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Abstract—In this paper, we propose track routing and optimiza-
tion for yield (TROY), the first track router for the optimization
of yield loss due to random defects. As the probability of failure
(POF), which is an integral of the critical area and the defect
size distribution, strongly depends on wire ordering, sizing, and
spacing, track routing can play a key role in effective wire planning
for yield optimization. However, a straightforward formulation of
yield-driven track routing can be shown to be integer nonlinear
programming, which is a nondeterministic polynomial-time
complete problem. TROY overcomes the computational complex-
ity by combining two effective techniques, i.e., the minimum
Hamiltonian path (MHP) from graph theory and the second-order
cone programming (SOCP) from mathematical optimization.
First, TROY performs wire ordering to minimize the critical area
for short defects by finding an MHP. Then, TROY carries out
optimal wire sizing/spacing through SOCP optimization based on
the given wire order. Since the SOCP can be optimally solved in
near linear time, TROY efficiently achieves globally optimal wire
sizing/spacing for the minimal POF.

Index Terms—Minimum Hamiltonian path (MHP), physical
design, random defects, second-order cone programming (SOCP),
track routing, yield.

I. INTRODUCTION

SMALLER feature size makes nanometer very large scale
integration (VLSI) designs more vulnerable to ever-

growing yield loss due to random and systematic causes [1].
Whereas it is believed that the yield loss due to systematic
sources is greater than that due to random defects during the
technology and process ramp-up stage, the systematic yield loss
can be largely eliminated when the process becomes mature and
tuned, and systematic variations are extracted/compensated [2].
On the other hand, the random defects that are inherent due
to manufacturing facility limitations will still exist for a ma-
ture fabrication process [1]. Thus, its relative importance will,
indeed, be much bigger for a mature process with systematic
variations designed in. Among random defects, the density of
back-end-of-line (BEOL) defects (i.e., interconnect defects) is
increasing compared to that of front-end-of-line defects (i.e.,
device defects) [3]. Since the random BEOL defects mainly
occur either between physically adjacent interconnects (short
defects) or on the interconnect itself (open defects), routing

Manuscript received June 28, 2007; revised September 25, 2007. This
work was supported in part by Semiconductor Research Corporation, IBM
Corporation Faculty Award, Fujitsu, and equipment donations from Intel. This
paper was recommended by Associate Editor J. Hu.

M. Cho and D. Z. Pan are with the Department of Electrical and
Computer Engineering, The University of Texas, Austin, TX 78712 USA
(e-mail: thyeros@cerc.utexas.edu; dpan@ece.utexas.edu).

H. Xiang and R. Puri are with the IBM Corporation T. J. Watson Research
Center, Yorktown Heights, NY 10598 USA (e-mail: huaxiang@us.ibm.com;
ruchir@us.ibm.com).

Digital Object Identifier 10.1109/TCAD.2008.917589

and interconnect optimization should be the suitable place for
random-defect-related yield optimization [1], [4], [5].

In general, routing consists of two steps—global routing and
detailed routing. Global routing plans an approximate path for
each net, whereas detailed routing finalizes the exact design-
rule check (DRC)-compatible pin-to-pin connections. Track
routing, as an intermediate step between global and detailed
routing, can expedite detailed routing by embedding major
trunks from each net within a panel (a row/column of global
routing cells) in a DRC-friendly manner [6].

Such track routing is an appealing stage to optimize the
critical area for yield enhancement, as decent flexibility in
routing optimization exists with wire adjacency information
[1], [7], [8], which global routing lacks, for an accurate crit-
ical area estimation. Meanwhile, detailed routing does not
have sufficient flexibility to make radical routing changes for
yield enhancement. Therefore, wire ordering to minimize the
overlapped wirelength between adjacent wires as well as wire
sizing/spacing can be effectively performed in track routing to
make the design more robust to random defects.

Due to the criticality of yield in the semiconductor industry,
there has been considerable effort to enhance yield by reducing
the critical area in routing or postlayout optimization. Wire
ordering [9], [10] and spacing [4], [11], [12] to reduce the
density of short defects are explored. A redundant link [3] to
improve immunity to open defects is studied. Wire spreading in
the post routing optimization for yield is given in [13] and [14].
However, there are a few drawbacks in these prior works.

1) One single defect size is considered rather than a defect
size distribution [9], [10].

2) The tradeoff between open and short defects due to the
limited chip area is ignored [3], [9], [10], [12], [14].

3) Localized/greedy optimization is performed, which may
increase the overall critical area [3], [4], [11]–[13].

