved for DFFs, REGs, and BRAMs is removed
leaving a contiguous virtual platform which has nearly the
same height as the real platform but nearly 25% the width of
real platform. The virtual nelist is generated by forcing the
cell size of each type of cell to be equal to that of an LCELL.
A standard row-based placer can now be exploited to place
the virtual netlist onto the virtual platform. In the general
case, the space available in the virtual platform may not be
sufficient to contain the virtual netlist. In such a case, we
expand the virtual platform horizontally until its size is at
least 10% larger than the virtual netlist’s space requirement
to allow sufficient whitespace for the placer.

4.2 Transforming Virtual Placement Solution
The results of global placer on virtual platform needs to

be mapped back to the real platform. We perform this
step by inserting whitespace corresponding to the blockages
for LCELLs. This step, which is depicted in Figure 3, can
cause large increase in wirelength (WL) because several nets
which were earlier small would be elongated by the amount
of whitespace inserted. Note that in Figure 3, we assume
only 4 columns of LCELL instead of 24 to avoid cluttering
the diagram. To reduce this impact, we perform cut mini-
mization on cells immediately lying on the boundary of the
inserted whitespace.

Figure 3: Example of shifting of LCELL columns to
accommodate other cell types in between. Columns
A, B, C and D spread to reform the tile structure

Since the initial placement is performed on a continuous
virtual platform, all the cells get placed in a unique tile as a
result of mapping the virtual placement solution on to the
real platform. In other words, no cell occupies the spaces
reserved for DFF, REGs and BRAMs as well as the spacing
between individual tiles.

4.3 Chip Level Density & Clock Legalization
In the placement obtained from previous step, under the

assumption that all cells are of the same type, each tile has
density less than one i.e. they can be placed without overlap.
However, for all the cells to be placed in their matching cell
type, each tile’s density for each type of cell should be less
than one. It is easy to see that if, after all the cells have been
assumed to be of type LCELL, there is no density violation,
then, there can never be any density violation if some of the
cells are turned back into their own type (thus leaving empty
space in the space for LCELLs). Due to this reason, we never
need to consider density of LCELLs in our approach and
only the DFFs, BRAM and REG file need to be considered.

Satisfying DFF density: The first step for DFF density
and clock constraint is to determine which set of clocks will
be present in each tile under the constraint that no more
than N different clocks exist per tile (N=4 in our implemen-
tation). Our placer formulates this problem as an ILP as
follows:

In a design with T tiles and total of C clocks, let boolean
variable Eti denote the existence of clock type i in tile t.
The effort of removing ki cells of clock type i from a tile t is
(1−Eti)×ki. The contribution of tile t to the cost function
is the total effort to clean up the cells of a clock type which
cannot be placed in the tile which is

PC

i=1
(1 − Eti) × ki.

The complete cost function is simply addition of the above
cost function for each tile. To guarantee enough space for
all the cells of each clock type, few more constraints need to
be put.

Minimize

T
X

t=1

C
X

i=1

(1 − Eti) × ki

!

Subject to :
C
X

i=1

Eti ≤ N ∀t ∈ (1, T)

C
X

t=1

Eti ≥ Mini ∀i ∈ (1, C)

Eti ∈ 0, 1

3

where Mini is the minimum number of tiles required for
the DFF with clock i for the legalization to be possible. The
above ILP formulation has O(T×C) boolean variables, O(T)
constraints for guaranteeing no more than N clocks in each
tiles, and O(TC) constraints to guarantee enough space for
all cells. Considering that T is in hundreds and N is in tens,
the above ILP formulation can be solved within seconds.

Once the clock assignment is fixed, we formulate the prob-
lem of determining how many DFFs to move among various
tiles as a min-cost network flow problem with capacity con-
straints. The network flow is constructed by connecting a
tile congested w.r.t. DFFs with the four tiles around it. The
maximum capacity of any edge is taken as the minimum of
the number of DFFs that need to exit a congested tile and
the number of DFFs which can move into neighboring tile
without congesting it. In our implementation, the cost of
moving a cell out of its current tile is 1. Thus the network
flow solution minimizes the number of DFF that need to
move for satisfying density constraints. It is possible to ex-
tend our work by modeling the cost as change in WL due
to moving a DFF which corresponds to a solving density
constraints with least movement. At this stage, each tile
satisfies density constraints w.r.t. DFFs.

