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Abstract

Process variation has become a major concern in the
design of many nanometer circuits, including interconnect
pipelines. This paper develops closed-form models to pre-
dict the delay distribution of an interconnect pipeline stage
and the slew distributions of all the nets in the circuit. Also,
a buffer sizing and re-placement algorithm is presented to
minimize the area of interconnect pipelines while meeting
the delay and slew constraints. Experiments show that ig-
noring location dependent variation can cause a timing
yield loss of 8.8% in a delay limited circuit, and the area
can be improved by over 10% when the location depen-
dent variation and residual random variation are under-
stood and separated. Furthermore, under equivalent area,
an interconnect pipeline optimized with only sizing changes
may violate the slew constraint on over 50% of the nets, so
location change is needed to best optimize these circuits.

1. Introduction

As the physical dimensions in large scale integrated cir-
cuits decrease, the interconnect delay becomes more domi-
nant compared to the gate delay. This is especially true for
global interconnects, in which the delay scales the worst [1].
Buffer insertion is the primary method to improve the de-
lay of long wires, but this may not be sufficient to send a
global signal across the chip. Thus, interconnect circuits
must be pipelined to several stages to meet chip frequency
targets. [2] and [3] provide methods to model and design in-
terconnect pipelines, but they are limited in their ability to
handle process variation. [2] does not consider variation and
a statistical extension is not straightforward. [3] assumes in-
dependent delays, so the variance is underestimated.

When modeling and designing with variation, the varia-
tion of the mean must be considered in addition to the purely
random variation [4]. Spatial correlation among process pa-
rameters must also be considered [5]. Generally, the gate

length is the most critical device parameter, and intercon-
nect width is important as it affects performance.

Statistical static timing analysis has been the primary
method to model delay variation [6]- [8]. However, most
of the statistical timing methods do not explicitly consider
slew, a critical part in the design of interconnect pipelines.
[7] is able to statistically propagate slew, but the variabil-
ity of the input slews is not chain-ruled into the canonical
delay model. [8] does consider slew propagation, but inter-
connect variations are not included. Furthermore, the sta-
tistical timing methodologies only present models and not
optimization routines. The limited research publications on
optimization considering variation [9]- [11] do not include
both slew as an optimization constraint and gate location
as an optimization lever. We later show that the location is
critical in best meeting the slew constraints.

This research provides several contributions that address
the aforementioned limitations for interconnect pipelines.
First, closed-form equations are developed that predict both
the delay distribution of an interconnect pipeline stage and
the output slew distribution of every segment. The model
considers statistical slew propagation, location dependent
process variation (LDPV), and spatial correlation among
process parameters. Second, an optimization routine is pre-
sented that uses both sizing and placement to meet the de-
lay and slew constraints with the least area. Third, key ex-
periment results show that interconnect pipelines designed
when ignoring LDPV may have a timing yield loss of 8.8%
in a delay limited circuit. Also, the area of interconnect
pipelines can be reduced by over 10% when LDPV is fully
understood. Finally, sizing alone under equivalent area may
cause over 50% of the nets to violate the slew constraint,
so both sizing and location change are needed for the best
optimization.

The remainder of the paper is outlined as follows. Sec-
tion 2 develops the interconnect pipeline model, and section
3 tests its accuracy and precision. Section 4 explains the op-
timization algorithm. Section 5 presents our experimental
results, and finally, section 6 concludes this paper.



2. Interconnect Pipeline Model

The first goal of this research is to develop a closed-form
model that predicts the delay distribution of an interconnect
pipeline and the slew distribution of all the nets in the cir-
cuit. The interconnect pipeline is assumed to be a two-pin
circuit. The model includes transistor gate length and wire
width as the process parameters that are random variables.

2.1. Base Model

The base model provides the foundation for the statisti-
cal models by writing and fitting equations for the delay and
output slew of one single interconnect segment, seen in fig-
ure 1. The curve fitting technique is widely used. However,
approaches such as [12] are not statistical in nature and do
not consider slew. Also, the equations must be functions of
wire length and gate size for rapid solution evaluation dur-
ing optimization.

Therefore, the key strategies in developing these equa-
tions are to write them as functions of input slew and to
include inverter size and wire length for later use as op-
timization variables. In addition, the equations are linear
functions of the random variables so that the future statisti-
cal equations remain closed-form. The inputs to this model
for segment i are as follows: the gate length of the driving
inverter (Li), the size of the driving inverter (Ii), the input
slew from the previous segment (Si−1), the size of the load
inverter (Ii+1), the wire width (Wi), and the wire length
(li). The equations for the delay and slew of segment i are
written as:
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where qk and rk are fitting coefficients (functions of wire
length). We derived the qk and rk coefficients using
HSPICE, the 65nm models from Berkeley PTM [13], and
wire resistance and capacitance calculations from [14]. The
width and spacing were 200nm and 200nm based on the
guidelines from [1]. To preserve the quadratic relationship
between delay and wire length, the qk and rk coefficients
were found separately for each wire length and fit to second
order polynomial functions of wire length.