4) Wire adjacency information is not available for an accu-
rate critical area estimation [15], [16].

Indeed, it is required to find the best tradeoff between open and
short defects within a fixed routing area under a given defect
size distribution through wire planning (wire ordering, sizing,
and spacing) in global scope. Accordingly, track routing is the
right stage for such optimization.

So far, most recent track routing algorithms have focused
on crosstalk/timing optimization [6], [8], [17], [18]; how-
ever, none of them have discussed yield optimization. At first
glance, crosstalk and random-defect yield optimizations share
some common traits as wire spacing helps both. However, the
roles that wire ordering, wire sizing, and wire spacing play
on yield and crosstalk optimizations are very different. For
example, yield optimization has to consider the defect size
distribution and all adjacent wires, but crosstalk optimization
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only needs to consider those adjacent wires with overlap-
ping timing windows; another example is power and ground
wires provide shielding against crosstalk, but there is no such
shielding counterpart for yield. Moreover, the algorithms in
[6], [8], [17], and [18] can neither perform wire planning in
a global manner nor consider the tradeoff between random
defects.

In this paper, we propose track routing and optimization for
yield (TROY), the first track router with yield optimization
based on wire planning (wire ordering, sizing, and spacing).
TROY first orders wires to minimize the overlapped wirelength
between adjacent wires based on the preference-aware mini-
mum Hamiltonian path (pMHP) and then performs globally
optimal wire sizing and spacing for the ordered wires with
efficient second-order cone programming (SOCP). As a result,
globally optimal wire sizing/spacing as well as the minimal
overlapped wirelength decreases the critical area, making a
design that is more robust to random defects.

The major contributions of this paper include the following.

1) We propose TROY, a track router with yield optimization.
To our best knowledge, this is the first work that yield is
optimized during track routing.

2) We propose a simple model of probability of failure
(POF) due to random defects. This simple yet effective
model enables highly efficient and scalable SOCP.

3) We show that wire ordering within a panel (the first
step of wire planning in TROY) can be efficiently solved
by pMHP formulation. TROY considers the interaction
between adjacent panels to overcome any disadvantage
from an isolated panel-by-panel approach.

4) We show that wire sizing and spacing for an entire layer
(the second step of TROY) can be formulated as the
SOCP, which can be solved optimally and as efficiently
as linear programming.

The rest of this paper is organized as follows. Section II
presents the preliminaries. General formulation of yield-driven
track routing is shown in Section III. Section IV proposes
TROY as an efficient algorithm. Experimental results are dis-
cussed in Section V followed by the conclusion in Section VI.

II. PRELIMINARIES

A. Track Routing

Track routing is an intermediate step between global rout-
ing and detailed routing to reduce routing complexity [6].
Fig. 1(a) illustrates a global routing result where an approxi-
mate routing path for a net is determined by a global router.
In track routing, each routing is performed with the wires
inside each panel, which is a row/column of global routing
cells, as shown in Fig. 1(a). The purpose of track routing is
to decide how global wires should be embedded inside the
panels. An exact vertical/horizontal location should be given
to a horizontal/vertical wire in each layer without violating
minimum wire sizing/spacing rules. Since the location of each
wire is computed during track routing, adjacency information
on each wire becomes available during optimization.

Fig. 1. Example of track routing is shown to illustrate the concept and its
impact on design goals. For instance, track routing can result in a different
wirelength when trunk Steiner tree is applied to the estimated expected detailed
wirelength. (a) Track routing embeds global routes in panel by panel for each
layer. (b) This track routing solution incurs a possibly longer wirelength than
(c). (c) This track routing solution incurs a possibly shorter wirelength than (b).
(d) Optimal trunk Steiner tree can be built by finding a median of all the pins
of a net.

Depending on the decision of the track router, multiple
design goals can be impacted, such as wirelength, crosstalk,
and timing. For an example of the wirelength, two possible
track routes for a net [w1 − w2 − w3, which is shown inside
the dashed circle in Fig. 1(a)] are illustrated in Fig. 1(b) and (c),
respectively, where four pins are marked with a in the dashed
circle. The ideal detailed routes to the pins are also drawn in
solid lines, and wires from other nets are in dashed boxes. It is
clear that the route in Fig. 1(c) has shorter wirelength, which
can be translated into lower congestion and a smaller critical
area than the one in Fig. 1(b). To achieve this, wires w1, w2,
and w3 need to be aligned with M1, M2, and M3, which are the
medians of point a in each panel. Each median (M1, M2, and
M3) is the optimal position of each wire in terms of wirelength
if the trunk Steiner tree [19] is assumed. In general, it is not
always feasible to embed all the wires in their median positions
due to either the limited routing area or other design objectives.