Satisfying REG Density: Since each tile can have at
most 4 REGs, and the number of REG cells to be placed
are usually very small (several hundreds), it is possible to
solve their placement globally. For T tiles, there are 4T
valid places for REGs. We cast this selection as an assign-
ment problem which can be solved efficiently using Munkres
algorithm [14] whose efficient implementation is O(n3) com-
plexity. The cost of placing a REG into a valid position is
modeled as the wirelength(WL) of all the nets incident to the
REG cell in that position. The solution to the assignment
problem not only identifies which REG goes to which tile,
but also fixes its position to a valid location in the tile. Even
for the biggest benchmark and platform, this step takes less
than 30 seconds CPU time.

Satisfying BRAM Density: The case for BRAM is
exactly the same as that of REGs and can be solved by
assignment problem readily. Notice that owing to very small
number of BRAMs and only one space per tile, the size of
assignment problem for BRAM is an order of magnitude
smaller than that for REGs and is solved within 10 seconds
for biggest benchmark.

4.4 Tile Level Site Legalization
Once all of the above steps are run, each tile’s density for

each type of cell is under control. As pointed out earlier,
the BRAMs and REGs are already placed at their best legal
location by virtue of the solving assignment problem which
maps them to legal locations. However, the LCELLs and
DFFs need to be put in their respective columns (see Fig-
ure 1). There are two main steps to perform this function:

Column’s clock type determination: In the first step
for tile level site legalization, we determine which column

should be reserved for which clock (recall that each column
can have cells of only one type of clocks). Our experiments
show that this step is very critical since if the column reser-
vation is not done carefully, wirelength can degrade signifi-
cantly when moving the DFFs to column which can accom-
modate its clock type. We solve this problem using ILP in
a manner similar to solving the problem of deciding which
clocks can come in which tile (see Section 4.3). Each col-

umn c is assigned as many binary variables as their are clock
types. The cost function is the sum of efforts required to
clean up a column by removing the DFFs whose clock type
is not the same as that returned by ILP solution. A col-
umn which initially does not have any DFF in it is assigned
a clock number −1 indicating that it can be reserved at a
later time while wirelength minimization. Consider a case
where upto M DFFs can be accommodated in a column and
let each tile have P DFF columns and currently C clocks in
it with Ni (i ∈ [1, C]) DFFs for each of these clock types.
Binary variable pi, when true, expresses that column p is
reserved for clock i. Let the number of cells before DFF site
legalization in the column p of clock type i be given by npi.

The complete ILP can be written as:

Minimize

P
X

p=1

0

@

C
X

i=1

pi ×

0

@

C
X

j=1,j 6=i

npj

1

A

1

A

Subject To :
C
X

i=1

pi ≤ 1 ∀p ∈ [1, P]

P
X

p=1

pi ≥ ⌈npi/M⌉ ∀i ∈ [1, C]

pi ∈ 0, 1

The ILP above has O(PC) binary variables and O(P + C)
constraints. The first set of constraints make sure only one
clock can occupy a column. The second set of constraints
guarantee enough columns reserved within the tile for each
clock type so that its cells can be placed. The values of C
and P is determined by the structured ASIC’s architecture
and is generally a small constant number (e.g. C = 4 and
P = 24 in our benchmarks). In our experiments we observed
that the above ILP takes less than 0.2 seconds to solve.

Site Legality of LCELLs and DFFs: With the assign-
ment of all columns to a clock type or unreserved type, we
iterate over the LCELLs and DFFs to legalize them. These
cells are sorted in non-decreasing horizontal coordinate and
are assigned to their closest unoccupied and clock compat-
ible (in case of DFFs) possible location. A procedure ro-

tateAndPlace has been implemented which takes as input a
given point and a cell and rotates in circle with increasing
radius around the point until the given cell can be placed
legally depending on the type of the cell.

