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1 Introduction

The placement algorithms presented in the previous chapters mostly focus on minimizing the total wire-
length (TWL). Timing-driven placement (TDP) is designed specifically targeting wires on timing critical
paths. It shall be noted that a cell is usually connected with two or more cells. Making some targeted nets
shorter during placement may sacrifice the wirelengths of other nets that are connected through common
cells. While the delay on critical paths decreases, other paths may become critical. Therefore, timing-driven
placement has to be performed in a very careful and balanced manner.

Timing-driven placement has been studied extensively over the last two decades. The drive for new
methods in timing-driven placement to maximize circuit performance is from multiple facets due to the
technology scaling and integration: (1) growing interconnect versus gate delay ratios, (2) higher levels of
on-die functional integration - which makes global interconnects even longer, (3) increasing chip operat-
ing frequencies which make timing closure tough, (4) increasing number of macros and standard cells for
modern system-on-chip (SOC) designs. These factors create continuing challenges to better timing-driven
placement

Timing-driven placement can be performed at both global and detailed placement stages (see previous
chapters on placement). Historically, timing-driven placement algorithms can be roughly grouped into two
classes: net-based and path-based. The net-based approach deals with nets only, with the hope that if we
handle the nets on the critical paths well, the entire critical path delay may be optimized implicitly. The two
basic techniques for net-based optimization are through net weighting [17, 5, 37, 50] and net constraints [22]
[63] [55] [48] [24] [29]. The path-based approach directly works on all or a subset of paths [31, 59, 61, 11].
The majority path-based approaches formulate the problem into a mathematical programming framework
(e.g., linear programming). There are pros and cons for both net and path based approaches in terms of
runtime/scalability, ease of implementation, controllability, and so on. Modern timing driven placement
techniques tend to use some hybrid manner of both net-based and path-based approaches [39].

In this chapter, we will discuss fundamental algorithms as well as recent trends of timing-driven place-
ment. Due to the large amount of works in timing-driven placement, it is not possible to exhaust all of
them in this chapter. Instead, we will describe the basic ideas and fundamental techniques, and point out
recent researches and possible future directions. We will first cover the basic building blocks for timing
driven placement. Then the next two sections will discuss net-based approaches, i.e., through net weighting
and net constraints. Then we will survey the basic formulations and algorithms behind the path (or timing
graph) based approach. Additional techniques and issues in the context of timing driven placement will be
discussed, followed by conclusions.

2 Building Blocks and Classification

2.1 Net Modeling

Given a placement, net modeling answers a fundamental question how the net is modeled for its routing
topology and wirelength computation/estimation. Figure 1 shows different net modeling strategies for a
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multiple-pin net.

Bounding Box model Clique model Star model Steiner model

Figure 1: Different net models which can be used for placement.

The simplest and most widely used method to compute wirelength is the half-perimeter wirelength
(HPWL) of its bounding box. For a net i, let li, ri, ui and bi represent the left, right, top, and bottom
locations of its bounding box. Then the HPWL of net i is

HPWLi = ri − li + ui − bi (1)

HPWL is the lower bound for wirelength estimation, and it is accurate for two and three-pin nets, which
account for the majority nets.

In analytical placement engines, wirelength is often modeled as a quadratic term (or pseudo-linear term
as in recent literature [34] [6]). In those engines, clique and star models are often used. In the clique model,
an edge is introduced between every pin pair of the net. In the star model, an extra star point located at the
geometric center is created and each pin is connected to the star point. In general, small nets (e.g., less than 5
pins) can use the clique model, but for large nets with a lot of pins, clique model is not friendly to the matrix
solvers since it creates dense matrices. Star models are preferred for large nets. For the clique model, since
it is a complete graph with far more edges than necessary to connect the net, each edge is usually assigned
a weight of 2/n (where n is the number of pins of the net) [4].

The bounding box, clique, and star models are three most popular net models. There are other net
models, such as Steiner trees, which are more accurate for nets with four or more pins. However, in most
designs two and three pin nets are the majority of the entire netlist. For example, in the industry circuit suite
from [3], two and three pin nets constitute 64% and 20% of the total nets, respectively [56]. With exception
of very few placers [1], Steiner tree based models are seldom used since they are computationally expensive.
There are some recent works trying to link Steiner tree with placement, e.g., in a partition-based placer [53].
More research is needed to evaluate or make Steiner-based placement mainstream.

2.2 Timing Analysis and Metrics

As its name implies, timing driven placement has to be guided by some timing metrics, which in turn need
delay modeling and timing analysis. Timing-driven placement algorithms can use different levels of timing
models to tradeoff accuracy and runtime. In general, the switch level RC model for gates and Elmore
delay model for interconnects are fairly sufficient. There are more accurate models [47], but they are not
extensively used in placement. One main reason is the higher runtime. The other reason is that during
placement, routing is not done yet. It is not very meaningful to use more accurate models if errors from
those uncertainties are even greater.

Based on the gate and interconnect delay models, static or even path1 based timing analysis can be
performed. Static timing analysis [40] computes circuit path delays using the critical path method [52]. From
the set of arrival times (Arr) asserted on timing starting points and required arrival times (Req) asserted
on timing-end points, static timing analysis propagates (latest) arrival time forward and (earliest) required

1In most cases, static timing analysis is sufficient for timing driven placement. The path-based timing analysis is more accurate,
e.g., to capture false paths. But it is very time consuming, and one may do it only if necessary, e.g., on a set of critical paths.
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arrival time backward, in the topological order. Then the slack at any timing point t is the difference of its
required arrival time minus its arrival time.

