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ABSTRACT
It is known that ramp-based models are not sufficient for
accurate timing modeling. In this paper, we develop a tech-
nique that accurately models the waveforms, and also allows
a flexible trade-off of accuracy vs. computational and repre-
sentational cost. The technique is based on Singular Value
Decomposition (SVD) and it naturally leads to a more gen-
eral gate delay model which can be applied in any timing
analysis engine with minor modifications. We demonstrate
its application in timing analysis by propagating a waveform
along a path. When compared with Spice, the proposed
model shows good accuracy.

Categories and Subject Descriptors
B.8.2[Performance and Reliability]:Performance Analy-
sis and Design Aids
General Terms
Algorithms, Performance
Keywords
Waveform modeling, SVD, Timing Analysis

1. INTRODUCTION
For accurate timing analysis one needs to accurately model

gate delay. Traditionally, gate delay modeling is performed
using a simple ramp approximation of the input and output
waveforms. As technology scales into the nanometer regime,
a ramp approximation is no longer sufficient [1]. There are
several studies in the literature which improve upon ramp
approximation [2–8].

The existing approaches can be broadly classified into one
of the following three approaches:

• Improved heuristic model where authors proposed mod-
els other than ramp, e.g. Equivalent waveform model [2],
Weibull distribution [4, 5]

• Data based approaches where authors have proposed us-
ing statistical techniques such as Principal Component
Analysis (PCA) [3] or a heuristic approach [6].

• Change of basis models where authors have proposed
modeling current rather than voltage, e.g. CSM [7–10].

An equivalent waveform modeling at the input has been pro-
posed where weighted least squares fit is employed [2]. The
heuristic equivalent waveform has a ramp up to a certain
point and an exponential after that. A heuristic for weight

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4-8, 2007, San Diego, California, USA
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

is given by ∂vout

∂vin

which weighs that part of input waveform

which affects the output waveform. This is an improve-
ment over the ramp model since the proposed equivalent
waveform can model the non-linearity of real waveforms to
some extent. An analytical technique to model the wave-
forms is to approximate the waveform with a cumulative
probability distribution function (CDF). The Weibull dis-
tribution, a two parameter model, is used to model the
waveforms [4]. The two parameters approximately model
the slope and shape of the waveform, in contrast to a sim-
ple ramp model where there is only one parameter, slope.
Thus, Weibull model gives better results since it also mod-
els the shape of the waveform. The Weibull model has been
extended to include crosstalk noise waveforms [5].

An alternative to analytical approach is the data-based
approach which needs a set of all possible waveforms that
one will encounter as a starting point. The set of all possi-
ble input waveforms is generated by collecting waveforms at
the output of different interconnect structures one encoun-
ters. The set of all possible output waveforms is generated
by collecting waveforms at the output of all gates in the li-
brary under process variations and different environmental
conditions [6]. Thus generating the collection of all possible
waveforms is a time-consuming pre-processing step but it
gets amortized over many runs of the timer. After all possi-
ble waveforms have been generated, a set of basis waveforms
can be extracted which approximates all possible waveforms
using an affine transformation [6]. The basis waveform se-
lection from a set of all possible waveforms is done efficiently
using unate covering heuristic. It has been shown that a few
basis waveforms are sufficient for accurate waveform model-
ing.

Current source-models (CSM) based on transistor physics
have been proposed to model waveforms [7, 8]. In CSM,
the most important feature is the introduction of current
source to model the output drive. Thus it can capture the
non-linearity of the driver accurately.

Another data-based approach is the principal component
analysis (PCA) based waveform modeling [3]. PCA based
waveform modeling is a data-based approach in a sense that
one generates all possible waveforms that one will encounter.
The waveforms are discretized at n equal voltage intervals
and recording the time at which certain voltage thresholds
are crossed. If the crossing times are treated as random vari-
ables then if they are highly correlated, a dimension reduc-
tion technique like PCA can be applied to represent a wave-
form accurately in a reduced r < n uncorrelated space [3].