The transistor gate length and inverter size cause the
most error in the fitted equations. We simulated a range

Figure 1. Base segment variables

of 60nm to 70nm for the gate length and 12 to 26 times
the minimum width for the inverter size and found that the
fit was acceptable in these ranges. The average errors for
the delay and slew prediction were near 0% while the worst
error was 6.2% for the delay and -12.9% for the slew. How-
ever, the accuracy of the model need not be limited by one
single fit for the entire range of parameters. If more accu-
racy is needed or the range of process variation is too large
for one fit, the coefficients may be separately derived for
different ranges of the model parameters.

2.2. Stage Model

Given the base equations, the stage model predicts the
delay distribution of a pipeline stage and the output slew
distribution for each net. A pipeline stage is defined as
a source flip-flop, inverters driving long wire lengths, and
a sink flip-flop. When cascading segments together, there
are three key points that must be considered. First, spatial
correlation among process parameters causes the correlated
parameters to move in the same direction and the variance
to increase significantly. Second, due to LDPV, each gate
length and wire width may have its own distribution. Thus,
the process parameters are modeled with a multivariate nor-
mal where each parameter may have its own mean and stan-
dard deviation. The correlations among the parameters are
calculated with the model in [5]. The gate lengths and wire
widths are assumed to be independent since they occur at
different times during the process flow. The third key con-
sideration is slew propagation. When global interconnect
segments are cascaded, the ouput slew of one segment af-
fects the delay and slew of all downstream segments. Thus,
we write the delay and slew of a segment as functions of the
upstream random variables.

For the stage model equations, the following substitu-
tions are made to improve readability. The subscript of the
coefficient represents the segment number of the coefficient.
For the delay coefficients: d1i = q1i

Ii
+ q2i, d2i = q3i

Ii
+ q4i,
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First, we write the delay of segment i in a set of cascaded
segments as a function of the upstream random variables.
We use (2) to recursively propagate the slew from the start
of the circuit to segment i. The first segment is denoted with
the subscript of 1, and S0 is the input slew to the intercon-
nect pipeline stage.
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The delay of a pipeline stage, Dps, with n segments
is formulated as the summation of the segment delays,
Dps =

∑n
i=1 Di. We rewrite Dps as a linear function of

the process paramaters to facilitate statisitical formulation:
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The output slew for segment i is similarly written: Si =
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Finally, the model equations need to be written in sta-
tistical form. We formulated the equations in such a way
that the delay and slew remain linear with respect to the
process parameters even after the slew propagation. Since

the process parameters are modeled with multivariate nor-
mal distributions, the delay and slew distributions are also
normal. Therefore, we have closed-form equations,(10) to
(13), to calculate the mean and variance of the delay and
slew distributions considering statistical slew propagation
and correlations among process parameters.
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2.3. Pipeline Model

In VLSI circuits, the maximum operating frequency is
set by the worst case flip-flop to flip-flop delay. In a
pipelined interconnect circuit with κ pipeline stages, the
maximum delay among all the stages is written as Dm =
max(Dps1 ,Dps2 , ...,Dpsκ

). We use the same method to
estimate this maximum that [6] used based on [15]. The es-
timation returns the maximum as a normal distribution, but
this is not exactly true. Nonetheless, the estimation is later
verified to be accurate. Lastly, given a target delay, Dtg , the
timing yield, Y , of the global interconnect pipeline circuit
is calculated with the following.

Y =
1

Dm σ

√
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2D2
m σ

)
dx (14)



Table 1. Estimation Errors on Test Circuits
ModelEst ErrAvg ErrSDev ErrMin ErrMax

Output Slew Prediction Errors
µ -0.533% 1.30% -5.14% 4.02%
µ + 1σ -0.813% 1.67% -6.42% 4.47%
µ + 2σ -1.09% 2.11% -7.63% 4.85%
µ + 3σ -0.940% 2.58% -8.45% 5.59%

Pipeline Stage Prediction Errors
µ 0.780% 0.656% -0.627% 2.83%
µ + 1σ 0.418% 0.688% -1.08% 2.54%
µ + 2σ 0.118% 0.728% -1.64% 2.36%
µ + 3σ 0.233% 0.861% -1.85% 3.31%

Maximum Delay Prediction Errors
µ 0.549% 0.516% -0.581% 1.73%
µ + 1σ 0.194% 0.541% -1.03% 1.34%
µ + 2σ -0.109% 0.573% -1.40% 1.19%
µ + 3σ -0.057% 0.725% -2.02% 1.28%

