
WISDOM: Wire Spreading Enhanced Decomposition of Masks
in Double Patterning Lithography ∗

Kun Yuan, David Z. Pan
ECE Dept. Univ. of Texas at Austin, Austin, TX 78712

{kyuan,dpan}@cerc.utexas.edu

ABSTRACT
In Double Patterning Lithography (DPL), conflict and stitch
minimization are two main challenges. Post-routing mask de-
composition algorithms [1–4] may not be enough to achieve
high quality solution for DPL-unfriendly designs, due to com-
plex metal patterns. In this paper, we propose an efficient
framework of WISDOM to perform wire spreading and mask as-
signment simultaneously for enhanced decomposability. A set
of Wire Spreading Candidates (WSC) are identified to elim-
inate coloring constraints or create additional splitting loca-
tions. Based on these candidates, an Integer Linear Program-
ming (ILP) formulation is proposed to simultaneously mini-
mize the number of conflicts and stitches, while introducing
as less layout perturbation as possible. To improve scalabil-
ity, we further propose three acceleration techniques without
loss of solution quality: odd-cycle union optimization, coloring-
independent group computing, and suboptimal solution prun-
ing. The experimental results show that, compared to a post-
routing mask decomposition method [2], we are able to reduce
the number of conflicts and stitches by 41% and 23% respec-
tively, with only 0.43% wire length increase. Moreover, with
proposed acceleration methods, we achieve 9x speed-up.

1. INTRODUCTION
As minimum feature size decreases, semiconductor industry

is facing the limitation of patterning sub-32nm due to the delay
of the next generation lithography equipment such as Extreme
Ultra Violet (EUV) [5]. Double patterning lithography is cur-
rently the forerunner for 32nm, 22nm, and even 16nm technol-
ogy [6]. In DPL, the original layout will be decomposed into two
masks, e.g., BLACK and GRAY, and manufactured through
two exposure/etching steps. As the benefit, the effective pitch
can be doubled, which improves lithography resolution.

There are two critical issues with decomposition of masks in
DPL [7,8]: coloring conflict and splitting stitch. If the distance
between two polygons is less than minimum coloring spacing
mincs, they should be assigned different masks. Otherwise,
there will be a conflict. Sometimes, a feature may be split into
two touching parts and colored differently to resolve conflict.
However, this introduces stitches, which cause yield loss due
to overlay error and increase manufacturing cost. Therefore,
conflict and stitch minimization are two of the main challenges
in DPL.

Many researches focus on post-routing mask decomposition.
A novel flow is proposed in [1] to optimize splitting locations
with ILP. Xu et al. [4] present an efficient graph reduction based
algorithm for stitch minimization, and Yang et al. [9] propose
a fast partition-based approach. In these works, conflicts are
eliminated in a greedy way. To enable simultaneous conflict
and stitch minimization, ILP is adopted in [2,3] with different
feature pre-slicing techniques. Xu et al. [10] propose a matching
based decomposer that handles the same optimization problem
as [2,3].

∗
This work is supported in part by NSF, SRC, and equipment donations

from Intel.

There are also several DPL-aware optimization works from
design side. Cho et al. [11] propose a correct-by-construction
DPL-friendly routing with built-in layout decomposer. The
idea is extended by [12] with enhancement of lazy evaluation
and with-in net optimization. In [13], the DPL awareness and
redundant via insertion are considered together during routing.
Hsu at al. [14] propose a simultaneous layout migration and de-
composition for standard cell design, which aims to minimize
stitch number and layout area together. Because the spacing
between the features are considered dynamically during color-
ing, their approach suffers from run time overhead, which is
not suitable for large-scale layout modification.

In this paper, we present WIre Spreading enhanced Decom-
position of Masks in double patterning lithography (WISDOM).
The chip area is fixed in our work. After initial Decomposition
Graph (DG) construction, we create a set of wire spreading
candidates. The DG is updated then to model layout decom-
position problem together with these potential WSCs. Our
main technical contributions are two-fold: first, we develop an
integer linear programming formulation from DG to simulta-
neously minimize the number of conflicts, stitches and amount
of layout perturbation; three acceleration methods are further
proposed without losing solution quality. The experimental re-
sults are promising and show the effectiveness and efficiency of
our WISDOM methodology.

2. PRELIMINARY AND FORMULATION
2.1 Wire Spreading for Decomposability

Our key idea of performing wire spreading for decomposition
of masks is to push layout segments away for more flexible col-
oring. This helps reducing the number of conflicts and stitches.

mincs

A

B

C

(a)

A

B

C

(b)

A

B

C

D

E

(c)

A

B

C

D

E

(d)

Figure 1: Wire spreading to eliminate conflict. Assume

only feature C can be moved.

Given a routed design, wire spreading can be used for elimi-
nating unresolvable coloring conflicts. Fig. 1 (a) shows a three-
way conflict cycle between features A-B-C, where any two of
them are within minimum coloring space. Moreover, no stitches
can be inserted while satisfying minimum overlapping mar-
gin requirement. In consequence, there is no way to produce
conflict-free solution by mask decomposition algorithm alone.
However, if part of feature C is spread to break the coloring
constraint between A and C as Fig. 1 (b), we can easily re-
solve this problem. For more restricted situation, as Fig. 1 (c)
illustrates, it is not possible to completely push C away from
feature A or B beyond mincs, due to surrounding fixed lay-
out objects. In such case, we could still spread polygon C for
creating a legal splitting location, as indicated by Fig. 1 (d).