B. Notations

Table I shows a list of notations in this paper. All constants
are in uppercase, whereas all variables are in lowercase. Fig. 2
shows an example of track routing where six wires from W1

to W6 are assumed to be already routed (thus, p1 to p6 are
known) within a panel Pi, which is bounded by Ti and Bi.
Some examples of ni, sij , Lij , and lij are shown as well.
Please note that although W4 is between W3 and W5, l35 = 2
because W3 and W5 are adjacent and overlapped immediately
before and after W4. Mi is the median of x/y positions of all
the pins in the panel where Wi exists. If pi �= Mi, we can use
the deviation |pi − Mi| as a metric for a possible wirelength
increase because the shortest trunk Steiner tree can be built with
the median of pins [19]. Regarding the example in Fig. 1(d), if
pi = pb, then the deviation is zero; however, if pi = pa, then the
deviation is the distance between pa and Mi, which is shown as
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TABLE I
NOTATIONS IN THIS PAPER

Fig. 2. Example of track routing is shown to explain the notations.

the double-headed arrow. Thus, pi should be as close as possible
to Mi for a shorter wirelength and less random defects.

C. Critical Area and the POF

The critical area for a defect is equal to the area where the
center of the defect must fall to cause a circuit failure for a
given defect size distribution. The POF based on the critical
area analysis with the defect size distribution is a widely used
metric for yield prediction and optimization [1], [7]. The defect
size distribution F (x) is widely modeled as follows [7], [20]:

F (x) = kx−r for xmin ≤ x < ∞ (1)

where x is the defect size, xmin is the minimum resolv-
able lithographic feature size, k is a coefficient to ensure∫ ∞

xmin
F (x)dx = 1, and, typically, r ≈ 3 [21]. When the end

effect is ignored [15], the critical area Ao
i (x) for open defects on

a wire Wi and the critical area As
ij(x) for short defects between

two parallel wires Wi and Wj can be approximated as follows
[7], [20], [22]:

Ao
i (x) =

{ 0, 0 ≤ x < wi

Li(x − wi), wi ≤ x < 2wi + Smin

Li(wi + Smin), 2wi + Smin ≤ x < ∞
(2)

As
ij(x) =

{ 0, 0 ≤ x < sij

lij(x − sij), sij ≤ x < 2sij + Wmin

lij(sij + Wmin), 2sij + Wmin ≤ x < ∞
(3)

where Li, wi, lij , and sij are as in Table I. Since the critical
area cannot keep increasing, Ao

i (x) and As
ij(x) saturate at a

defect size of 2wi + Smin and 2sij + Wmin, respectively [20].
The POF due to open defects on Wi (POFo

i ) and due to short

defects between Wi and Wj (POFs
ij) on a given layer can be

obtained as follows [7], [20]:

POFo
i =

∞∫
xmin

F (x)
Ao

i (x)
Achip

dx =
kLi

2Achip

(
wi + Smin

2w2
i + Sminwi

)

(4)

POFs
ij =

∞∫
xmin

F (x)
As

ij(x)
Achip

dx =
klij

2Achip

(
sij + Wmin

2s2
ij + Wminsij

)

(5)

where Achip is the total chip area. As POFo
i and POFs

ij indicate
the chance of having a random defect, yield can be improved
by minimizing POFo

i and POFs
ij together. However, minimizing

POFo
i and minimizing POFs

ij are two conflicting objectives due
to a fixed routing area, as larger wi to decrease POFo

i leads
to smaller sij , which adversely increases POFs

ij . As a result,
it is crucial to explore the tradeoff between POFo

i and POFs
ij

(thus, open and short defects) to minimize yield loss due to
random defects.

D. SOCP

The SOCP can be mathematically described as a convex
optimization problem, where a linear objective is optimized
over the intersection of an affine linear space with the Carte-
sian product of second-order cones [23]–[28]. A second-order
cone C can be classified into three types for a given x =
[x1, x2, x3, . . . , xn] ∈ R

n. The first is when x ∈ R
n
+, which

degenerates the SOCP to linear programming (LP; a special
case of the SOCP). The second is quadratic cone Cq, which can
be defined as follows:

Cq =
{
x = [x1, x̃T ]T : x1 ≥ ‖x̃‖

}
(6)

where ‖ · ‖ denotes the Euclidean norm. The last is rotated
quadratic cone Cr, which can be defined as follows:

Cr =
{
x = [x1, x2, x̃T ]T : 2x1x2 ≥ ‖x̃‖2, x1 ≥ 0, x2 ≥ 0

}
(7)

where ‖ · ‖ also denotes the Euclidean norm. Then, for
given Ai ∈ R

m×ni , b ∈ R
m, ci ∈ R

ni , xi ∈ R
ni , c =

(cT
1 , . . . , cT

r )T , and x = (xT
1 , . . . ,xT

r )T , the standard primal
SOCP problem can be written as

min cT x

s.t.
r∑

i=1

Aixi = b

xi ∈ C, i = 1, . . . , r (8)

and the corresponding dual problem is defined by

max bT y
s.t. AT

i y + zi = ci, i = 1, . . . , r

zi ∈ C, i = 1, . . . , r (9)

where y ∈ R
m, zi ∈ R

ni , and z = (zT
1 , . . . , zT

r )T .
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Fig. 3. Proposed yield-driven track routing formulation is shown.

The strong duality theorem [27] guarantees that the primal
and dual problems in (8) and (9) will have optimal solutions
with zero duality gap (e.g., bT y∗ = cT x∗, where x∗ and y∗

denote the optimal solutions) if strictly feasible solutions exist
for both problems (e.g., xi ∈ C and zi ∈ C,∀i). For more
detailed information on the SOCP, please refer to [24], [26],
and [28]–[32].

The SOCP can be efficiently solved by primal–dual interior
point solvers in polynomial time, and its solution is globally
optimal [23], [24]. Consequently, the SOCP has found a wide
variety of applications in engineering, such as filter designs,
antenna array designs, robotics, neural networks, and VLSI
designs [25], [33]–[35].

III. YIELD-DRIVEN TRACK ROUTING

In this section, we show yield-driven track routing in a math-
ematical formulation. To maximize yield, we need to minimize
both POFo

i and POFs
ij in (4) and (5) by tuning the following

design variables.

1) Li: Smaller Li linearly decreases POFo
i . However, since

Li is mostly determined by global routing, track routing
does not have enough control on this.

2) wi: Larger wi exponentially decreases POFo
i .

3) lij : Smaller lij linearly decreases POFs
ij .

4) sij : Larger sij exponentially decreases POFs
ij .

Therefore, wi, lij , and sij are the key variables to optimize
yield. Meanwhile, we also want to minimize the expected de-
tailed wirelength, which will be added to the current wirelength.
This can be achieved by minimizing the deviation of each wire
from its preferred location (see Section II-B). To accomplish
this objective in the yield-driven track routing framework, we
regard the deviation as the expected detailed wirelength, which
is also a potential victim of open defects. Hence, we take an
additional term into consideration, i.e., POFo∗

i , for each wire
with a minimum wire width assumed, which is

POFo∗
i =

kdi

2Achip

(
Wmin + Smin

2W 2
min + SminWmin

)
(10)

where di is the expected detailed wirelength (or the deviation)
of Wi. As POFo∗

i is linearly proportional to the expected
detailed wirelength, we can still focus on yield maximization,
which will automatically reduce the expected detailed wire-
length as well.

Based on our observations, yield-driven track routing is
proposed as a mathematical formulation in Fig. 3, where the

Fig. 4. We reformulate the one in Fig. 3 into INLP by introducing a binary
variable oij , which determines the precedence between Wi and Wj in terms
of x/y location in the design.

objective is the weighted total POF, and α is a user-defined
parameter (0 ≤ α ≤ 1) to control the tradeoff between open
and short defects. Constraint a is about the deviation of Wi

from Mi (the expected detailed wirelength) used in POFo∗
i , and

constraint b is to guarantee that sij ≥ Smin for any adjacent
wires. Constraint c is to keep wires within the corresponding
panel (this is the decision made by a global router), and con-
straint d is to control wire width wi. The objective in Fig. 3 is
nonlinear, and constraint b is concave. In fact, this formulation
has high combinatorial complexity, as neither the order of
wires is fixed nor pi is identified. We can easily convert the
formulation in Fig. 3 into an integer nonlinear programming
(INLP) as in Fig. 4 by reformulating constraint b with a binary
integer variable oij , which is set to 1 if pi > pj and 0 other-
wise. N is a huge constant. Optimally solving the formulation
in Fig. 4 maximizes yield w.r.t. the random defects in track
routing. However, this formulation is unacceptably expensive to
compute even with a linearized objective function by first-order
Taylor approximation (not to mention that this linearization can
introduce significant suboptimality). Therefore, as an efficient
and effective algorithm to solve this problem, we propose
TROY in Section IV.