Our approach builds on the PCA based waveform mod-
eling [3]. The PCA method was described for a single gate
and we generalize the method to a library of gates. We use
Singular Value Decomposition (SVD) instead of PCA in this
paper. The reason is that we are interested in finding the or-
thogonal basis of the waveforms and SVD provides a simple
and direct way to achieve it. Each of these orthogonal basis
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provide a linear combination of the n time points. Interest-
ingly as we will see later on, the first two of these orthogonal
basis (linear combinations) can be interpreted as 50% point
and slope of the waveform respectively. This allows us to
link this approach to current methodologies, and to have
it gracefully degrade to a simple ramp approximation when
needed.

Our goal in this paper is to show that we do not need
n time points to model the waveform since only a few or-
thogonal basis (linear combinations) of these time points are
sufficient to model the waveform accurately.

The contributions of this paper are:

• We provide a rigorous mathematical analysis of wave-
forms using SVD leading to a generalized gate delay
model.

• We link the proposed approach to ramp-based models
and show it is a logical extension to current modeling
and simulation methods.

• We show how the approach can provide a systematic
method for trading off complexity vs. accuracy in the
waveform models.

• We generalize and extend PCA approach [3] to a library
of gates.

2. DATA BASED MODEL FOR A GATE
In this section we illustrate how to generate a SVD based

timing model for a single gate. Later on, we extend our ap-
proach to the entire library. Since proposed timing model is
based on data, assume that we have a diverse set of wave-
forms to work with to obtain our timing model. The method
for generating diverse set of waveforms is described later in
§ 6.

A waveform is discretized by recording the time points
tk, when the voltages cross k−1

n−1
, 1 ≤ k ≤ n as shown

in Figure 1. In the case of falling waveforms the nota-
tion changes, the time points tk denote the voltages crossing
“

1 − k−1

n−1

”

, 1 ≤ k ≤ n. We also assume that the voltages

are normalized (VDD = 1).

t

v(t)

0 t1 tj

1

2

tn

1

Figure 1: A waveform is discretized and time points
are recorded when a signal crosses a certain voltage
threshold. Here time points are recorded when the
waveform crosses the threshold of 1

2
and 1.

The collection of output waveforms are discretized and
the times at which the voltage thresholds are crossed are
recorded. The discretized input and output waveforms can
be collected in one single matrix T:

T =

 

t1,1 t1,2 . . . t1,n

. . . . . . . . .
tm,1 tm,2 . . . tm,n

!

(1)

Note that each row in the matrix T contains one discretized
waveform. This is akin to current procedures except that
instead of taking each waveform and approximating it as a
ramp, we take all the waveforms and develop a new model
via the SVD process which we outline next.

3. ANALYZING WAVEFORMS USING SVD
The Singular Value Decomposition (SVD) is the funda-

mental theorem of Linear Algebra [11]. SVD is defined
as [12]:

Definition 3.1 (Singular Value Decomposition). Let
m, n ∈ N be arbitrary; we do not require m ≥ n. Given
T ∈ R

m×n, not necessarily of full rank, a singular value
decomposition (SVD) of T is a factorization

T = UΣV> (2)

where U ∈ R
m×m is orthonormal, V ∈ R

n×n is orthonor-
mal, and Σ ∈ R

m×n is diagonal. In addition, Σ is assumed
to have its diagonal entries σj nonnegative and in nonin-
creasing order; that is, σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 where
p = min(m, n).

It can be proved that for any matrix SVD exists [12]. The
matrix U is called the left singular matrix and its columns
provide the orthogonal basis for the columns of T. The ma-
trix V is called the right singular matrix and its columns
provide the orthogonal basis for the rows of T. The diago-
nal elements of Σ are called the singular values.

As noted above, the columns of V provide the orthogo-
nal basis for the rows of T and since each row contains a
discretized waveform, the columns of V turn out to be the
orthogonal basis for the waveforms in matrix T.