3. Model Validation

To test the accuracy and precision of the model over a
large number of circuits, 100 random interconnect pipeline
circuits were constructed with a varying number of pipeline
stages, segments per pipeline stage, total wire length, and
inverter sizes. Each segment had a randomly selected gate
length and wire width distribution. For each of these 100
random circuits, 2000 random instantiations were created
considering spatial correlations. Each random circuit was
simulated with HSPICE. Table 1 summarizes the error in
predicting the delay and slew distributions at the 50%,
84.1%, 97.7%, and 99.9% points. Overall, the model is
suitable to guide an optimization algorithm, as the error per-
centages in predicting the delay and slew are small and the
models have good precision.

4. Interconnect Pipeline Optimization

We propose SGASPIP (Statistical Greedy Algorithm for
Sizing and Placment of Interconnect Pipelines) to minimize
the area of an interconnect pipeline while meeting the delay
and slew constraints. The area is defined as the total number
of minimum widths in the circuit. The following is the prob-
lem statement. The inputs are the number of stages in the
pipeline, the number of inverters in each stage, the location
and size of the source and sink flip-flops, a set of possible
inverter sizes and placement locations, the mean and vari-
ance for the gate length and wire width for each potential
placement location, the XL and ρb values for process pa-
rameter spatial correlations [5], and finally the µ+3σ delay
and slew constraints. The locations and sizes of the source
and sink flip-flops cannot change. Otherwise, the sizes and
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Figure 2. Example of location shifting

locations of the other flip-flops and inverters may be varied.
We assume the wire width and spacing are fixed due to man-
ufacturing limitations, so they are not considered as opti-
mization variables. The algorithm returns the locations and
sizes of the inverters and flip-flops from the minimum area
circuit that meets the specified delay and slew constraints.

Since we consider both sizing and location, this is a
non-trivial optimization problem. When LDPV is present,
the delay and slew equations are more complicated than
quadratic functions of location. Also, the circuit delay and
output slew are functions of I−1. The lack of a closed-
form equation to calculate the maximum of the correlated
stage delays further complicates the optimization process.
Because this is a non-linear and non-convex optimization
problem, an intelligent search heuristic is used to find a near
optimal solution. Our algorithm is unique because none of
the optimization methods in literature statistically optimize
both the delay and slew for global nets using both sizing and
location change.

The first key element of our algorithm is the ability
to evaluate the statistical sensitivity of the delay and slew
with sizing and location changes. The closed-form equa-
tions show how both the mean and variance change with
both sizing and location changes. Another key element
is the evaluation of the strength of each solution. The
delay deviation is defined as: DlyDev = Dmµ+3σ

−
DlyCon. The slew deviation is the summation of the dis-
tances from the constraint for the segments that violate the
constraint:SlwDev =

∑η
i=1 max(0, Siµ+3σ

− SlwCon),
where η is the total number of segments. The slew margin is
similarly calculated:SlwMar =

∑η
i=1 max(0, SlwCon−

Siµ+3σ
). For a given area, the algorithm first considers de-

lay deviation, then slew deviation, and finally slew margin
in evaluating the strength of a solution.

The FindOptimalLocations method is another crucial
component of the algorithm. It works by finding the seg-



ments with the highest and lowest slews and shifting the ap-
propriate segments, see figure 2, first to minimize the slew
deviation and then to maximize the slew margin. This pro-
cess repeats until the same solution has been visited twice,
indicating that cycling occurred. This works well because it
aids in meeting the slew constraints without increasing area.

Algorithm 1 SGASPIP Main
1: procedure SGASPIP(Ckt,PV ar,DlyCon,SlwCon)
2: assign maximum size to each inverter in Ckt
3: assign locations for equal spacing in Ckt
4: repeat
5: PrevGlobalCkt← Ckt;
6: repeat
7: FindOptimalLocations;
8: QuickDownsize;
9: until (QuickDownsize not successful)

10: repeat
11: PrevCkt← Ckt;
12: NewCkt← DownsizeOneBest;
13: FindOptimalLocations;
14: until (constraints violated)
15: Ckt← PrevCkt;
16: if (Ckt == Best Global Solution) then
17: BestCkt← Ckt;
18: end if
19: GlobalUpsize;
20: until (Ckt == PrevGlobalCkt)
21: end procedure

The pseudo code of SGASPIP is shown in Algorithm
1. In lines 6 to 9, QuickDownsize aggressively lowers the
area by downsizing all segments with a certain amount of
slew margin. In lines 10 to 15, DownsizeOneBest reduces
area more slowly by downsizing one segment each time and
avoiding changes that violate constraints. On line 20, Glob-
alUpsize upsizes all segments that have the worst margin
relative to the slew contraint to intelligently reset the solu-
tion for global search.