IV. TROY ALGORITHM

In this section, we present our track routing algorithm for
yield optimization, i.e., TROY, to solve the INLP formulation
in Fig. 4. TROY can solve it by combining two techniques—the
MHP and the SOCP.

A. Motivation and Strategy

The key observation we make is that the INLP formulation
in Fig. 4 is a kind of discrete convex optimization problem
that will be degenerated to a convex optimization problem if
the value of each binary variable (oij) is given. As long as it
becomes a convex optimization problem, we can find a global
optimal solution [23]. However, it is not sufficient to be able
to find a global optimal solution itself due to the large scale
of modern VLSI designs: it should be efficiently solvable by
a powerful optimization technique. After further analyzing the
degenerated convex formulation, we discover the following:
the degenerated convex optimization problem can be cast into
highly efficient SOCP (see Section II-D) if we further simplify
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Fig. 5. Our simplified POFo
i in (11) fits over 99.8% with the data points from

(4), enabling a highly efficient SOCP formulation.

(4) and (5), which are already convex, by performing curve
fitting to the following functions:

POFo
i (Li, wi) ≈

kLi

2Achip

(
a
Smin

wi
− b

)
(11)

POFs
ij(lij , sij) ≈

klij
2Achip

(
a
Wmin

sij
− b

)
. (12)

According to our results, a ≈ 0.7399 and b ≈ 0.0453 show a
regression coefficient of over 99.8% for a wide range of wire
sizing and spacing. Fig. 5 shows the accuracy of our simpli-
fied POFo

i . In general, the SOCP is known to have O(N1.3)
complexity [34], [35], where N is the number of variables and
requires at most 30 iterations to solve even large problems [24].
Thus, it should be adequate to handle a VLSI track routing
problem.

Finding the optimal order of wires (thus, oij) for yield
can be well approximated by minimizing the total overlapped
wirelength (

∑
lij), which can be deduced to an MHP prob-

lem. In spite of the fact that the MHP is nondeterministic
polynomial-time hard, it has been comprehensively studied for
several decades; therefore, there exist highly efficient and near-
optimal heuristics [36]. As lij solely affects POFs

ij , it should
have a negligible impact on the tradeoff between open and
short defects, which will be optimally determined by solving
the SOCP. These observations motivate our two-step TROY
algorithm as follows.

1) Wire ordering. The goal of wire ordering is to compute
yield-maximizing oij (thus, lij). In TROY, wire ordering
is done in each panel such that the total overlapped wire-
length between adjacent wires is minimized by finding
the MHP to reduce short defects. We further propose
a variant of the MHP, i.e., the pMHP, to minimize the
expected detailed wirelength together. This is discussed
in Section IV-B.

2) Wire sizing/spacing. The goal of wire sizing/spacing is
to tune the wire width and the spacing such that the
maximum immunity to random defects (thus, maximum
yield) can be achieved. As wire sizing and spacing are
conflicting objectives due to the fixed routing area, the
optimal tradeoff is found by the SOCP. This is discussed
in Section IV-C.

Fig. 6. Example of two disjoint subpanels.

Algorithm 1 Overall flow of TROY
Input Global routing result GR

1: for ∀ layer L ∈ GR do
2: wire set C = ∅ //to store contour wires
3: for ∀Pi ∈ L in ascending order do
4: Wire ordering with Pi

⋃
C // Solve pMHP

5: C = Find contour of Pi

6: end for
7: Wire sizing and spacing for L // Solve SOCP
8: end for

B. Wire Ordering Optimization

The goal of wire ordering is to find an order of wires such
that the overlapped wirelength lij between adjacent wires is
minimized to effectively reduce POFs

ij . We first identify a set
of disjoint subpanels within each panel such that there is no
shared wire between any two identified subpanels. Fig. 6 shows
an example of two disjoint subpanels, which is similar to the
concept of zone in [37]. Then, wire ordering is performed
from the lowest panel to the highest panel for each subpanel in
each panel.