4.5 Wirelength Recovery
The chip and tile level density legalization outlined in

the Section 4.3 and Section 4.4 produce placement results
which are completely legal w.r.t. clock, overlap and site
constraints. However, due to movement of several cells away
from the initial relative order suggested by the placer results
on virtual platform, significant increase in the wirelength
may occur. Our wirelength optimization procedure depicted
in Algorithm 1 recovers wirelength. Our philosophy during
wirelength minimization is to never break the clock, site or
overlap legality. Algorithm 1 shows the three main phases
of our wirelength recovery. In the first phase, large distance
inter-tile movement of cells takes place. Using the median
idea [15], the best bounding box (BB) of each cell is com-
puted. The cells are then sorted in the non-increasing order
of their distance from their best BB and processed in that
order. For the cell being currently optimized, a procedure
returns the list of all the tiles which have non-empty geo-
metrical intersection with its best BB. This list is iterated

4

while trying to place the cell near the center of the inter-
section of best BB and the tile currently being tried using
routine rotateAndPlace. After this stage, all inter-tile move-
ments have been done and we focus on intra tile wirelength
minimization. The second phase improves adjacent columns
in the tile to identify any horizontal movement of cells. This
is achieved by looking at each consecutive pair of columns
such that both are of the same type (DFF or LCELL). Fur-
ther, if both the columns are DFF columns, their clock type
should be same. For such a pair of row, horizontal swap-
ping of a cell in first with the neighboring cell or space in
the second column is tried. In the third phase, we look at
three consecutive cells/spaces in each column starting from
lowest vertical position and enumerate all six possible com-
binations and pick the best. In all the three phases, we
check to see if a movement has caused WL increase and if
so, we revert back the change. Our third phase is similar to
the method outlined in [16] with the major difference being
that we consider white-space also during explicit combina-
tion enumeration while FastPlace does not.

Algorithm 1 Wirelength Minimization

Ensure: Placement Is Legal
{ Large Distance Movement of Cells}

1: while WL Improvement ≥ δ do
2: Compute Best BB bc for each cell c
3: Sort cells according to distance from bc

4: for all cell c in sorted list do
5: List lst = All tiles intersecting bc

6: for all tile t in list lst do
7: rotateAndPlace(c, center of t’s intersection with

bc)
8: if could place in t then
9: if WL Improved then

10: break
11: else
12: continue

{ Intra Tile Inter Column WL Improvement}
13: for all tile t in platform do
14: while WL Improvement ≥ δ do
15: for all adjacent columns p1 & p2 do
16: if p1 and p2 are not same type or p1 & p2 have

different clocks then
17: continue
18: for all vertical positions in columns do
19: Swap cell-cell/cell-space pair adjacent in p1, p2
20: if WL NOT Improved then
21: Swap back to original position

{ Intra Tile Intra Column WL Improvement}
22: for all Tile t in platform do
23: while WL Improvement ≥ δ do
24: for all Column p in t do
25: Sort cells and spaces in p by vertical coordinate
26: Try all 6 combination of 3 consecutive cells/space
27: Pick the best configuration

5. EXPERIMENTAL SETUP AND RESULTS
All the above algorithms are implemented in C++ in our

placer tool RegPlace (REGular PLACEr). All our exper-
iments were run on a dual-core 3.3GHz 64-bit AMD linux
workstation with 4GB RAM and 8GB swap. We used GLPK [17]
as the ILP and network flow solver. The benchmarks were
provided by eASIC as part of the placement challenge. The

initial placement on the virtual platform were generated us-
ing two global placers: mPL [6] and CAPO [5].

Table 2: Benchmark Characteristics
Bench #LCELL #DFF #REG #BRAM #CLK
easic1 832,824 87,052 110 172 18
easic2 812,200 45,478 175 686 7
easic3 961,063 52,780 192 0 3
easic4 102,038 23,330 0 44 7
easic5 913,853 84,505 145 262 26

5.1 Advantage of VP Generation
To demonstrate the efficacy of generation of virtual plat-

form (VP) instead of solving the placement problem by block-
ages, we did the following experiment: Existing row-based
placers were run on two benchmarks which were identical
to each other except that in one case the placer was run
on virtual platform and then mapped back to real platform
whereas in the second case, the placer was run by considering
blockages. In both the cases, all the cell types were converted
to LCELLS, and only the space for LCELLS were available
to the placers. Table 3 shows the WL results and time taken
to complete the placement for several benchmarks.