Now Eq. (2) can be rewritten by post-multiplying both
sides by V. Since V is orthonormal (V>V = I) we get
TV = UΣ. We denote the resultant product matrix as M
called the moments matrix because this is another way to
represent time points just like an equivalent representation
of any function by its moments:

M = TV = UΣ (3)

The moments matrix defined here is a linear combination of
time points weighed by the right singular vectors (rsv) V.j :

mij = Ti.V.j =
n
X

k=1

tikvkj (4)

The right singular vectors transform a waveform from
time domain t = (t1, t2, . . ., tn) to moments domain m =
(m1, m2, . . ., mn) through m = tV and vice-versa through
t = mV>

This equivalent representation leads to an interesting pos-
sibility in the context of timing analysis. If a waveform
can be represented accurately using a few moments then by
propagating these moments, one can do an accurate wave-
form analysis instead of propagating all the n time points.
Suppose we represent a waveform by r moments, where
r < n then the last n− r moments are set to zero. The pro-
cess of setting the last n − r moments to zero is equivalent
to setting the last n− r singular values to zero since zeroing
singular value will force the corresponding moment to zero.
But zeroing out singular values is equivalent to approximat-
ing a matrix T with another matrix T̃ having a smaller rank
and this is proved in Theorem 2. To measure the goodness
of approximation, Frobenius norm is used. This norm mea-
sures the goodness of fit in a root mean square fashion.

The above discussion can be summarized by saying that
the following statements are equivalent.

• Approximating a waveform Ti. using the first r moments.
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• Approximating a matrix considering the first r-singular
values of matrix T

• A rank-r approximation of matrix T in Frobenius norm.

Definition 3.2 (Frobenius Norm). Given T ∈ R
m×n,

the Frobenius norm of T is defined as

‖T‖F =

v

u

u

t

 

m
X

i=1

n
X

j=1

t2ij

!

(5)

There is an equivalent way to compute the Frobenius norm
of a matrix by using the singular values of a matrix which
is stated next.

Theorem 1. Given T ∈ R
m×n, and its singular values

after SVD is given by σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 where p =
min(m, n). Then the Frobenius norm of T can be computed
by

‖T‖F =

v

u

u

t

 

p
X

i=1

σ2
i

!

(6)

Now we are ready to state what is the best approximation
to a matrix in the context of Frobenius norm.

Theorem 2. Given T ∈ R
m×n, with a singular value de-

composition T = UΣV>, the best approximation in Frobe-
nius norm to T by a matrix of rank k ≤ min(m, n) is given
by

T̃k = Udiag(σ1, . . . , σk, 0, . . . , 0)V>

Thus the idea of having r singular values is equivalent to
approximating a matrix T with another matrix T̃ having a
rank r. As stated earlier, having r singular values is equiv-
alent to having only the first r moments to represent the
waveform while discarding the rest of n− r moments. Thus
we can define a metric in Frobenius norm to see how well r
moments approximate a waveform.

Now define fr as relative error incurred in Frobenius norm
by approximating matrix T ∈ R

m×n by rank-r matrix T̃r ∈
R

m×r.

fr =
‖T − T̃r‖

‖T‖
=

q

`
Pp

i=k+1
σ2

i

´

q

`
Pp

i=1
σ2

i

´

(7)

where p = min(m, n). We plot the relative error in Frobe-
nius norm fr in Figure 2. In the figure, one can observe that
the error measured by Frobenius norm quickly reduces to a
very small quantity when we approximate using the first few
moments. A more interesting comparison would be in terms
of the absolute values involved. The error in approximating
by r moments is given by:

∆Tr = T − T̃r (8)

The entry ∆trij
, represents the error in approximating jth

time point in the ith waveform with r moments. For a rank-
3 approximation, we found that nearly 90% of the entries in
∆Tr had an absolute error which was less than 1 ps. Thus
we need a few moments to represent a waveform with a high
degree of accuracy.

Next we interpret what the moments mean. We will see
that the moments are related to the more familiar notions of
50% time point and slope. Recall from Eq. (4) that moments
of a waveform are obtained by the right singular vectors
(V.j) weighing the linear combination of time points of a
waveform.
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Figure 2: Relative error in Frobenius norm when
approximating using the first k moments. Note that
using the first 2 moments the approximation is ac-
curate within 1 % in Frobenius norm. The data is
shown for an inverter and the number of time points
is n = 14.
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Figure 3: Plot of the first 4 right singular vectors
(rsv) obtained on applying SVD to T in Eq. (1). The
number of time points is n = 14.