978-1-4244-819 - /10/$26.00 ©2010 IEEE 324 1

A

B

C
D

E

(a)

A

B
C

D

E

(b)

Figure 2: Wire spreading to reduce stitch. Assume only

feature C can be moved.

It is also possible to spread wire to reduce the number of
stitches. For the example in Fig. 2 (a), initially, feature C is
not splittable, and two stitches are required on A and D for
resolving conflicts. If we spread the route C as Fig. 2 (b), only
one stitch is needed.

2.2 Problem Formulation
As it can be seen from Section 2.1, with help of wire spread-

ing, the solution space of DPL decomposition can be extraor-
dinarily high. On the other hand, as nanometer designs are
mostly grid-based, that restricts wire spreading to its nearby
discrete routing grids. Therefore, we will preprocess the initial
decomposition graph and generate a library of Wire Spreading
Candidates (WSC)s to improve decomposability (more detailed
description to be presented in Section 3.2). Mask assignment is
performed together with these candidates as options. As exam-
ples, Fig. 1 (b)/(d) and Fig. 2 (a) are simple WSCs for Fig. 1
(a)/(c) and Fig. 2 (f), respectively.

With this library of WSCs, our optimization problem is for-
mally defined as follows:

Problem Formulation: Given a layout, perform mask de-
composition with pre-computed WSCs as design modification
options. The goal is to minimize the number of conflicts and
stitches, while introducing as less layout perturbation as possi-
ble.

ILP Formulation
(Odd-Cycle Union Optimization)

Coloring-Independent
Group Computing

(Suboptimal Solution Pruning)

Decomposition Graph Initialization

Wire Spreading Candidate
Generation and Modeling
in Decomposition Graph

Figure 3: The overview of WISDOM

3. BASIC ALGORITHMS FOR WISDOM
In following two sections, we will present our WISDOM al-

gorithm. The entire flow is shown in Figure 3.

3.1 Decomposition Graph Initialization
For simplification purpose, we adopt a flow similar to [2]

to construct an initial DG for modeling mask decomposition
problem. Other approaches as in [3, 4] are also flexible to ap-
ply. There are two kinds of edges: Conflict Edge (CE) and
Stitch Edge (SE). If and only if two nodes(polygons) are con-
nected by CE/SE and in same/different masks, it results in a
conflict/stitch.

The key steps of our construction method are briefly reviewed
with the help of Fig. 4. Fig. 4 (a) shows the irregular polygons
for original layout. If two polygons are within mincs, there
is a CE between them, marked by a dash line in Fig. 4 (b).
The node projection, proposed in [1], is then performed, where
projected segments are highlighted by bold curves of Fig. 4 (c).
Based on projection result, all the legal splitting locations are

computed next. The corresponding rectangles are split with
SE added, which updates DG as Fig. 4 (d).

(a) (b)

(c) (d)

conflict edge stitch edge

Figure 4: Initial decomposition graph construction

3.2 WSC Generation and Modeling
As the next step, we will generate a set of DPL-friendly

WSCs, and model them in initial DG. There are two new types
of edges introduced in the decomposition graph : Conflict Elim-
ination Edge (CEE) and Splitting Creation Edge (SCE).

Each desired layout modification corresponds to a WSC, which
will be constructed sequentially and independently based on
original design. A search region is defined to avoid changing
design too much. All the moved segments must be completely
within their corresponding search regions, and the connectiv-
ity should be maintained. We also allow ripple movement of
multiple wires. No design rules should be violated, and timing
critical nets/vias are fixed. If the distance of two features in
the original layout is larger than mincs, this relationship should
also hold after certain WSC is applied. This ensures no new
coloring constraints are introduced in terms of double pattern-
ing lithography. It should be noted that, other user-defined
conditions can be easily incorporated.

In the following, we present the key steps for WSC generation
and modeling.

3.2.1 Spreading to Eliminate Conflict Edges
First, for each CE, we try to find a WSC, moving apart

associated polygons beyond mincs. This relaxes layout coloring
constraints, since these two features can be assigned to the same
mask consequently.

If such a WSC is available, we will change the status of
the corresponding conflict edge to Conflict Elimination Edge
(CEE). For the original layout in Fig. 5 (a), suppose there is a
WSC like Fig. 5 (b) eliminating its conflict edge i-k, the DG is
transformed to Fig. 5 (c).

During decomposition, if two nodes are connected by a con-
flict elimination edge and assigned into same masks, there is
a conflict. However, different from conflict edge, if the cor-
responding WSC of this CEE is applied, this conflict can be
removed.

3.2.2 Spreading to Create Splitting Locations
Then, we also detect these WSCs, which can create new po-

tential stitch locations on initially unsplittable polygons. This
provides larger solution space for double patterning mask de-
composition.

As illustrated by the same example of Fig. 5 (a), suppose a
new splitting location can be created on k by modifying layout

33

as Fig. 5 (d). To model this WSC, polygon k is first split into
two touching features ki and kj . An Splitting Creation Edge
(SCE) is then added between ki and kj to indicate that this
new potential stitch location results from wire spreading. The
conflict edges between (i, k) and (j, k) are replaced by (i, ki)
and (j, kj) respectively. Other edges connecting to k will be
directed to either ki or kj , such as o-kj in Fig. 5 (e).