Table 3: Advantage of using Virtual Platform (VP)
compared to placement with blockages (WB) when
using CAPO. Wirelength (WL) are in millions of units. All

CPU time are in minutes.
WL CPU

VP WB ∆ VP WB ∆
easic1 11.1 11.1 0% 230 464 2.0X
easic2 21.3 21.2 -0.47% 231 476 2.1X
easic3 17.1 17.3 1.15% 374 639 1.7X
easic4 2.0 2.1 5% 29 133 4.5X
easic5 14.55 15.2 4.2% 247 516 2.1X

Average 2.6% 2.5X

Table 3 shows the advantage of using VP to migrate the
discrete placement region into a contiguous region compared
to the approach of specifying unplacable area as blockages.
Overall, by using VP method, the wirelength and runtime
improves by 2.6% and 2.5X respectively. On further analy-
sis, we found that most of the extra time is spent by CAPO
in overlap removal due to lots of overlaps of cells with the
blockages.

While mapping the solution of placement on VP back to
real platform, we re-introduce all the blockages. As pointed
out in Section 4.2, the wirelength increase due to this step
can be reduced by reducing the cut-size by swapping cells
lying immediately on the both sides of the introduced block-
age. To quantify this benefit, we performed cut-minimization
during mapping step on our placement results of Table 3.
Only the cells upto two unit distance away on both sides of
the blockage re-insertion point were considered during cut
minimization to reduce the performance overhead. On an
average, we are able to further reduce the WL by 2% over
the numbers in previous table.

5.2 Overall Wirelength
A preliminary version of RegPlace competed and won the

eASIC placement contest [1]. In its current form, we have
further improved the wirelength and runtime of RegPlace
by 9% and 10% respectively. Table 4 shows the compara-
tive data for our placer vs. other participants Team1 [18]
and Team2 [19]. The WL numbers for Team1, Team2 are as

5

Table 4: Comparison of our placer with other contestants. CPU numbers for Team 2 unavailable.
Bench Team1 Team2 RegPlace (M) RegPlace (C)

WL CPU WL CPU WL CPU WL CPU
easic1 16.9M 3499 10.6M N.A. 11.3M 13849 12.8M 14538
easic2 32.3M 2444 25.8M N.A. 23.4M 9529 25.1M 9720
easic3 20.9M 2907 20.5M N.A. 18.8M 6627 19.6M 7045
easic4 2.3M 216 1.8M N.A. 2.0M 695 2.1M 735
easic5 20.4M 3055 14.4M N.A. 13.9M 10197 16.6M 10479
Total 92.8M 12122 73.1M N.A. 69.4M 40897 76.2 42517

reported in the contest results. However, since we have up-
graded our placer, the runtime shown for Team1 and Team2
teams have been scaled by the proportion of runtime our ini-
tial version of placer takes on our workstation compared to
the contest benchmarking workstations. To understand the
impact of using different global placers to generate an ini-
tial solution on the virtual platform, we repeated our placer
flow with two state-of-the-art placer: mPL and CAPO. The
initials (M, C) in last four column names depict use of the
above placers respectively.

From Table 4, several observations can be made. Our
wirelength results improve significantly (10%) when the ini-
tial placement on virtual platform is generated using mPL
rather than CAPO. Similarly, the runtime improves on using
mPL. Compared to other teams, RegPlace beats Team1 in
all the benchmarks irrespective of the initial placer solution
being generated with CAPO or mPL. The wirelength reduc-
tion w.r.t. Team1 is as much as 33%. However, Team1 does
have the advantage of being very fast (3.3X faster than Reg-
Place). RegPlace when used with mPL for initial placement,
is better than Team2 in 3 out of 5 benchmarks as well as
the total wirelength. Due to absence of runtime information
of Team2, we cannot compare the runtime. The reduction
in total wirelength compared to Team2 is 5%. These results
show that RegPlace is a high quality solution for structured
ASIC placement problem. Figure 4 shows the output of our
placer for the benchmark easic2 where each cell type has
been plotted with a different color.

Figure 4: Final layout of benchmark easic2.
Cells are shown as LCELL(red), DFF(black),
REG(green), and BRAM(blue).