Slk(t) = Req(t)−Arr(t) (2)

STA can be performed incrementally if small changes in the netlist are made. For more details on delay
modeling and timing analysis, the reader is referred to Chapter 3.

Timing convergence metrics measure the extent to which a placement satisfies timing constraints. They
also give an indication of how difficult it would be for a design engineer to manually fix timing problems.
The most commonly used timing closure metric is the worst negative slack (WNS)

WNS = min
t∈Po

Slk(t) (3)

where Po is the set of timing end points, i.e., primary outputs (POs) and data inputs of memory elements.
To achieve timing closure, WNS should be non-negative. For nanometer designs with growing variability,
one may set the slack target to be a positive value to safe guard variations from process, voltage, or thermal
issues. The WNS, however, only gives information about the worst path. It is possible that two placement
solutions have similar WNS values, but one has only a single critical path while the other has thousands of
critical and near critical paths. The figure of merit (FOM ) is another very important timing closure metric
[50]. It can be defined as follows.

FOM =
∑

t∈Po,Slk(t)<Slkt

(Slk(t)− Slkt) (4)

where Slkt is the slack target for the entire design. If Slkt = 0, the FOM is reduced to the total negative
slack (TNS) [48].

2.3 Overview of Timing-Driven Placement

The overview of timing driven placement is shown in Figure 2. It has three basic components: timing
analysis, core placement algorithms, and interfaces between them by translating timing analysis/metrics
into certain weights or constraints for core placement engines to drive and guide timing driven placement.

The previous section discusses the basics of timing analysis and metrics from a given netlist. However,
which netlist to start with so that we can have a meaningful timing analysis to guide timing-driven placement
is a very important yet open question. For example, shall we start from an unplaced netlist or some initial
placement? For modern timing closure, many buffers also need to be inserted for high fanout nets and
long interconnects to get a reasonable timing picture (otherwise, there may be many loading/slew violations
which make timing reports meaningless). On the other hand, those buffers will change the netlist structure
for timing-driven placement. Shall they be kept or stripped out during timing driven placement? There is
very little literature covering this netlist preparation step. A reasonable strategy can be as follows. First,
we start with some initial placement (e.g., wirelength driven), then perform some rough buffering/fanout
optimization to get a reasonable timing estimation for the entire chip to guide timing driven placement
engine. Whether to keep those buffers during timing driven placement may vary among different physical
synthesis systems.

Placement has been one of the most heavily studied physical design topics. Some of the most popu-
lar placement algorithms include analytical/force-directed placement, partition-based placement, simulated
annealing based placement, and linear-programming based placement. The reader is referred to Chapters
15-18 for detailed discussions.

The most interesting aspect of the timing driven placement is the mechanism to translate timing metrics
into actions to drive the core place engines. The focus of the rest of this chapter will be on this aspect.
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Core placement algorithms

• Force-directed
• Partitioning-based
• Simulated annealing
• LP-based, …

Timing analysis/metrics

• Gate
• Interconnect
• Static timing analysis
• Path-based timing analysis

Interface to Placer

• Net weights
• Net constraints
• Path constraints, etc.

Figure 2: Basic building blocks and overview of timing driven placement.

Based on that, the timing-driven placement can be roughly classified into net-based and path-based ap-
proaches. The net-based approach, as its name implies, deals with individual nets. Since timing analysis
inherently deals with paths (with timing propagation), the timing information is then translated into either
net constraints or net weights [17, 5, 37, 50] to guide timing-driven placement engines. The main idea of net
constraint generation (or delay budgeting) is to distribute slack for each path to its constituent nets such that a
zero-slack solution is obtained. The delay budget for each net is then translated into its wirelength constraint
during placement. The main idea of net weighting is to assign higher net weights to more timing-critical
nets while minimizing the total weighted wirelength objective. Net weighting gives direction for timing
optimization through shortening critical nets, but it does not have exact control since the objective is the
total weighted wirelength; the net constraint approach specifies that, but it may be too much constrained in
terms of global optimization. Both processes can be iteratively refined as more accurate timing information
is obtained during placement. A systematic way of explicit perturbation control is important for net-based
algorithms.

The path-based approach directly works on all or a subset of paths. The majority of this approach
formulate the problem into mathematical programming framework (e.g., linear programming). It usually
maintains an accurate timing view during the placement optimization [7]. However, its drawback is its poor
scalability and complexity due to possible exponential number of paths to be simultaneously optimized [7].
An effective technique is to embed timing graph/constraint through auxiliary variables [31]. The mathemat-
ical programming based approach needs to deal with cell overlapping issues, e.g., through partitioning. The
path-based timing can also be evaluated in a simulated annealing framework [61].

Both net-based and path-based approaches have pros and cons. Path-based in general has more accu-
rate timing view and control, but it suffers from poor scalability. The net-based approaches, in particular
net weighting, have low computational complexity and high flexibility. Thus they are suitable for large
ASIC/SOC designs with millions of placeable objects. Recent research shows that hybrid of these two basic
approaches are promising [39].