During coloring, the two nodes linked by splitting creating
edge should be in same color by default. Only if its correspond-
ing WSC is applied, a stitch can be introduced and they can
be assigned into different masks.

3.2.3 Non-compatible WSCs
Since we generate each WSC independently, they may not

be applied in the same time. Two WSCs are non-compatible,
if resulting in any of following problems:

1. Design rule violation or new conflict edge is introduced.
2. The same polygon is modified in distinct way.
Fig. 5 (f) illustrates the second case, with both WSCs in

Fig. 5 (b) and (d) modeled. Obviously, these WSCs change
polygon k differently, and hence only one can be picked.

After finding out all the WSCs, we will create a list of non-
compatible WSC pairs based on above definitions.

(a) (b) (c)

j

k

o

i

j

k

o

i

j

k

o

i
Conflict Elimination Edge

(d) (e) (f)

j o

i

j

ik

o

i

jk j

ik

o

i

jk

S
p

littin
g

 creatio
n

 ed
g

e

conflict edge

splitting creation edge

conflict elimination edge

Figure 5: Wire spreading candidate modeling and decom-

position graph updating.

3.3 ILP Formulation
To achieve good trade-off among conflict, stitch and layout

perturbation minimization, in this section, we will formulate
an integer linear programming to perform simultaneous mask
decomposition and modification. The set of pre defined WSCs
are the only available design pertubation configurations. Our
ILP is different from [1, 3], because their formulations are not
considering layout modification for decomposability improve-
ment and simultaneous optimization. To better present, some
notations are first listed in Table 1.

The co-optimization problem can be formulated as follows:

min(α
∑

eij∈E

cij+ε
∑

tij∈T

sij+
∑

eij∈Ecee

mcee
ij pcee

ij +
∑

eij∈Esce

msce
ij psce

ij)

(1)
subject to

xi + xj <= 1 + cij ∀eij ∈ Ece (2)

(1 − xi) + (1 − xj) <= 1 + cij ∀eij ∈ Ece (3)

xi + xj <= 1 + cij + mcee
ij ∀eij ∈ Ecee (4)

Table 1: Notation
ri The ith layout polygons
xi binary variable denoting the coloring of ri

xi = 0 if the color is GRAY, otherwise it is BLACK
eij a conflict edge, a conflict elimination edge

or a splitting creation edge between ri and rj

tij ri and rj are touching each other,
connected by a stitch edge or splitting creating edge

Ece the set of conflict edges
Ecee the set of conflict elimination edges
Esce the set of splitting creation edges

E the set of eij

T the set of tij

cij binary variable cij =1 when there is
a conflict between ri and rj

sij binary variable sij =1 when there is
a stitch between ri and rj

mcee
ij binary variable mcee

ij = 1 if and only if WSC
for eij ∈ Ecee is applied

msce
ij binary variable msce

ij = 1 if and only if WSC
for eij ∈ Esce is applied

pcee
ij layout modification cost, when mcee

ij =1

psce
ij layout modification cost, when msce

ij =1

ycc
ij,mn (i, j) �= (m, n). WSCs for eij ∈ Ecee and

emn ∈ Ecee are not compatible.
Y cc the set of ycc

ij,mn

yss
ij,mn (i, j) �= (m, n). WSCs for eij ∈ Esce and

emn ∈ Esce are not compatible.
Y ss the set of yss

ij,mn

ycs
ij,mn (i, j) �= (m, n). WSCs for eij ∈ Ecee and

emn ∈ Esce are not compatible.
Y cs the set of ycs

ij,mn

(1 − xi) + (1 − xj) <= 1 + cij + mcee
ij ∀eij ∈ Ecee (5)

xi + (1 − xj) <= 1 + sij ∀tij ∈ T (6)

(1 − xi) + xj <= 1 + sij ∀tij ∈ T (7)

msce
ij = sij ∀eij ∈ Esce (8)

mcee
ij + mcee

mn <= 1 ∀ycc
ij,mn ∈ Y cc (9)

msce
ij + msce

mn <= 1 ∀yss
ij,mn ∈ Y ss (10)

mcee
ij + msce

mn <= 1 ∀ycs
ij,mn ∈ Y cs (11)

The objective function (1) is to minimize the weighted sum-
mation of conflicts and stitches as well as layout perturbation.
The weights of α and ε are user-defined parameters, for assign-
ing relative importance between these matrices. The layout
penalty costs pcee

ij and psce
ij are associated with respective con-

flict elimination and splitting creation edge.
Constraints (2)-(3) identify a conflict if two features con-

nected by a conflict edge are in the same color. Constraints (4)-
(5) are applied for conflict elimination edge. If mcee

ij is one, the
corresponding WSC is applied. As a result, the two polygons
connected by eij are moved beyond mincs, and they can be
in the same mask without introducing conflicts. In such case,
variable cij is always zero forced by the objective function. On
the other side, when mcee

ij is zero, its corresponding WSC is not
used. Conflict will be detected based on the same logistic for
the case of conflict edge as Constraints (2)-(3).

Constraints (6)-(7) are used to identify a stitch if two touch-
ing rectangles are colored differently. Constraint (8) follows the
fact that any splitting creation edge esce

ij connects two touch-
ing rectangles tij . If and only if the stitch sij for tij is one,
the corresponding wire spreading candidate is applied. Con-
straints (9)-(11) serve for the same purpose. If two WSCs are
not compatible, at most one will be picked.