Wire ordering for each subpanel to minimize the total over-
lapped wirelength can be achieved by the well-known MHP
[8], [10], [36]. Consider the example in Fig. 7 where six wires
(W1−W6) are to be routed within a subpanel of a panel Pi

for maximum yield. Fig. 7(a) illustrates the problem in this
example. First, assuming a minimum wire width and spacing, a
feasible track routing (not exceeding the number of available
tracks) needs to be found through interval packing [38], as
shown in Fig. 7(b), which will serve as an initial solution.
Other design objectives can be considered while finding the
initial solution as long as they do not conflict with the fea-
sibility. Then, a clique as in Fig. 8(a) can be constructed by
regarding each row as a vertex, and edge weight Eij between
two rows (thus, two vertices) Vi and Vj can be computed as
follows:

Eij =
∑

Wi∈Vi,Wj∈Vj

Lij . (13)

Since finding an MHP from the clique is well studied, we skip
the details; however, the Lin–Kernighan heuristic is shown to
be very successful [36]. From the MHP, a routing solution
like Fig. 7(c) may be found. However, a naive MHP approach
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Fig. 7. TROY example. (a) Tracking routing problem. (b) One feasible routing solution can be obtained by interval packing algorithm. (c) One optimal solution
from the MHP without taking an expected detailed wirelength into account. (d) Another optimal solution from the MHP with an expected detailed wirelength
considered. (e) Another optimal solution from the MHP when the boundary interaction is considered. (f) Final solution after wires are sized and spaced for yield
by the SOCP.

Fig. 8. Clique for wire ordering in track routing. (a) Clique for Fig. 6(b)–(d),
where the edge cost is computed by (13). (b) Clique for Fig. 6(e) after adding a
new vertex Wc to take the boundary interaction into account.

has two drawbacks regarding yield, which we further address
in TROY.

1) The possible detailed wirelength increase due to deviation
from the preferred location (see Section II-B) is not con-
sidered, which, in turn, increases the density of random
defects.

2) The interaction between adjacent panels is ignored. As
short defects can occur on the boundary of adjacent
panels, it is required to take this into account.

We observe that there can be multiple optimal MHP so-
lutions, as the distribution of edge weights is rather narrow.
Thus, we need to find the minimum deviation solution esti-
mated by

∑
i |pi − Mi| among all the optimal MHP solutions.

We call our modified MHP the preference-aware minimum
Hamiltonian path. For example, although Fig. 7(c) and (d)
shows the MHPs of Fig. 8(a) (the same overlapped wirelength),
one can recognize that Fig. 7(d) shows less deviation from
the preferred positions (

∑
i |pi − Mi|), which can result in a

shorter expected detailed wirelength as well as less random
defects.

We further improve our wire ordering by considering the
contour of the adjacent panel. Consider the example in Fig. 7(e),

Fig. 9. After wire ordering is done, the INLP formulation in Fig. 4 can be cast
into highly efficient SOCP.

where Wc are the wires from a panel Pk−1, assuming that the
wires in Pk−1 are already ordered. Fig. 7(e) shows a better
wire ordering than Fig. 7(d) when the interaction between Pk

and Pk−1 is considered. This can be done with a new clique in
Fig. 8(b), where Wc is added and set as a starting vertex, and the
bold lines indicate the pMHP. The edge weights between Wc

and other vertices can be computed with (13) as well. When all
the panels on a layer are finished with wire ordering, the wires
on the layer will be sized and spaced as in Section IV-C.

C. Globally Optimal Wire Sizing and Spacing

After wires in every panel on a layer are ordered, the for-
mulation in Fig. 4 can be further deduced to the formulation
in Fig. 9 after plugging in (11) and (12), filling all the integer
variables (oij) with the corresponding values, and eliminating
constant terms from the objective. Auxiliary variables γij and
δi are introduced to translate the nonlinear objective terms
into the rotated conic constraints of (7), which enable the
SOCP [23]–[28]. In detail, we first set oij = 1 if pi > pj , and
oij = 0 otherwise, based on the given wire ordering, which will
eliminate half of the minimum spacing constraints. Then, we
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Fig. 10. Empirical runtime complexity of our SOCP is O(N1.335), where N
is the number of variables. Such near-linear complexity makes TROY to VLSI
track routing.

can rewrite the objective function in Fig. 4 as follows by setting
Smin = Wmin and taking off all the constant terms:

α
∑

i

{
LiSmin

wi
+

(
1− b

a

)
di

}
+ (1− α)

∑
i,j>i

lijWmin

sij
. (14)

With this simplified objective function, we can introduce auxil-
iary variables γij and δi to define the upper bounds of two key
terms as follows:

lijWmin

sij
≤ γij (15)

LiSmin

wi
≤ δi. (16)

Hence, (14) can be minimized by suppressing the upper bounds
[γij in (15) and δi in (16)], which is essentially the objec-
tive function in Fig. 9. Equations (15) and (16) can be fur-
ther cast into the rotated quadratic cone in (7). For example,
since sij > 0, lij > 0, and Wmin > 0, (15) is equivalent to