3 Net Weighting Based Approach

Classic placement algorithms optimize the total wirelength. They can be easily modified to be timing-
driven using the net weighting technique, which assigns different weights to different nets such that the
placer minimizes the total weighted wirelength (if all the weights are the same, it degenerates into the
classic wirelength-driven placement). Intuitively, a proper net weighting should assign higher weights on
more timing-critical nets, with the hope that the placement engine will reduce the lengths of these critical
nets and thus their delays to achieve better overall timing.

Net weighting based timing-driven placement is very simple to implement and less computational inten-
sive. As modern VLSI designs have millions placeable objects (gates/cells/macros), net weighting is attrac-
tive because of its simplicity. Almost all placement algorithms support net weighting. Quadratic placement
can optimize the weighted quadratic wirelength, partition-based placement can optimize the weighted cut
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size (see Chapter 8), and simulated annealing based placement can optimize the weighted linear wirelength,
etc.

While net weighting appears to be straightforward, it is not easy to generate a good net weighting.
Higher net weights on a set of critical nets in general shall reduce their wirelengths and delays, but other
nets may become longer and more critical. In this section, we will review two basic sets of net weighting
algorithms: static net weighting and dynamical net weighting. Static net weighting assigns weights once
before timing-driven placement and the weights do not change during timing-driven placement. Dynamic
net weighting updates weights during the timing-driven placement process.

3.1 Static Net Weighting

Static net weighting computes the net weights once before timing driven placement. It can be divided into
two categories: empirical net weighting and sensitivity based net weighting. Empirical net weighting meth-
ods compute weights based on certain criticality factors, such as slack, cycle time, and fanout. Critical nets
are assigned higher net weights. Sensitivity based net weighting computes weights based on the sensitivity
analysis of net weights to factors such as WNS and FOM. The key difference of these two net weighting
schemes is that sensitivity based approach has some look-ahead mechanism that can estimate the impact of
net weighting on key factors. Therefore it assigns higher net weights on those nets that have bigger impacts
on the overall timing closure goal.

3.1.1 Slack-Based Net Weighting

Empirical net weighting assigns net weight based on the criticality of the net, which indicates how much the
placer should reduce the wirelength on this net. The criticality computation can be from the static timing
analysis (STA). Assuming there is only one clock period, the net criticality can often be measured by slack.
Nets with negative slacks are critical nets and are assigned higher net weights than those nets with positive
slacks.

w =
{

W1 slack < 0
W2 slack ≥ 0

(5)

where W1 and W2 are positive constants and W1 > W2. Among the critical nets that have negative slacks,
higher weights can also be given to those which are more negative. One can either define a continuous
model [17] or a step-wise model [5] to compute weights based on the slack distribution, as shown in Figure
3.

It shall be noted that net weights shall not continue to increase when slack is less than certain threshold.
This is because slack can be very negative due to invalid timing assertions. Usually placers do not need very
high net weights to pull nets together.

For some placers, one might add an exponential component into net weighting [2] to further emphasize
critical nets.

w = (1− slack

T
)α (6)

where T is the longest path delay and α is the criticality exponent. If there are multiple clocks in the design,
the clock cycle time can be considered during net weighting. Nets on paths of shorter cycle time should
have higher weights than those of longer cycle time with the same slack. For example, we can use T is (6)
to represent different cycle times. Paths of long cycle time clocks get a larger T than those of short cycle
clocks.

w = (1− slack

Tclk
)α (7)

where Tclk is the clock cycle time for a particular net.
There are other empirical factors that can be considered for net weighting, e.g., path depth and driver

strength [41]. A deep path, which has many stages of logic, is more likely to have longer wire length. The
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Figure 3: Net weight assignment based on slack using continuous or step model.

end points of this path could be placed far away from each other, therefore worse timing is expected than a
path with less number of stages. A net with a weak driver would have longer delay than a strong driver with
the same wire length. Therefore, net weight should be proportional to the longest path depth (which can be
computed by running breadth first search twice: once from PIs and second time from POs), and inversely to
slack and driver strength, i.e.,

w ≈ Dl ×Rd (8)

where Dl is the longest path depth, and Rd is the driver resistance. A weaker driver has a larger effective
driving resistance, thus the net it drives will have a bigger net weight.

One could also consider path sharing during net weighting. Intuitively a net on many critical paths
should be assigned a higher weight because reducing the length of such net can reduce the delay on many
critical paths.

w ≈ slack ×GP (9)

where GP is the number of critical paths passing this net. Suppose we assign two variables for each net p
on the timing graph: F (p) the number of different critical paths starting from timing beginning point (PI) to
net p; and B(p) the number of different critical paths from net p to timing end points (PO). The total number
of critical paths passing through net p is then GP (p) = F (p) × B(p). This net weighting assignment only
considers the sharing effect of critical paths, and each path has the same impact of the net weight. Kong
proposed an accurate, all path counting algorithm PATH [37], which considers both noncritical and critical
paths during path counting. It can properly scale the impact of all paths by their relative timing criticalities.

To perform net weighting for unplaced designs, STA can use the wire load model, e.g., based on fanout,
to estimate the delay (compared to placed designs, STA can use the actual wire load to compute delay).
Normally it is not accurate with wire load models. Therefore, for an unplaced design, an alternative way
of generating weights is to use fanout and delay bound [8] instead of slack. Fanout is used to estimate
wirelength and wire delay [38], and delay bound is the estimated allowable wire delay, i.e., any wire delay
above this bound would result in negative slack. The weight can be computed as the ratio of fanout and
delay bound.

w ≈ fanout

net delay bound
(10)

In general, as the impact of net weight assignment is not very predictable, extensive parameter tuning
may be needed to make it work on specific design styles.