4. WISDOM SPEEDUP TECHNIQUES
Since the time complexity of solving ILP is quite high in

general, in this section, we propose three reduction techniques
to simplify the decomposition graph without losing optimality.

34

Definition 1 odd/even cycle (OC/EC): a cycle, whose total
number of conflict edges and conflict elimination edges is odd/even.

4.1 Odd-Cycle Union Optimization
Naively, ILP formulation would be performed on the entire

decomposition graph. In this section, we will show that, it is
sufficient to conduct ILP only on a subgraph of the DG, which
is the union of all the odd-cycles. It will not lose optimality.

The overall flow is shown in Fig. 6. Since we are working
on a much smaller graph, the CPU time of ILP solving is well
reduced. Moreover, it only takes polynomial time to perform
preprocessing and postprocessing steps, which details are dis-
cussed in Section 4.1.1 and 4.1.2 respectively. Therefore, by
taking the flow of Fig. 6, the coloring assignment can be effec-
tively accelerated.

Coloring the union of all the odd-
cycle by ILP

Input Decomposition Graph (DG)

Compute the union of
all odd-cycles

Construct optimal solution for
initial DG

Figure 6: The flow of odd-cycle union optimization

4.1.1 Computing the union of all the odd-cycles
The naive calculation is to enumerate all the odd cycles and

then find their union. This would be expensive since the num-
ber of OCs grows exponentially with respect to the size of DG.
Our key idea is to make use of the concept of cycle basis and
compute this union in a polynomial time. We do not have to
dig out each individual OC.

Definition 2 cycle basis and base cycle: Given a Decomposi-
tion Graph (DG), a subset of its cycles are called cycle basis,
with each one called base cycle, if any cycle in DG can be gener-
ated by performing XOR operation on the cycles in this subset.

Definition 3 XOR (⊕) operation on two graphs is denoted
as (G1 ⊕ G2), which is the union of these graphs, minus their
common edges. XOR (⊕) operation on more than two graphs
is computed as (((G1 ⊕ G2) ⊕ G3)... ⊕ Gi).

As Fig. 7 (a) illustrates, there are three cycles. A-B-C-A and
D-B-C-D could be a cycle basis, since the third loop A-B-D-C-
A can be obtained by taking ⊕ on their edges.

A

B

C

D ⊕

B

C

B

C

D

A

B

C

D
A

B

C

D

B

C

1 2C C∪ 1 2C C∩ 1 2 1 2 1 2: () \ ()C C C C C C⊕ ∪ ∩

1C 2C

(a) (b)

(c)

A

Figure 7: The concept of cycle basis
Our efficient computation for odd-cycle union is given in Al-

gorithm 1, with timing complexity of O(N3) time. Due to page
limit, the detailed proof and analysis are skipped here.

4.1.2 Optimal solution construction for decomposition
graph

After solving the union of all the odd-cycles by ILP, one op-
timal coloring assignment needs to be constructed for original

Algorithm 1
Require: A decomposition graph, DG
Ensure: the union of all the odd-cycles: ODG
1: OCB = ∅
2: use depth-first search to calculate a cycle basis of DG: CB

//Line 3-11 compute one cycle basis for ODG.
3: move all the odd base cycles in CB into OCB

// now all the base cycles in CB are even cycles.
4: while OCB and CB share some common edges do
5: Make these common edges as COMMON
6: for any even base cycle EC in CB do
7: if EC have contain at least one COMMON edges then
8: move this EC from CB to OCB
9: end if
10: end for
11: end while

// OCB now is one cycle basis of the union of all the odd-cycles.
12: output the union of all the base cycles in OCB as ODG

V V

V
V

V

v

V

A B
C

D

E

S

V

V
1C

3C

2C
0C

(a)

V V

V
V

V

v

V

A B
C

D

E

S

V

V
1C

3C

2C
0C

4C
V

?

(b)

V V

V
V

VV
V

A B
C

D

E

S

V

v

V

V

V

V
1C

3C

2C
0C

4CV
V

(c)

V V

V
V

V
V

A
E

S

V

v

V

V

V

V
1C

3C

2C
0C

4CV
V

V V

V
B

C

DS

V

(d)

Odd-Cycle Edge Spanning Edge Non-Spanning Edge

Conflict Edge

Splitting Creation Edge

Conflict Elimination Edge

Stitch Edge

Figure 8: The procedure of solution construction for orig-

inal decomposition graph. The symbol v inside each node

denotes the state of visited.

decomposition graph. Strictly speaking, this constructed solu-
tion should have the same cost as the ILP assignment of DG,
weighted by Objective (1). The detailed steps are shown in Pro-
cedure 1, whose complexity is linear proportional to the size of
graph. Its validity is guaranteed by Theorem 1.

Procedure 1:
Step1: As Fig. 8 (a) illustrates, given a DG, assume we have

obtained a solution for the union of its odd-cycles C0-C4 by
ILP, while other part of DG remains uncolored. All the edges
in this union are marked as Odd-Cycle-Edges (OCE).

Step2: Compute connected components for this odd-cycle
union by depth first search, where no edge or vertices shared
between different clusters. For example, there are two such
components in Fig. 8 (a): (C0, C1, C2) and (C3, C4).