2sijγij ≥ c2
ij , cij =

√
(2lijWmin) (17)

where cij is a known value, as the wire order defines lij .
Since (17) is in the form of 2x1x2 ≥ ‖x3‖2, x1 ≥ 0, x2 ≥ 0,
it describes a rotated quadratic cone in (7). The same transfor-
mation can be done for (16). Then, the formulation in Fig. 9
can be solved optimally and efficiently by the primal–dual
interior-point method with O(N1.3) bound, where N is the
number of variables [34], [35]; thus, the solution will provide
the optimal wire sizing and spacing for maximum yield.

Fig. 10 shows the empirical runtime complexity of our SOCP
formulation in TROY. The number of constraints is linearly
proportional to the number of variables. Hence, even with a
larger circuit, the number of constraints will not explode, and
the problem size will be tractable. When we perform curve
fitting to the measured runtime samples, it has O(N1.335),
where N is the number of variables.

The optimal wire sizing and spacing for an entire layer by the
SOCP can find the optimal tradeoff between open and short de-
fects in terms of yield. Thus, TROY is far superior to traditional
local or iterative approaches. Fig. 7(f) shows a track routing so-

lution after wire sizing and spacing are done by the SOCP. Intu-
itively, the longer overlapped wirelength lij between two adja-
cent wires needs wider spacing to minimize POFs

ij . Meanwhile,
the spacing has to be larger than minimum spacing (Smin) at
least, and all the wires should be posed within the correspond-
ing panel. If the wire has enough space around it, the wire width
will be increased to minimize POFo

i . Although this example
shows a case for one panel, wire sizing and spacing will be
performed for all the wires in a layer. In practice, the wire width
may be discrete. For this case, we can change the continuous
wire width found from the SOCP to the closest discrete wire
width that does not violate the minimum wire spacing rule.

For some designs, aggressive wire sizing can cause routing
congestion for local wires by leaving insufficient spaces. The
seriousness of this issue can be different in different layers, as
lower layers tend to be more crowded by local wires. This issue
can be overcome in TROY by adjusting the α parameter in the
objective function in Fig. 9. By applying a smaller value, TROY
will search for the solution with higher weight on open defect
optimization, which will increase the spacing between wires for
local wires. Therefore, in higher layers, aggressively configured
TROY can be applied, whereas a conservative approach can be
taken in lower layers.

D. Runtime Complexity Analysis

As TROY consists of two steps, we will analyze the runtime
complexity of each step.

1) Wire ordering. The main bottleneck in wire ordering
is to find an MHP. However, we can regard the time
complexity of finding an MHP as constant, as the number
of maximum wires in a panel is fixed by a global routing
cell size. Hence, the complexity of each MHP instance
does not scale according to the design size. Let L and C
denote the number of layers and the number of cells (the
chip area), respectively. Then, the runtime complexity of
wire ordering is O(LC).

2) Wire sizing/spacing. The complexity of the SOCP is
shown as O(N1.335) in Fig. 10. However, since the rela-
tionship between the number of variables and the number
of cells is not clear, we empirically measure the runtime
complexity of the SOCP w.r.t. the number of cells. As
shown in Fig. 11, it has O(C1.276), where C is the
number of cells. Since the SOCP needs to be solved for
each layer, the runtime complexity of wire size/spacing is
O(LC1.276).

Therefore, the overall runtime complexity of TROY can be
shown as O(LC1.276) based on our analysis, which can be fast
enough for a VLSI design.

V. EXPERIMENTAL RESULTS

We implement TROY in C++. The initial global routing
results are generated from the publicly available BoxRouter
binary [39]. All the experiments are performed on a 3.0-GHz
Pentium machine with 1-GB RAM. A solver in [36] and [40]
is properly modified to find the pMHP for wire ordering in
Section IV-B, and MOSEK 4.0 [24] is used to solve the SOCP
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Fig. 11. Average empirical runtime complexity of our SOCP for one layer is
O(C1.276), where C is the number of cells.