3.1.2 Sensitivity Based Net Weighting

Net weighting can help improve timing on critical paths. However, it may have negative effects on total
wirelength. Assigning higher net weights on too many nets may result in significant degradation of wire-
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length, thus may introduce routing congestion and new critical paths. To apply high net weights only on
those nets which will result in large gain in timing, we can reduce wirelength degradation and other side
effects of net weighting.

Sensitivity based net weighting tries to predict the net weighting impact on timing and use that sensitivity
to guide net weighting [50] [25]. The question that sensitivity analysis tries to address is: given an initial
placement from an initial net weighting scheme, if we increase the weight for a net i by certain nominal
amount, how much improvement net i will get for its worst slack (WNS) and the overall figure of merit,
FOM (or in a more familiar term, total negative slack - TNS when the slack threshold for FOM is zero).
With detailed sensitivity analysis, larger weights could be assigned to a net whose weight change can have
a larger impact to delay. In this section, we will explain how to estimate both slack sensitivity and TNS
sensitivity to net weights and how to use those sensitivities to compute net weights.

First, one needs to estimate the impact of net weight change to wirelength, i.e. the wirelength sensitivity
to net weight. This sensitivity depends on the characteristics of a placer. It is not easy to estimate such
sensitivity for min-cut or simulated annealing based algorithms. But for quadratic placement, one can come
up with an analytical model to estimate it. Based on Tsay’s analytical model [63], the wirelength sensitivity
to net weight can be derived [50] as

SL
W (i) =

∆L(i)
∆W (i)

= −L(i) · Wsrc(i) + Wsink(i)− 2W (i)
Wsrc(i)Wsink(i)

(11)

where L(i) is the initial wire length of net i, W (i) is the initial weight of net i, Wsrc(i) is the total initial
weight on the driver/source of net i (simply the summation of all nets that intersect with the driver), and
Wsink(i) is the total initial weight on the receiver/sink of net i. Intuitively, (11) implies that if the initial
wire length L(i) is longer, for the same amount of nominal weight change, it expects to see bigger wire
length change. Meanwhile, if the initial weight W (i) is relatively small, its expected wire length change
will be bigger. The negative sign means that increasing netweight will reduce wirelength.

The next step is to estimate the wirelength impact on delay. Using the switch level RC device model and
the Elmore delay model [13], the delay sensitivity to wirelength can be estimated as:

ST
L (i) =

∆T (i)
∆L(i)

= rcL(i) + cRd + rCl (12)

where r and c are the unit length wire resistance and capacitance, respectively. Rd is the output resistance
of the net driver, and Cl is the load capacitance. It implies that for a given technology (fixed r and c), the
delay of a long wire with a weak driver and large load will be more sensitive to the same amount of wire
length change.

With wirelength sensitivity and delay sensitivity, one can compute the slack sensitivity to net weight as:

SSlk
W (i) =

∆Slk(i)
∆W (i)

= −∆T (i)
∆L(i)

· ∆L(i)
∆W (i)

= −ST
L (i)SL

W (i) (13)

Total negative slack (TNS) is an important timing closure objective. The TNS sensitivity to net weight
is defined as follows:

STNS
W (i) = ∆TNS/∆W (i) (14)

Note that TNS improvement comes from the delay improvement of this net, equation (14) can be decom-
posed into:

STNS
W (i) =

∆TNS

∆T (i)
∆T (i)
∆W (i)

= −K(i)SSlk
W (i) (15)

where K(i) = ∆TNS
∆T (i) , which means how much TNS improvement it can achieve by reduce net delay T (i).

It has been shown in [50] that K(i) is equal to the negative of the number of critical timing end points whose

7



Algorithm 1 Counting the number of influenced timing critical end points for each net
1: decompose nets with multiple sink pins into sets of driver-to-sink nets
2: initialize K(i) = 0 for all nets and timing points
3: sort all nets in topological order from timing end points to timing start points
4: for all Po pin t do
5: set K(t) to be 1 if t is timing critical (i.e., Slk(t) < Slkt; otherwise set K(t) to be 0
6: for all net i in the above topologically sorted order do
7: for all sink pin j of net i do
8: K(i) = K(i) + K(j)
9: propagate K(i) of net i to its driver input pins: only the most critical input pin gets K(i); other pins

will have K = 0 because they are not on the critical path of net i, thus cannot influence the timing
end points from net i
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Figure 4: Counting the number of influenced timing end points

slacks are influenced by net i with a nominal ∆T (i) and can be computed efficiently as shown in following
algorithm..

As an example, Figure 4 shows two paths from a timing begin point Pi to timing end points Po1 and
Po2. Net n3.1 and n3.2 are the decomposed driver-to-sink nets from the original net n3. The pairs in the
figure such as “(-3, 1)” have the following meaning: the first number is the slack, and the second number is
the K value. Since the slacks at Po1 and Po2 are -3ns and -2ns, respectively (worse than the slack target of
0), the K values for Po1 and Po2 are both 1. We can see how the K values are propagated from PO to PI.
Note that for gate C, the upper input pin has slack of -2ns while the lower input pin has slack of -1ns, thus
the upper pin is the most timing critical pin to gate C and it will influence the slack of Po2. The lower pin of
C does not influence Po2.