Step3: Randomly pick one connected component, as (C0, C1, C2)
in Fig. 8 (a), and mark its nodes as visited sources. Then,
start from these initial sources to traversal DG in a depth-
first manner for exploring and colorings unvisited vertices.
Each search phase consists in two steps: Step4 and Step5.

Step4: Given a current already-visited node s, we will explore
its neighbors. If one of its edges leads to unvisited vertex t, we
will mark edge s-t as Spanning Edges(SPE). The mask of t

35

will be assigned based on following coloring propagation rules:

coloring propagation rule: if the type of edge s-t is a
conflict edge or conflict elimination edge, we will assign the
opposite color of s to t; otherwise, s and t will be on the same
mask.

This rule ensures neither conflict/stitch nor layout modifica-
tion will be introduced when a non-visited node is reached and
colored through a SPE. As shown in Figure. 8 (b), the coloring
of A can be determined as BLACK by propagating the coloring
of feature S through a stitch edge.

Step5: We will further check whether t is contained by some
unvisited connected component, computed in Step2. If so, we
will further assign the coloring of this entire component in one
time, using its existing ILP solution. However, there might be
a coloring inconsistence problem. As illustrated by Figure. 8
(b), after we propagate the solution of A, the color of E would
be GRAY. However, E also belongs to a unvisited connected
component (C3, C4), and it is assigned BLACK by ILP. Under
such case, we can simply flip the existing ILP solution of this
entire component (C3, C4) for maintaining coherence, shown by
Figure. 8 (c).

Step6: The newly found t and CC will be marked as visited,
and Step 4&5 will be recursively called on these nodes. �

Above steps can be repeated until all the nodes have been
visited, as Figure. 8 (d) shows. All the OCEs and SPEs form a
depth first forest. The edges which are in DG but not belong-
ing to this forest are called Non-Spanning Edges (NSE).
When we explore the neighbors of an visited node s, these
NSEs connect to other already-visited vertices. Edge C-S is an
example of NSE. When we find node S from C, S has already
been processed and colored.

The correctness of above procedure is stated as following the-
orem. The detailed proof is skipped here.

Theorem 1 The solution generated by Procedure 1 is an op-
timal solution to the ILP formulation in (1) for the original
decomposition graph .

4.2 Coloring-Independent Groups

A

Group1

Group2

Coloring-Independent Group

(a)

Multiple Cut Vertexes

A
B

C

1

2

3

4

(b)

D

Group1
Group2E

B

C

Design Rule Violation (Not Compatible)

(c)

D

Group1
Group2E

B

C

Temporary Edges

(d)
Figure 9: Figures (a) and (b) explain the concept of

coloring-independent groups. Figures (c) and (d) explain

how to handle wire spreading candidate.

After finding the union of all the odd-cycles, we compute
graphically-disjointed connected components as [1–3] for im-
proving scalability. Furthermore, we observe that, in terms of
mask decomposition problem, each connected component may
still be divided into several coloring-independent groups. This
reduces ILP problem size to a greater extent.

Fig. 9 (a) shows a simple motivational example, which is a
connected component. We observe that, node A is the only
common vertex between group one and two, and these two
groups can still be solved by ILP individually while maintaining
optimality. The reason is that, after their respective optimal
solutions are obtained, if the coloring of feature A from both
groups are different, we could simply flip the solutions of one
group without effecting overall solution quality.

In graph theory, such node as A is called cut vertex or ar-
ticulation point, whose removal creates disconnected coloring-
independent groups, which are also observed as biconnected
components in [15]. Generally, if there are multiple cut vertices,
the initial graph can be decomposed into a chain of coloring-
independent groups linked by these articulation points. As
Fig. 9 (b) illustrates, four groups 1-2-3-4 are connected sequen-
tially with cut vertices A-C as boundary nodes. Similar to the
simple case of Fig. 9 (a), we can solve each group individually
without losing optimality. Their solutions can be merged by
appropriately flipping the coloring of certain groups.

With wire spreading candidate in mind, the decomposition
graph would need to be modified temporarily for correctly com-
puting either connected component or coloring-independent groups.
As shown in Fig. 9 (c), group1 and group2 are graphically dis-
jointed. However, design rule is violated, when their respective
WSCs for CEE B-C and SCE D-E are applied simultaneously.
If we decompose these two components/groups separately, both
WSCs may be picked in the same time, generating unfeasible
solution. Therefore, to resolve this issue, for each pair of non-
compatible WSCs, we add some temporary edges between their
associated nodes as Fig. 9 (d) illustrates. Connected compo-
nents or coloring-independent groups will be calculated for this
temporarily-updated graph.

4.3 Suboptimal Solution Pruning
Given any coloring-independent group, we can further sim-

plify it by performing solution pruning for underlying substruc-
tures, sequential path, defined as follows:
Definition 4 sequential path (SP): an acyclic linked list of
nodes is a sequential path, if

• Except two ending features, all the nodes must have a
degree of two.

• Any WSC associated with this list and any other WSC
outside are compatible.

• This list can not be totally included in another list which
satisfy first two conditions.

A

B

P

P2

E

F

B1 C1

… …

…

DC

1s

1ce

2c

1sc
1c

2ce Design Rule

Violation

(a)

A

B

P2

E

F

B1 C1

… …

…

D
1

0

cost()

d
ost

s
ost

C

C s

=

=

P

bioption edge

C

(b)
Figure 10: Suboptimal Solution Pruning.