TABLE II
ISPD98 IBM BENCHMARKS

Fig. 12. Distribution of 10 000 defects for Monte Carlo simulation.

for wire sizing and spacing in Section IV-C. Since the ISPD98
IBM Corporation benchmarks lack technology information, we
assume the 0.13-µm technology to use the defect size distri-
bution parameter in [7] and set Smin = Wmin = 0.2 µm. We
further assume that Wmax = 0.4 µm, and 0.2, 0.3, and 0.4 µm
are the only allowed wire widths. Table II shows the detail for
each benchmark circuit. Since the benchmarks lack detailed pin
locations, one to five pins for each global routing cell on each
wire are randomly generated to define the preferred position of
each wire (Mi). A Monte Carlo simulation [41] with 10 000
random defects based on (1) is performed to estimate yield
loss. Also, these random defects are assumed to be uniformly
distributed on the chip for fair estimation. Fig. 12 shows our
defect distribution.

Fig. 13. Tradeoff between open and short defects is shown by α. (a) With
larger α, the number of open defects decreases, whereas the number of short
defects increases. (b) Minimum yield loss due to random defects (open and
short defects) can be achieved around α = 0.6.

We explore the tradeoff between random defects controlled
by α in Section III, assuming a continuous wire width. In
Fig. 13(a), yield loss changes due to open and short defects
by different α values are plotted for all the benchmark circuits
in Table II. Overall, with larger α, yield loss due to open
defects decreases at a cost of more short defects. Fig. 13(b)
shows total yield loss (short + open defects) by different α
and indicates that the minimum yield loss can be obtained
around α = 0.6. Whether the open defects are dominant over
the short defects or not is still controversial [1], [3], [7], [42],
but our result (α = 0.6) shows that both are similarly impor-
tant. We set α = 0.6 for all the experiments in the rest of the
section.

For comparison, we implement a greedy algorithm similar
to [17], the only track routing algorithm, to our best knowl-
edge, that can handle arbitrary wire spacing. As the original
algorithm in [17] optimizes crosstalk and timing without wire
sizing, we add a wire sizing feature along with a wire spacing
functionality. We also modify the optimization objective such
that its wire ordering and wire sizing/spacing greedily seek
for the minimization of POFo and POFs. Let those greedy
wire ordering and wire sizing/spacing be denoted by g.wo and
g.wss, and MHP-based wire ordering and SOCP-based wire
sizing/spacing be denoted by h.wo and s.wss, respectively.

Table III investigates the effect of two main techniques in
TROY by pairing each technique with a greedy algorithm
(h.wo + g.wss and g.wo + s.wss), and compares TROY
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TABLE III
COMPARISON BETWEEN THE GREEDY TRACK ROUTER AND TROY (α = 0.6)

Fig. 14. Total number of defects from all the benchmark circuits is shown
by different algorithms. Each step of TROY (MHP-based wire ordering and
SOCP-based wire sizing/spacing) is superior to the counterpart in the greedy
approach, and TROY can achieve 18% yield loss reduction compared with the
greedy yield-driven track router.

(α = 0.6) with a greedy yield-driven track router (g.wo +
g.wss). Note that there are two experiments on TROY—one
in a continuous wire width (c.w) and the other one in a discrete
wire width (d.w). First, we observe that g.wo + s.wss reduces
yield loss by 10% on average, whereas h.wo + g.wss has
only 5% improvement, compared with the bottom line (g.wo +
g.wss). This implies that s.wss is more effective than h.wo
mainly due to two reasons: 1) POFo and POFs are highly
sensitive to wire sizing/spacing, as shown in (4) and (5); and
2) g.wss fails to achieve a decent tradeoff between random
defects by nature, resulting in a highly biased solution as shown

in the h.wo + g.wss row of Table III. It also clearly shows that
TROY, which is, in fact, h.wo + s.wss in a discrete wire width,
can significantly reduce yield loss by 18% on average, and it
can be even over 30% for ibm05, compared with the greedy
approach (g.wo + g.wss) in a discrete wire width. Also, the
total number of open and short defects is consistently reduced.
The discrete wire width incurs only 2.2% more yield loss on
average when TROY in d.w and in c.w are compared. Fig. 14
summarizes the key results of Table III.

Although the runtime becomes longer, all test cases can
be finished within a few seconds/minutes. More importantly,
TROY has near-linear runtime complexity, as discussed in
Section IV-D. Therefore, it should be applicable to a VLSI
design.

VI. CONCLUSION

In nanometer designs, routing becomes a key optimization
phase for yield. To cope with yield loss due to random defects
in the advanced technology, we present TROY, an efficient
yield-driven track router. With effective wire ordering and wire
sizing/spacing optimization based on the MHP and the SOCP,
experimental results show that TROY significantly reduces
yield loss. As TROY finds globally optimal wire sizing and
spacing for a given wire order, it may be easily modified for any
wire-sizing- and spacing-related optimization such as crosstalk
and timing [43].
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