The first right singular vector V.1 (rsv1), weighs the time
points t nearly equally to produce the first moment m1:

m1 =
n
X

k=1

tkvk1 ≈
1

n

n
X

k=1

tk

The first moment m1 can be interpreted as the average of
all the sample time points and in that sense represents the
50% time point of the waveform.

The second right singular vector V.2 (rsv2), weighs the
time points t nearly linearly to produce the second moment
m2. This can be interpreted as a quantity proportional to
the average slope of a linear ramp approximation to the
waveform. Note that the first and second moments are only
interpreted to be the 50% time point and slope respectively
and they are not the same in terms of numerical value. The
third right singular vector weighs the time points quadrati-
cally to produce m3. While the fourth right singular vector
weighs the time points cubically to produce m4.

4. EXAMPLE OF MOMENTS
CALCULATION

We illustrate the calculation of moments by means of an
example. After sampling a waveform at n = 14 time points,
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we get a time vector wt1
and its corresponding voltage vec-

tor wv:

wt1

> =
[599 632 656 673 690 705 716
728 740 752 764 776 788 802]ps (9)

wv

> =
ˆ

0 1

13

2

13
. . . 11

13

12

13
1
˜

V (10)

Now collect m such waveforms, (wti
, i = 1, . . . , m) in a

matrix T. On applying SVD Eq. (2) to T, we obtain the
right singular vectors V. Note that once the SVD analysis
is done, the right singular vectors are fixed. For example,
the second right singular vector V.2 after the SVD analysis:

V.2 =
[−0.52 −0.41 −0.32 −0.25 −0.18
−0.12 −0.06 −0.01 0.05 0.12
0.18 0.24 0.31 0.39 ]>

(11)

The second moment (m2) is given by the dot product of the
waveform (wt1

) and the second right singular vector (V.2):

m2 = wt1

>V.2 = −202.31 (12)

The second moment (m2) was interpreted as quantity whose
absolute value approximates the slope. If we define slope as
the difference in time at which voltage crosses 0V and 1 V
then the slope of wt1

in Eq. (9) turns out to be 203 ps which
is approximately the same value as |m2| = 202.31 ps.

It is important to note that the right singular vectors are
constant vectors, for example Eq. (11) shows the second right
singular vector. The right singular vectors just weigh the lin-
ear combination of time points or in other words transform
waveform from time domain to moments domain. Thus only
the moments vary depending on the waveform time points
and this is shown in Eq. (12), depending on wti

we will get
different values of moments.

5. EXAMPLE OF SVD BASED TIMING
MODEL

To illustrate the proposed timing model we calculate the
delay of the simple inverter chain in Figure 4 and compare
it with Weibull-based timing model [4]. The Weibull model
has two parameters: slope, and shape in addition to the
arrival time.

In our characterization, we follow the same strategy as
proposed in the Weibull model. We normalize the arrival
time of all input waveforms to 0 during characterization and
keep the arrival time information separate from the wave-
form information. In other words, instead of doing SVD on
(t1, t2, . . ., tn) we do it on (t2−t1, . . ., tn−t1), where t1 is the
arrival time. Due to this normalization we are now left with
n − 1 time points. This translates to the fact that we have
n− 1 moments for a given waveform instead of n moments.
We found that the new first moment m̃1 is equivalent to the
old m2 described in Eq. (12).

Another way to think about it is that we have forced the
first moment to be the arrival time instead of the t50% time
point while keeping the rest of the moments. To ensure
fairness in comparison, we use two moments in our proposed
model in addition to the arrival time.

Now we intuitively introduce the idea of using moments
to model the waveform propagation across the gates. In § 3,
we saw that a few moments are sufficient to characterize a
waveform. The first and second moments are interpreted as
quantities very similar to 50% time point and slope. Thus if
we are using only the first two moments, then the gate delay
modeling is equivalent to the ramp based delay modeling. A
simple ramp based delay equation is given by:

delay = a0 + a1Sin + b1SinCout + c1Cout (13)

The moments-based equation can be thought of as an gen-
eralization of Eq. (13):

tarrival = a0 +
2
X

i=1

aim̃
in
i +

2
X

i=1

bim̃
in
i Cout + c0Cout (14)

m̃
out
j = a0j +

2
X

i=1

aijm̃
in
i +

2
X

i=1

bijm̃
in
i Cout + c0Cout (15)

where j = 1, 2. Note that we have not modeled the non-
linear capacitance of the fanout gates. The equations were
fitted using linear regression [13]. A more detailed discussion
about the moment modeling with complex load modeling
and the error involved in fitting is described in § 7.