Based on the above definition, in Fig 10 (a), Path P is a
sequential path with node A and B as ending features. It is
composed of two CEs c1-c2, one SE s1, one SCE sc1 and two
CEEs ce1-ce2. Ending node A can not be extended to E or F,
because in that case, A becomes a internal vertex but has a
degree of three. This violates condition 1. Edge B-C can not
be further included in this SP as well since it is not compatible
with splitting creating edge B1-C1, which is outside of path P.
Condition 2 does not hold, then.

The nice property of SP is that, besides two ending nodes,
each sequential path will not have coloring or design modifica-
tion interaction with other parts of this graph. In other words,

36

given coloring configurations of two ending nodes, the best de-
composition of a SP can be uniquely determined.

There are only two possible configurations for each SP, de-
pending on whether head and tail features have same color. As
Fig 10 (b) shows, since there are four CEs/CEEs, when A and
B are assigned into same mask, no stitches or layout modifi-
cations are needed for zero conflict solution. As a result, the
best ILP penalty Cs

ost for path P is zero. On the other hand,
if A and B are assigned into different masks, one of s1, sc1 and
ce1-ce2 should be applied to resolve potential conflict. Assume
the cost of s1 is the smallest, we pick it as a local optima Cd

ost.
Therefore, graphically, we can replace this whole SP by a

bioption edge, which only stores possible optimal costs, Cs
ost

and Cd
ost. While formulating ILP problem, we simply apply

following four equations to check whether node A and B are in
same/different masks, where binary variable dij is zero/one.

xA + (1 − xB) <= 1 + dij ∀eb
ij bioption edge (12)

(1 − xA) + xB <= 1 + dij ∀eb
ij (13)

xA + xB <= 2 − dij ∀eb
ij (14)

(1 − xA) + (1 − xB) <= 2 − dij ∀eb
ij (15)

A expression of Cs
ost(1 − di,j) + Cd

ostdi,j will be added into
Objective (1) to take into account corresponding optimal ILP
penalty for the represented sequential path. Comparatively, in
original ILP, for sequential path P, we need to introduce one
additional binary variable for each internal vertex. Moreover,
for every edge, at least two constraints out of Constraints(2)-(8)
should be specified. As a result, by conducting suboptimal so-
lution pruning, it reduces number of variables and constraints.

In essence, this pruning technique shares its spirit with the
dimension reduction technique presented by [16], in which the
iso-cap property in multi-core processor design is discovered
and employed to make a complex problem feasible.

5. EXPERIMENTAL RESULTS
We implement our algorithm in C++ and test on Intel Core

3.0GHz Linux machine with 32G RAM. OpenAcess2.2 [17] is
used for interfacing with GDSII directly. Moreover, we choose
glpk [18] as our solver for integer linear programming. ISCAS-
85&89 benchmarks are scaled down and modified as our test
cases. The metal one layer is used for experimental purpose,
because it is one of the most trouble some layers in terms of
double patterning lithography. The minimum width and spac-
ing become 40nm. The minimum coloring space for double
patterning is set as 65nm, and minimum overlapping margin
for stitch insertion is 10nm.

5.1 Statistics on Decomposition Graph
The detailed statistics of constructed decomposition graphs

are shown in Table 2. The first column denotes circuit name.
Columns “#ce” and “#se” under “initial DG” are the total
number of conflict edges and stitch edges in initial decompo-
sition graph. Columns “#cee” and “#sce” under “updated
DG” show the respective number of conflict elimination and
splitting creation edges, added in WSC generation and mod-
eling step. “#cee” plus “#sce” equal to the total number of
WSCs “#WSC”. “total” is the summation number of all the
test cases, and “ratio” is computed percentage of corresponding
metrics.

From Table 2, we have WSCs which can eliminate 8% conflict
edge and create 9% more stitch candidates. Although these
percentages seem relatively small, however, since DPL layout
decomposition has a ripple effect, it could remove more than
one conflicts or stitches by just applying one WSC. On the
other side, the increased graph size due to “#cee” and “#sce”
would degrade the performance of ILP. As we show later, with

Table 2: Statistics on decomposition graph.
circuit initial DG updated DG

#ce #se #cee #sce #WSC
C432 1063 964 36 14 50
C499 2428 1437 78 88 166
C880 2464 2439 177 196 373
C1355 3101 3768 74 104 178
C1908 5109 5648 262 96 358
C2670 8750 8655 596 420 1016
C3540 10896 10864 850 768 1618
C5315 16049 15654 1112 670 1782
C6288 13389 11014 264 530 794
C7552 22516 23525 1453 1122 2575
S1488 5273 4284 499 428 927
S38417 69270 57204 6302 2908 9210
S35932 86540 58661 8553 7634 16187
S38584 170079 7140 14191 7764 21955
S15850 169147 124969 12422 8920 21342
total 586074 336226 46869 31662 78531
avg 1 1 0.08 0.09 -

proposed graph reduction techniques, this side effect is well
encountered.