5. Optimization Experiment Results

With the model equations and SGASPIP, we next show
three key experiment results. Table 2 summarizes the four
test circuits for these experiments. The last row is important
because it indicates whether the circuits are delay or slew
limited, as this has a significant impact on the results.

First, ignoring LDPV during optimization causes both
the delay and slew constraints to be violated. We optimized
the four test circuits ignoring LDPV. Then, we solved these
optimized circuits when the gate length mean increased lin-
early from 63nm at the sink to 67nm at the source. Table
3 shows that the timing yield loss increased to a significant

Table 2. Test circuits for experiments
Ckt1 Ckt2 Ckt3 Ckt4

Total Length(µm) 6000 7200 12800 5400
Pipe Stages 2 3 4 3
Repeaters per Stage 10 8 10 6
Source/Sink FF Size 20/20 22/22 20/20 18/18
PlaceResolution(µm) 10 10 20 10
Dly Constraint(ps) 460 370 500 300
Slw Constraint(ps) 60 60 75 60
Dly/Slw Limited Both Both Dly Slw

Table 3. Ignoring LDPV causes violations
Ckt1 Ckt2 Ckt3 Ckt4

Ignore LDPV
Dlyµ(ps) 436.6 353.8 484.7 265.7
Dlyσ(ps) 11.61 9.53 11.3 7.67
Dly Yield Loss 2.19% 4.46% 8.79% 0%
Slew Violations 40.0% 37.5% 2.5% 41.1%
Worst Slwµ 57.2 57.5 69.8 57.0
Worst Slwσ 1.69 1.66 1.90 1.52
Worst Slw Yld 95.4% 93.1% 99.7% 97.6%

Consider LDPV
Dlyµ(ps) 427.8 344.6 471.7 261.3
Dlyσ(ps) 10.64 8.36 9.41 7.04
Dly Yield Loss 0.12% 0.12% 0.13% 0%

Increase Caused by Ignoring LDPV
Dly Yield Loss 17.7x 37.5x 67.1x 0x

8.8% level for the delay limited circuit. Also, all the circuits
that are not purely delay limited have a significant percent-
age of nets that violate the slew constraint.

The constraints are violated because ignoring the LDPV
ignores a part of the variability of the circuit. Therefore,
the second key experiment shows the area of the circuit can
be better reduced when the difference between location de-
pendent variability and residual random variability is un-
derstood. For the fully random case, the mean gate length
and standard deviation are 65nm and 1.33nm everywhere.
In the LDPV case, the mean gate length linearly increases
from 63nm at the source to 67nm at the sink. The standard
deviation is 0.67nm everywhere. The minimum -3σ and
maximum 3σ are actually the same for both circuits, but ta-
ble 4 shows that when part of the variability is understood
to be LDPV, the area can be better optimized by over 10%.

Lastly, sizing alone is not sufficient to create an opti-
mal circuit that successfully meets the delay and slew con-
straints. The area result from the prior LDPV experiment
is set as the target area for a size only optimization. An it-
erative algorithm starts with the maximum sizes and down-



Table 4. Area is better optimized when LDPV
is understood

Ckt1 Ckt2 Ckt3 Ckt4
Variation Type Total Area Measurement

All random 482 578 830 380
Random&LDPV 426 502 730 338

Area Decrease 11.6% 13.1% 12.0% 11.1%

Table 5. Size only optimized circuit cannot
meet slew constraints

Ckt1 Ckt2 Ckt3 Ckt4

Area Limit 452 538 776 356
Dly Violation No Yes No No

Dly Yield Loss N/A 0.15% N/A N/A
Slew Violations 40% 46% 0% 56%
Dly/Slw Limited Both Both Dly Slw

sizes until it reaches the area target. Table 5 shows that the
size only optimization causes a significant percentage of the
nets to violate the slew constraint on the circuits that are not
purely delay limited. Without the freedom to change loca-
tion, the circuit cannot be optimized as well under equiva-
lent area since slew greatly depends on wire length.

6. Conclusion

This research develops accurate closed-form equations
to predict the delay distribution of an interconnect pipeline
stage and the slew distribution of every net. We present
a unique algorithm, SGASPIP, that optimizes an intercon-
nect pipeline. Experiments show that circuits optimized ig-
noring LDPV may have a significant timing yield loss and
the area can best be reduced when the LDPV and resid-
ual random variation are separated. Lastly, sizing alone is
not sufficient to best optimize the circuit because the slew
constraints are much more difficult to meet. Future work
includes adding a power constraint to the modeling and op-
timization.
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