The sensitivity based net weighting scheme starts from a set of initial net weights (e.g., uniform netweight-
ing at the beginning), and computes a new set of net weights that would maximize the slack and TNS gain.
Since the sensitivity analysis works best when the net weights are updated in small steps from their initial
values, it also adds a constant of total change to bound the net weights. The net weight can be computed as:

W (i) =
{

Worg(i) Slk(i) > 0
Worg(i) + α[Slkt − Slk(i)]SSlk

W (i) + βSTNS
W (i) Slk(i) ≤ 0

(16)

where Worg(i) is the original net weight, α and β set the bound of net weight changes, and control the
balance between worst negative slack and total negative slack.

3.2 Dynamic Net Weighting

Static net weighting computes net weights once and does not update them during timing driven placement.
However, wirelengths change during and after placement, and the original timing analysis may not be valid.
To overcome this problem, dynamical net weighting methods were proposed to adjust weights during place-
ment based on timing information available at current placement stage.
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A simple dynamical net weighting scheme is to run multiple placement and net weighting iterations.
This scheme can be applied on any placement and net weighting algorithms. This simple scheme, however,
is often hard to converge without careful net weighting assignment. This is the so-called oscillation problem
[12]. Weights are assigned by performing timing analysis for some given placement solution at the n-th
iteration [41]. Critical nets receive higher weights. At next iteration, the lengths of those critical nets are
reduced, while the lengths of some noncritical nets may be increased, resulting in a different set of critical
& noncritical nets. If a net alternates between critical and noncritical net, we have an oscillation problem.
To mitigate this problem, one needs to either periodically recompute timing during the placement process
[2] [61] or use historical net weighting information to achieve stability [51] [18].

3.2.1 Incremental Timing Analysis

To periodically update weights during placement, one needs to recompute timing during placement. One
could incrementally update timing like [5], which only computes the incremental slack caused by wirelength
increments using delay sensitivity to wirelength.

sk(n) = sk−1(n)−∆dk(n) = sk−1(n)− ST
L (n)∆l(n) (17)

where sk(n) is the estimated slack for net n at the k step, sk−1(n) is the slack at k − 1 step, ∆dk(n) is the
delay change on net n and ST

L is the delay to wirelength sensitivity and ∆l(n) is the wirelength increment.
Using sensitivity analysis can provide a fast estimation for incremental timing analysis. One can also

perform a more accurate incremental timing analysis. For example, [51] uses a star net model for placement
and netlist changes. The main advantage of this model is that it can calculate individual delay between
the source pin and every sink pin of star net more accurately. Assuming given gate coordinates, the star
net node is computed as the center of gravity of all pins of the net, and the lengths of all arcs in x and y
directions can be obtained. These lengths are used to compute the equivalent lumped elements as used in
the derived electrical model. Note that one normally does not perform a full blown static timing analysis
during placement, which would do false path detection, early-late mode analysis, etc.

3.2.2 Incremental Net Weighting

To make placement stable with updated weights, we can make use of the historical weights, so called in-
cremental net weighting. Different from static net weighting, this method relies on iterations to get the
appropriate weights and drives the placement engine along that way.

There are two such algorithms in published literature. One only makes use of the history data of the
previous step, the other uses the previous two steps.

In [18], at each step, it first computes the criticality for a net i as

ck
i =

{
(ck−1

j + 1)/2 if net i is among the 3% most critical nets
ck−1
j /2 otherwise

(18)

The criticality describes how critical a net tends to be in general. For example, if a net was never critical
its criticality is zero whereas an always critical net has a criticality of one. This scheme effectively reduces
oscillations of weights.

Once the criticality is computed, the net weight then can be updated as:

wk
i = wk−1

i × (1 + ck
i ) (19)

Therefore, the net with criticality one will have its weight doubled at every iteration, while noncritical net
weights will stay the same.
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The other net weighting scheme uses the criticality information from the previous two steps [51]. In this
approach, the criticality number is simplified to either one or zero. Nets on critical paths get one, while nets
on noncritical paths get zero. The net weight is updated as follows.

wk
i =





wk−1 + W if ck
i = 1

1 if ck
i = 0 ∧ ck−1

i = 0 ∧ ck−2
i = 0

dwk−1
i /2e if ck

i = 0 ∧ ck−1
i = 0 ∧ ck−2

i = 1
wk−1 if ck

i = 0 ∧ ck−1
i = 1

(20)

In this case, the minimum net weight is 1. If the current criticality is 1, its net weight will be increased
by W (> 1), which determines how fast the weight would increase due to criticality. Using the number of
pins of a net to set W is a reasonable choice because delays of nets with high fanouts are usually larger and
more likely to be critical. If the current step net criticality is 0, the net weight may change depending on the
criticalities of the previous two steps.

3.2.3 Placement Implementation

Dynamical net weighting algorithms can be applied to most placement algorithms, e.g., partition based
placement [5] [28] [46], quadratic placement [51], and force-directed placement [18].

The implementation of dynamical net weighting on quadratic and force directed placement can be
straightforward. Since both placement algorithms provide intermediate gate coordinates at each step, it
is easy to estimate wire loads and timing based on those gate coordinates. It is also effective to use the in-
cremental net weighting methods such as (19) and (20) to drive those placement engines because the matrix
solvers for those placers usually respond well to weights changes.