C1 C2 C3

Figure 4: Three stage inverter chain with a single
capacitor modeling the load.

We calculated delay for 1000 different values of the (C1,
C2, C3) tuple, where Ci, i = 1, 2, 3 was randomly sampled
from 100 fF to 200 fF. The minimum error in delay using
SVD model was 1.2% and the maximum error was 8.7%
when compared to Spice. The corresponding statistics for
Weibull based model was 1.6% and 9.7%. and for a simple
slope based model was 4.9% and 17.6%. It is clear that
both Weibull and SVD based timing models are superior
to simple slope model and demonstrate the need for more
complex delay modeling.

In the next section, we extend our SVD-based timing
model to the entire library.

6. DATA BASED MODEL FOR A LIBRARY
In a timing analyzer we generally represent the circuit

by a directed graph consisting of gates and the wires that
connect them. In forming this representation, we make use
of two main abstractions:

• An abstraction of the switching waveform at the input
and output of each gate in the circuit, and

• An abstraction for the model describing how these wave-
forms are changed when they go through gates or wires.

In current methodologies, the first abstraction is the ramp
waveform model, and the second is the delay model for gates
and wires. Since the waveform for a ramp model is repre-
sented by a tuple of delay and slope, we can represent a
typical delay models as:

(Dout, Sout) = f((Din, Sin), Cload, . . .) (16)

Note that while f is different for each gate and wire, the
representation of the waveform is the same for all.

Thus the first step we must perform is the generation of
a new uniform waveform model that would be valid for all
components in a circuit. We do this by taking all the gates,
which are collected in a gate library, and generating a large
number of diverse waveforms from them. Mathematically
this means that the matrix T in Eq. (1) contains waveforms
of all gates in the library instead of a single gate as described
in § 2. Both falling and rising waveforms are considered.

The SVD analysis described in § 3 is now performed on
the waveforms generated from all gates in the library. By
building the model based on all gates in the library, we insure
that the representation of the waveform that we produce will
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Pass through arbitrary
gate (g) in library to
get realistic waveform

Sin

Sample waveform
(tin1 , . . . , tinn )
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DUT

Sample waveform
(tout

1 , . . . , tout
n )

C1

Rπ

C2

α

Figure 5: Gate characterization setup

be valid for all gates in the library, and thus can be used in
an equation similar to Eq. (16).

The most important thing to note is about the right sin-
gular vectors V. The right singular vectors V obtained after
SVD analysis of all the waveforms obtained from the library
is the same for every gate in the library. Consider for the
sake of argument that V.2 in Eq. (11) was obtained after
doing SVD analysis on all the waveforms generated from
the library. Then irrespective of whether the waveform is
generated by an INV (inverter) or NAND, we use V.2 to
generate the second moment for that waveform. This helps
ensure an uniform model for all gates in the library.

In our delay models, we use a more complex load model,
namely the π-model. Note that this load modeling is com-
pletely orthogonal to the waveform modeling which is the
primary focus of the paper. When the π-model is used to
model the load in timing analysis, the accuracy of the sim-
ulation improves [14, 15]. Also we model the non-linear ca-
pacitance of the driven gate marked as α in Figure 5.

The experimental setup to generate these waveforms for
one gate is shown in Figure 5. By varying Sin, and CL we
vary the input waveform to the gate, and by varying C1, Rπ,
C2 and α we vary the loading on the gate. While it may ap-
pear that having a complex π-model will drastically increase
the characterization time, we balance this addition by the
use of experiment planning techniques such as Latin Hyper-
cube Sampling (LHS) [16] in order to reduce the number of
simulations required.

7. WAVEFORM PROPAGATION ACROSS
GATES IN STA

In this section, we present the equations for propagating
waveform through a gate with π-model load. The SVD-
based timing model is a straightforward extension of Eq. (14)
and Eq. (15):

m̃
out
j = a0 +

r
X

i=1

aim̃
in
i +

2
X

j=1

bjCj +

r
X

i=1

2
X

j=1

cijm̃
in
i Cj

+
2
X

j=1

djRπCj + e0Rπ + f0α, j = 1, . . . , r (17)

where

• r is the number of moments used for characterization,
usually set to 2 or 3.