Table 3: Result Comparison
[2] WISDOM

circuit cflt stitch WL(e5) CPU cflt stitch WL(e5) CPU
C432 55 11 2.781 0.27 48 14 2.784 0.09
C499 258 11 5.792 0.74 214 11 5.809 0.27
C880 125 105 2.920 0.62 32 83 2.925 0.2
C1355 82 89 86.790 0.66 31 102 86.810 0.32
C1908 99 346 14.440 1.91 55 343 14.462 0.4
C2670 254 749 23.730 3.13 49 655 23.857 1.08
C3540 472 643 30.162 3.38 67 619 30.350 0.73
C5315 413 1234 43.700 3.6 89 949 43.967 1.1
C6288 912 331 35.240 5.78 663 340 35.340 0.76
C7552 708 1544 62.300 4.5 166 1338 62.303 1.6
S1488 274 316 14.300 2.01 60 134 14.372 0.44
S38417 3866 868 184.000 24.88 2518 471 184.552 5.51
S35932 11731 1383 407.400 203.24 7006 875 409.240 14.22
S38584 11254 948 443.000 127.75 6635 1139 444.580 11.67
S15850 11579 3392 431.200 66.15 7198 2103 433.780 12.26

total 42082 11970 1787 448.62 24831 9176 1795 50.6
ratio 1 1 1 1 0.59 0.77 1.004 0.11

5.2 Result Comparison
For comparison, we implement a post-routing mask decom-

position algorithm [2], which is the extension of [1]. The met-
ric unresolvable conflict edge they applied is actually consistent
with our definition of conflict, which is described from another
point of view. This algorithm is performed directly on the ini-
tial DG, which is obtained in the first step of our flow.

We can not compare the work of [3,10] directly. In [3], they
work on extremely fine metrics, conflict grid. In [10], their
algorithm is designed planar graph only, while our decomposi-
tion graph is not. We are also not able to compare with an-
other DPL-driven post-routing layout modification work [14],
because our targeted problem is different. In [14], they focus
on technology migration for stand-cell library only, and area
minimization is one of their objectives. We work on full-chip
design perturbation, and the chip size is fixed.

Table 3 lists the comparison of decomposition results, where
“cflt” and “stitch” are the number of conflicts and stitches in
the colored layout. The column “WL” shows the wire length
in terms of “nm”. CPU is the computational time in terms of
“second”, including both graph construction and ILP solving
steps.

As we can see, our algorithm significantly outperforms [2] in
terms of quality, which generates a solution with 41% and 23%
reduction on conflict and stitch number respectively. The lay-
out perturbation ratio is only 0.4%. With respect to runtime,
we achieve 9X speed-up. For some benchmark, such as c432,
WISDOM does produce more stitches. The reason is that in
our experimental setting, conflict elimination is set as higher
priority job over splitting reduction. The number of stitches
could increase comparatively, to better remove the conflicts.

37

Table 4: The effectiveness of various acceleration methods
circuit CPU(base) odd-cycle union optimization +c-independent +suboptimal solution pruning

#nodes #edges CPU #CC #CG CPU #var #con CPU
w/o w w/o w w/o w w/o w w/o w

C432 0.35 2350 715 3398 798 0.26 127 138 0.22 1596 792 1502 914 0.09
C499 1.2 3996 1539 7485 1926 0.78 164 180 0.55 3854 1933 3449 2013 0.27
C880 0.64 5525 2195 6562 2428 0.57 293 311 0.64 4864 1904 4604 2254 0.2
C1355 0.87 7893 3084 9633 7893 0.67 551 585 0.82 6482 2796 6291 3449 0.32
C1908 2.26 12122 4709 15321 12122 1.35 635 699 1.52 10366 4578 9828 5497 0.4
C2670 2.96 18784 8788 23875 18784 2.05 916 977 2.93 20078 8849 18765 10229 1.08
C3540 4.53 23878 10108 29925 23878 2.61 1196 1227 2.77 22784 9092 21469 10603 0.73
C5315 3.91 34556 15245 44201 17320 2.92 1779 1920 2.18 34650 14567 32424 17056 1.1
C6288 5.82 29192 8460 40968 9181 3.03 1266 1668 4.89 18368 8006 17239 9486 0.76
C7552 5.22 50650 21565 62801 24029 4.14 2716 2869 1.27 48066 20061 45441 23769 1.6
S1488 1.38 10538 4752 9771 5430 1.2 585 622 1.38 100680 4046 10050 4686 0.44
S38417 27.54 141535 47592 127928 52660 14.67 5791 6989 12.53 105342 44790 99055 5222 5.51
S35932 223.56 311931 139035 149018 152925 57.51 17123 20960 29.58 305906 131384 288123 147123 14.22
S38584 129.85 338771 117352 181101 131147 49.46 13241 16605 27.97 262388 114148 245135 126849 11.67
S15850 83.32 326454 132463 298576 147940 41.93 14960 18207 31.73 295942 123066 277157 137241 12.26
total 493.41 1318175 517602 1010563 608461 183.15 61343 73957 120.98 1241366 490012 1080532 506391 50.65
ratio 1 1 0.39 1 0.60 0.37 1 1.20 0.24 1 0.39 1 0.47 0.1

Although after WISDOM, there are several conflicts and
stitches remaining in the design, we observe they are mainly re-
sulting from the pins/vias in standard cells and highly-congested
routing paths. While we search WSCs, most of these features
are set as fixed for avoiding modifying design and timing too
much. Thus, our WISDOM can be used in combination with
high-level DPL-friendly design methodologies [11–14].