For pure partitioning based placement, one can also use similar method, i.e. update weights between
each partitioning step [5] [28]. However, the timing analysis in general is not as accurate because partitioning-
based placement does not assign exact gate coordinates inside a partition. Thus the weights may not effec-
tively control the partitioning process which aims at minimizing the number of weighted crossings, but not
wirelength directly.

One can enforce some cutting constraints to the partitioning algorithm, e.g., the maximum number of
times a path can be cut during the iterative partitioning steps [45]. For partitioning based placement, con-
trolling the cut number on paths in addition to weights helps reduce the wirelength on critical nets more
efficiently. It is also a dynamic net weighting approach in that it updates the timing criticality during parti-
tioning process and recomputes weight as well. Unlike previous timing analysis methods which recalculate
timing based on gate coordinates, it estimates the critical path by the number of cuts a path has been cut
during partitioning. Starting from an initial set of most critical nets, it adds some number of critical nets
that has been cut to this set. All the critical nets will be limited to be cut only a maximum number of times
by setting a higher weight that is equal to the summation of the weights of non-critical nets in a partition,
which guarantees that critical nets will not be cut.

In [32], the minimization of the maximal path delay problem is formulated in the min-max, top down
partition-based placement for timing optimization. The main technique is the iterative net re-weighting.
It another work [33], the concept of boosting factors is introduced which adjusts net weights according to
net spans, so that the quadratic wirelength can be reduced. The method skews the netlength distribution
produced by a min-cut placer so as to decrease the number of long nets, with minimal impact on the overall
wirelength.
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4 Net Constraint Based Approach

4.1 Net Constraint Generation

Since interconnect delay is predominately determined by its net length, a natural choice for controlling
delay is through net length constraint (NLC), which limits the maximum length of a net. The net constraint
based approach is another popular net-based “interface” between timing analysis and placement to drive
the timing-driven placement. The net constraint approach have several attractive qualities compared to the
common net weighting approach. It is not possible to predict the exact timing response to a net weight.
Since many nets may have weight changes, there may be conflicts with each other. Sometimes it is not even
certain that the length of a net will be reduced if it is given a higher net weight. Net constraint approach
has more accurate control. The problem then is how to generate a good set of net constraints which are
not overly constrained to limit solution space. A common combined flow may be combining netweighting
and net constraints, e.g., having netweighting to guide global timing-driven placement and net-constraint
generation for incremental/iterative improvement.

The two main steps of net constraint driven placement are:

1. to generate an effective set of NLC bounds, and

2. create placers which meet, or nearly meet these bounds.

The following two sections will explore these two net constraint driven goals.

4.1.1 Generating Effective NLCs

Many techniques have been proposed for generating NLCs and many are similar with the approaches for cre-
ating net weights. Many of the original methods attempted to create, in a “single shot”, a set of NLCs, which
when met would result in a design which meets timing requirements. More recently, several works have
suggested that NLCs should be generated so that the design’s target frequency is incrementally improved.
The single shot approaches are described first.

4.1.2 “Single Shot” NLC Generation

The goal of “single shot” NLC generation is to perform a slack budgeting giving timing constraint for
each net, which when realized will meet the timing frequency goal. These timing budgets are then used to
generate a physical bound for the NLC using silicon process parasitic parameters.

In [42], the zero-slack algorithm (ZSA) is proposed. This algorithm computes delay bounds for each net
based on a tentative set of connection delays chosen so that all timing requirements are met. ZSA chooses
maximal delays bounds so that a delay increase on any net connection would produce a timing violation.
Based on the delay upper bounds, the wirelength constraints can be generated. Net constraint generation
is formulated as a linear programming (LP) problem which maximizes the range of permissible length for
each net, subject to the LP constraints that timing requirements are met. Intuitively, ZSA will distribute
extra slacks uniformly among connections on that path. After that, slacks are updated on other paths that are
affected, and the process is repeated until every connection has zero slack. An improvement is suggested
in [68], where a weighted slack budgeting is performed based on the delay per unit load function. A larger
weight is assigned to nets which are more sensitive and the slack distribution is allocated proportionally to
the weight.

Runtime improvement to slack budgeting using the non-zero slack allocation in intermediate steps is
suggested in [38]. It omits recomputing slacks on connections whose slacks are altered by delay increase on
the minimum-slack segment, and thus it converges faster than [42]. In practice, all slacks converge to near
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zero in a few iterations. In [21], the Iterative-Minmax-PERT [68] procedure is generalized to guarantee the
slacks go monotonically to zero.

In [55, 54] the delay budgeting problem is formulated as a convex programming problem with a special
structure, thus efficient graph-based algorithm is proposed. It showed an average of 50% reduction in net
length constraint violations over the well-known zero-slack algorithm [42]. In addition, different delay
budgeting objective functions are studied and showed that performance improvements can be made without
loss of solution quality. In a recent work [23], a new theoretical framework is presented which unifies
several previous timing budget problems including: timing budgeting for maximizing total weighted delay
relaxation, minimizing maximum relaxation, and min-skew time budget distribution. Dragon [67] uses
design hierarchy information to compute NLCs and it is evaluated using an industrial place and route flow.