• C1, Rπ, C2 are the parameters of π-model interconnect.
The interconnect values are assumed to be deterministic
in this paper.

• α is the width of the gate load being driven as shown in
Figure 5.

• m̃in
i are the moments of the waveform whose arrival time

has been normalized to 0 as described in § 5.

The equations for characterizing arrival time tarrival have the
same form as in Eq. (17).

In the context of STA, the independent variables in Eq. (17)
namely, min

1 , . . . , min
r , C1, Rπ, C2, α are just numbers. Thus

the Eq. (17), could have been any arbitrary function of the
independent variables. But we have opted for a function
which is linear in input moments (m̃in

i ). The linearity re-
striction becomes crucial in the context of Statistical STA
(SSTA) [17]. We note that the extension to SSTA is a part
of our future work.
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Figure 6: Waveform comparison at the output of
an inverter. We use a 2 moment approximation in
addition to arrival time and it is clear from the figure
that the waveforms are indistinguishable.

The linearity restriction does not affect the accuracy of
our modeling. To illustrate, consider Figure 6, where we
plot the waveform obtained at the output of an inverter. An
input waveform is fed to an inverter and simulated in Spice
and the output is plotted with the legend ‘Spice’. In the
case of the legend ‘Moment Approx’ the output waveform
was obtained as follows. The input waveform is transformed
from timepoint representation to moment representation us-
ing m̃ = tV. We keep the first two moments alongside the
arrival time and then using the fitting equations in Eq. (17),
to find the moments of the output waveform. Then using
the transformation from moments to timepoints t = m̃V>

we obtain the timepoints of the output waveform which is
plotted with the legend ‘Moment Approx’. It is clear from
the figure that the waveforms are indistinguishable thus il-
lustrating the accuracy of the moments-based model.

Another way of comparing the output waveforms was to
find the maximum relative difference between the time points
predicted by the SVD-based model and Spice. In the case
of INV, fitting over 1000 waveforms produced a maximum
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error around 5%. The other gates in the library NOR and
NAND had similar error statistics in the predicted output
waveform.

Now we can generalize and propagate moments across a
path and recover the waveform at the end of the path.

8. PATH DELAY EVALUATION IN STA
In this section we demonstrate waveform propagation along

a path by considering a simple stage consisting of an INV,
NOR and NAND gate. with π-model for load as shown in
Figure 7. The gate delay models are generated using 90 nm

100

300

100

300

100

300

Figure 7: Test case for evaluating path delay. The
units for resistance is Ohms (Ω) and the capacitors is
femtoFarads(fF). Both the capacitors in the π-model
have the same value.

Berkeley Predictive Technology Model [18] and the intercon-
nect parameters are obtained from ITRS roadmap [19]. We
assume single-input switching while propagating waveform.

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000

V
ol

ta
ge

[V
]

t [ps]

output - Spice
output - SVD

Figure 8: Waveform at the output of the NAND
gate in Figure 7. The proposed SVD method and
Spice output have a very close match.

We used the first r = 2 moments along with arrival time
to propagate waveform. We compare our results with Spice
and the waveforms at the output of NAND gate in Figure 7 is
shown in Figure 8. The waveform predicted by the proposed
method closely matches with the Spice result and the error
in delay was less than 1%. The maximum error at any given
time point was around 8%. and it is around the point at
which the output waveform begins to rise (t ≈ 1600 ps) in
Figure 8.

9. CONCLUSION AND FUTURE WORK
This paper presented a rigorous mathematical analysis of

waveforms which led to a logical extension of present wave-
form modeling methods such as saturated-ramp model. The
waveform models described in the paper would find applica-
tion in any situation where having a more detailed descrip-
tion of digital switching waveforms is useful. We demon-
strated the application of waveform modeling to path-based

STA demonstrating near-Spice like accuracy. We plan to
extend our waveform model to include interconnects and
process variations. In addition, we plan to implement a
full-fledged path-based timer using the proposed waveform
models.
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