5.3 Efficiency
We further study the effectiveness of various acceleration

techniques in Table 4. “CPU(base)” shows the runtime of our
algorithm without proposed speed-up approaches, in terms of
“seconds”. For fair comparison, the layout partition technique
in [2] is applied in this baseline. Then, we add in each acceler-
ation technique incrementally. In all the columns, “w/o” and
“w” show the respective data without and with certain method,
and “CPU” is the resulting runtime after it is adopted. We
double check simulation results, and ensure that no solution
quality is lost by applying these graph reduction approaches.

The columns under “odd-cycle union optimization” show the
graph statistics of initial DG and its odd-cycle union. The num-
ber of nodes and edges are reduced by 61% and 40% respec-
tively in average. This reduction is significant in terms of ILP
solving, which has exponential complexity with respective to
problem size. As seen from Table 4, we achieve 2.7x speed-up.

The effectiveness of coloring-dependent group computing is
investigated then with results listed under “+c-independent”.
“#CC” is the number of connected components, computed
by the layout partition technique in [2]. By using cut ver-
tex, we further divide each component to multiple coloring-
independent groups, which can also be solved by ILP individ-
ually. The total number of such groups is shown in “#CG”,
which is averagely 20% more than “#CC”. With this tech-
nique, the ILP problem size becomes smaller, and the runtime
is further reduced by 37%.

Last, we apply the technique of suboptimal solution pruning,
where the results are listed under “+suboptimal solution prun-
ing”. “#var” and “#con” are the total number of variables
and constraints in the ILP formulations. As we can see, solu-
tion pruning technique can reduce their number by 61% and
53%, respectively. Therefore, the coloring assignment can be
effectively accelerated by another 2.4X.

6. CONCLUSION
In this paper, we have developed a wire spreading enhanced

decomposition of masks algorithm for double patterning lithog-
raphy. Our approach is featured by integer linear programming
and efficient graph reduction techniques. The experimental re-
sults are very promising.

7. REFERENCES

[1] Andrew B. Kahng, Chul-Hong Park, Xu Xu, and Hailong Yao.
Layout decomposition for double patterning lithography. In Proc.
Int. Conf. on Computer Aided Design, November 2008.

[2] Andrew B. Kahng, Chul-Hong Park, Xu Xu, and Hailong Yao.
Revisiting the layout decomposition problem for double patterning
lithography. In Proc. of SPIE, October 2008.

[3] Kun Yuan, Jae-Seok Yang, and David Z. Pan. Double patterning
layout decomposition for simultaneous conflict and stitch
minimization. In Proc. Int. Symp. on Physical Design, March
2009.

[4] Yue Xu and Chris Chu. GREMA: Graph Reduction based Efficient
Mask Assignment for double patterning lithography. In Proc. Int.
Conf. on Computer Aided Design, Nov 2009.

[5] Micrea Dusa, Jo Finders, and Stephen Hsu. Double patterning
lithography: The bridge between low k1 ArF and EUV. In
Microlithography World, Feb 2008.

[6] Y. Borodovsky. Lithography 2009 overview of opportunities. In
Semicon West, 2009.

[7] G. Bailey, A. Tritchkov, J. Park, L. Hong, V. Wiaux,
E. Hendrickx, S. Verhaegen, P. Xie, and J. Versluijs. Double
pattern EDA solutions for 32nm HP and beyond. In Proc. of
SPIE, volume 6521, 2007.

[8] Tsann-Bim Chiou, Robert Socha, Hong Chen, Luoqi Chen,
Stephen Hsu, Peter Nikolsky, Anton van Oosten, and Alek C.
Chen. Development of layout split algorithms and printability
evaluation for double patterning technology. In Proc. of SPIE,
March 2008.

[9] Jae-Seok Yang, Katria Lu, Minsik Cho, Kun Yuan, and David Z.
Pan. A New Graph-theoretic, Multi-objective Layout
Decomposition Framework for Double Patterning Lithography. In
Proc. Asia and South Pacific Design Automation Conf.,
Janunary 2010.

[10] Yue Xu and Chris Chu. A Matching Based Decomposer for Double
Patterning Lithography. In Proc. Int. Symp. on Physical Design,
March 2010.

[11] Minsik Cho, Yongchan Ban, and David Z. Pan. Double patterning
technology friendly detailed routing. In Proc. Int. Conf. on
Computer Aided Design, October 2008.

[12] Xin Gao and Luca Macchiarulo. Enhancing Double-Patterning
Detailed Routing With Lazy Coloring and Within-Path Conflict
Avoidance. In Proc. Design, Automation and Test in Eurpoe,
March 2010.

[13] Kun Yuan, Katrina Lu, and David Z. Pan. Double patterning
lithography friendly detailed routing with redundant via
consideration. In Proc. Design Automation Conf., July 2009.

[14] Chin-Hsiung Hsu, Yao-Wen Chang, and Sani R. Nassif.
Simultanous layout migration and decomposition for double
patterning technology. In Proc. Int. Conf. on Computer Aided
Design, November 2009.

[15] Piotr Bermany, Andrew B. Kahng, Devendra Vidhani, Huijuan
Wang, and Alexander Zelikovsky. Optimal Phase Conflict Removal
for Layout of Dark Field Alternating Phase Shifting Masks. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 19(2):175–187, Feb 2000.

[16] Yifang Liu, Weiping Shi, and Jiang Hu. Buffering Interconnect for
Multicore Processor Designs. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 27(12):2183–2196,
December 2008.

[17] http://www.si2.org/?page=69.

[18] http://www.gnu.org/software/glpk/glpk.html/.

38