4.1.3 Incremental NLC Generation

Some NLC generation heuristics have taken an incremental approach to creating NLCs [10, 22]. These
heuristics are used with incremental or iterative placement techniques. Initially, a loose set of NLC on
a subset of nets is created, which may not yield a placement which meets timing requirements. Further
iterations refine NLCs, tightening the bounds on nets critical at each iteration, so the slack is incrementally
improved. Proponents of this approach argue that it is better than deriving a single shot NLC set. During
an industry design flow, timing constraints are often unmeetable, even if every interconnect length is zero.
Furthermore, a the set of NLCs that guarantee performance requirements may not be achievable be any
placement.

An incremental transfer function which uses a linear programming based net constraint generation tech-
nique is proposed in [10]. The technique incrementally generates net constraints and iteratively reduces the
length of critical nets by small increments. The goal of this LP-based technique is to derive a set of net con-
straints which will improve critical path delay dinitial by a small amount, ∆t. The k longest paths, pi with
delay di > dgoal are selected, where dgoal = dinitial −∆t. For each path, pi with delay di, the delay must
be reduced by di − dgoal. Since the algorithm begins with an initial placement, the current horizontal and
vertical lengths, Bxi and Byi of bounding box wire length of each net ni are known. In each iteration, the
horizontal and vertical reduction goals, ∆xi, and ∆yi, are computed. The objective function is to minimize
the total horizontal and vertical wirelength reduction.

min :
∑

i∈Nets

(∆xi + ∆yi). (21)

For each path, a constraint is created in the linear program. For example, if path p1 is composed of nets
n1, n2, and n3, the constraint would be:

(c1x ·∆x1 + c1y ·∆y1) + (c2x ·∆x2 + c2y ·∆y2) + (c3x ·∆x3 + c3y ·∆y3) < d1 − dgoal (22)

where c1x and c1y estimate the delay change per unit horizontal and vertical length of net n1, and so on.
Additional constraints are imposed on each ∆xi and ∆yi reduction goal

∆xi < p ·Bxi

∆yi < p ·Byi

where p is a parameter (0 < p < 1), usually chosen to start with small value and increased if no solution is
found to the LP. Since a net may be shared by more than one path, these constraints may limit the reduction
goal of a shared net and force larger improvement goals in other nets.

A convex programming approach to net constraint generation is employed by [22]. Similar to the previ-
ous approach [10], it enumerates a set of critical paths to be considered and forms a set of linear constraints
on the net delay of these paths. Unlike [10], each path must have an arrival time that is less than the required
time. The result is a set of constraints that, if met, will result in zero slack for the paths considered.
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4.2 Net Constraint Placement

Once net constraints are generated, placers must efficiently meet the constraints while generating legal
placements and optimizing wire length. Net constraint placement algorithms have been proposed for many
global and detail placement algorithms. This section explores two global placement approaches: partitioning
and force directed, a several detailed placement approaches.

4.2.1 Partition-Based Net Constraint Placement

Several adaptations of the popular partitioning approach to global placement have been made for net con-
straint placement [62, 22, 63, 24]. This section examines a min-cut based approach [22] and two analytical
partitioning based approaches [63, 24].

A modified min-cut partitioning based net constraint global placer is presented in [22]. The placer
modifies the common min-cut partitioner using cut weights on constrained nets to change their cut cost. The
weights are computed at each partitioning iteration based on the estimated net lengths. For each constrained
net, the maximum and minimum estimated lengths maxi and mini, are computed. maxi and mini are the
half perimeter of the smallest bounding box enclosing all the cells in ni in their worst and best assignments
to their partition choices. A net weight, wi, is assigned based on a comparison of these estimates to the
bound of the net, bi. If bi < mini, then wi = maxcrit is assigned to the net since any increase in the net
length is undesirable. If bi > maxi, wi = 0 since regardless of assignment choices, the net will not exceed
its bound. For nets with maxi ≥ bi ≥ mini, the weight is computed as

b (maxi − bi)
(maxi −mini)

·maxcrit + 0.5c (23)

The Fiduccia-Mattheyses algorithm [20] is used to make the partition assignments. The algorithm does not
guarantee that the net constraints will be met.

One of the first net constraint based global placers was published in [63]. Its general flow follows Proud
[64], a partitioning placer that uses Mathematical Programming to determine partition assignments. Net
constraints are created using the zero-slack algorithm [42] discussed in Section 4.1.2. To meet the NLCs, an
iterative solving approach is used. At each iteration, a Lagrange multiplier is computed for each net. For
each pin of a net, the multiplier is based on the length constraint, the nets current length, the previous pin
weight and the sum of the weights of the other pins of its cell. This paper was the first to recognize that the
other connectivity of a cell is important in computing pin weight.

While most net constraint partitioning placers model the NLCs directly in the partitioning assignment,
a different approach is taken in [24]. This placer assumes that a preliminary wirelength driven partitioning
assignment has been made already and it uses a linear programming formulation to make minimal reassign-
ment to meet NLCs. Each net is modeled using a bounding box formulation. The location of each cell is
restricted to lie within the boundaries of its parent partition and a “reassignment variable” is used to indicate
if the cell is moved from its currently assigned partition or the other child partition of its parent. If the
reassignment causes area violation, unconstrained cells are reassigned from the over capacity partition to
the other child partition of its parent. The placer uses the analytical partitioning flow from Gordian [36].