6. CONCLUSIONS
In this work, we proposed a new flow for efficient solution

of placement problem for structure ASICs. The key novelty
of this work are: a) concept of virtual platform for obtain-
ing better initial placement solution, b) network-flow based
inter-tile density correction, c) very fast ILP based clock

constraint correction at both chip and tile level. Powered
by these techniques, our placer won the eASIC placement
challenge. In future, we propose to incorporate multiple
density constraints in global placer which can significantly
reduce the wirelength penalty associated with site and clock
legalization.

7. REFERENCES
[1] “eASIC Corporate Website.” http://www.easic.com/.

[2] H. Schmit, A. Gupta, and R. Ciobanu, “Placement Challenges
for Structured ASICs,” in ISPD ’08: Proceedings of the 2008
International Symposium on Physical design, pp. 84–86,
ACM, 2008.

[3] “SOC Central.” http://www.soccentral.com/.

[4] A. Chakraborty, A. Kumar, and D. Pan, “Regplace,”
http://www.cerc.utexas.edu/utda/download/RegPlace.htm.

[5] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F.
Lu, and I. L. Markov, “Capo: Robust and Scalable Open-source
min-cut Floorplacer,” in ISPD ’05: Proceedings of the 2005
International Symposium on Physical design, pp. 224–226,
ACM, 2005.

[6] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie, “mpl6:
Enhanced Multilevel Mixed-size Placement,” in ISPD ’06:
Proceedings of the 2006 International Symposium on Physical
design, pp. 212–214, ACM, 2006.

[7] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A Fast
Multilevel Quadratic Placement Algorithm with Placement
Congestion control,” in ASP-DAC ’07: Proceedings of the
2007 conference on Asia South Pacific design automation,
pp. 135–140, IEEE Computer Society, 2007.

[8] T. Luo and D. Z. Pan, “DPlace2.0: A Stable and Efficient
Analytical Placement Based on Diffusion,” in ASP-DAC ’08:
Proceedings of the 2008 conference on Asia and South Pacific
design automation, pp. 346–351, IEEE Computer Society
Press, 2008.

[9] “SOC Encounter tool.”
http://www.cadence.com/products/di/soc_encounter.

[10] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research,” in FPL ’97: Proceedings of
the 7th International Workshop on Field-Programmable Logic
and Applications, pp. 213–222, Springer-Verlag, 1997.

[11] K. Eguro, S. Hauck, and A. Sharma, “Architecture-adaptive
Range Limit Windowing for Simulated Annealing FPGA
Placement,” in DAC ’05: Proceedings of the 42nd annual
conference on Design automation, pp. 439–444, ACM, 2005.

[12] A. C. Ling, D. P. Singh, and S. D. Brown, “Incremental
Placement for Structured ASICs Using the Transportation
Problem,” Very Large Scale Integration, 2007. VLSI - SoC
2007. IFIP International Conference on, pp. 172–177, Oct.
2007.

[13] T. Okamoto, T. Kimoto, and N. Maeda, “Design Methodology
and Tools for NEC Electronics’ Structured ASIC ISSP,” in
ISPD ’04: Proceedings of the 2004 International Symposium
on Physical design, pp. 90–96, ACM, 2004.

[14] H. W. Kuhn, “The Hungarian Method for the Assignment
Problem,” Naval Research Logistics Quarterly, vol. 2,
pp. 83–97, 1955.

[15] S. Goto, “An Efficient Algorithm for the Two-Dimensional
Placement Problem in Electrical Circuit layout,” Circuits and
Systems, IEEE Transactions on, vol. 28, pp. 12–18, Jan 1981.

[16] M. Pan, N. Viswanathan, and C. Chu, “An Efficient and
Effective Detailed Placement Algorithm,” Computer-Aided
Design, International Conference on, vol. 0, pp. 48–55, 2005.

[17] “GNU Linear Programming Kit.”
http://www.gnu.org/software/glpk/.

[18] “Michigan Wolverine Placer by Dongjin Lee and Igor Markov.”

[19] “The Esteem Placer, written by Bob Erickson, an independent
software consultant.” http://www.linkedin.com/in/boberickson.

6