4.2.2 Force Directed Net Constraint Placement

A force directed placer which optimizes for net constraints is presented in [48]. As with the other net
constraint placers, this too builds on a strong wirelength driven placer, Kraftwerk [18]. Kraftwerk uses a
quadratic programming model to generate cell locations. Net constraints are met by generating a higher net
weight for nets which are not meeting their NLCs. The increased weights are allocated to the pins which
determine the current boundary of the net. The outer pins, in both the X and Y dimension are given higher
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weights to reduce its length as long as it does not meet its NLC. Another idea presented in this paper it to
constrain the net segment connecting the nets driver to its critical receiver.

4.2.3 Net Constraint Based Detailed Placement

Several net constraint detailed placement algorithms have been proposed [26, 29, 10]. In [29], the ripple-
move algorithm from Mongrel [30] is adapted to include the cost of nets which are violating their constraints.
In [26], net constraint driven versions of Simulated Annealing [61, 58, 57, 60] and Domino [15] are pro-
posed. The change to Simulated Annealing is a very simple addition to the SA cost function which reflects
the cost of nets not meeting their NLC. The Domino transportation cost function is changed and several new
techniques to recombine the fractured sub-cells are proposed.

A local movement approach which employs linear programming to reduce nets with constraints while
minimizing the movement of unconstrained nets is presented in [10]. The objective function minimizes the
squared movement of the center of a net’s bounding box. This approach will create overlaps that must be
resolved through a legalization phase which is not net constraint aware.

5 Path (or Timing Graph) Based Approach

Historically, path-based timing driven placement refers to those algorithms that directly model the timing
constraints (which are inherently path-based) during placement. It ensures that all the paths under consid-
eration will meet their timing requirements after placement. The benefit of path based approach is that it is
explicitly timing-driven, unlike net based approaches which are implicitly timing-driven by converting tim-
ing constraints into net weights or wirelength constraints. The downside of this approach is the complexity
of directly modeling timing in placement, as the number of paths may be prohibitive [7]. Except some early
works such as simulated annealing [61], enumerating all paths are not widely adopted. To make the prob-
lem size small, one can select only the near-critical paths, but even that could still be huge. The potential
problem of only selecting a set of critical paths is that some non-critical paths may become critical.

A more powerful technique is to embed timing graph (through a built-in simplified version of static
timing analyzer) into the timing-driven placement formulation. It implicitly considers all topological paths
and formulates them into some mathematical programming framework by introducing intermediate auxil-
iary variables (such as arrival times). It eliminates the need to enumerate/optimize a limited set of paths.
The linear programming (LP) based formulation is popular as the half parameter wirelength model can be
formulated exactly into an LP framework. To explicitly write down the delay modeling and timing propa-
gation with respect to the cell locations (x, y), simple/linearized models are often used. In this section, we
will first review the general LP-based formulation (which can easily be extended to handle non-linear math-
ematical programming). Then we discuss various techniques such as partitioning-based overlap removal
and Lagrangian relaxation to complement the general LP-based formulation. We also discuss the Simulated
Annealing technique for path-based timing driven placement and a recent technique using differential timing
analysis.

5.1 The LP-Based Formulation

The general linear programming (LP) based formulation consists of two sets of variables and constraints
- physical and electrical. The physical variables/constraints deal with variables and equations representing
cell locations and net lengths (e.g., computed through the half-perimeter wire length model). The electrical
variables/constraints deal with gate and net delay models, arrival time propagation through the critical path
method, and constraints that all required arrival times at timing endpoints are met. The objective function
may be maximizing either worse or total negative slack, or weighted wirelength, etc.
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5.1.1 Physical Constraints

For cell i, its center coordinates xi, yi are the variables of the LP program. For a net ej , let lj , rj , tj and
bj represent its left, right, top, and bottom locations of its bounding box. Let Nj denote the set of cells
connected to net ej , then we have

lj ≤ xi + pinx(i, j)
rj ≥ xi + pinx(i, j)
tj ≤ yi + piny(i, j)
bj ≥ yi + piny(i, j), ∀i ∈ Nj (24)

where pinx(i, j) and piny(i, j) are the pin offsets of cell i for its pin connecting to net ej in horizontal and
vertical directions, respectively. The HPWL of net ej is represented by Lj

Lj = rj − lj + tj − bj (25)

5.1.2 Electrical/Timing Constraints

Let the gate delay GDelayi(k, o) represent the pin delay from an input pin k to output pin o of cell i. It can
be modeled as a linear function of the load capacitance at the output pin and the slope (transition time) at
the input pin with a reasonably high degree of accuracy. Similarly, the slope at the output pin of cell i can
be described by a linear function.

GDelayi(k, o) = a0 + a1 · CLoadi(o) + a2 · Slopei(k)
Slopei(o) = b0 + b1 · CLoadi(o) + b2 · Slopei(k)

where Slopei(k) is the slope at the input pin k of cell i, and Slopei(o) is the slope at the output pin o of
cell i, and CLoadi(o) is the capacitance load seen by the output pin o. The constants a0, a1, a2, b0, b1, and
b2 are determined by standard cell library characterizations. These delay and output slope equations can be
defined for every feasible signal transition for the cell.

The delay for net ej , NDelayj(i1, o, i2, k) from output pin o of cell i1 to the input pin k of cell i2 is
modeled in the LP using a simplified Elmore model [19] by the following equation:

NDelayj(i1, o, i2, k) = KD · r · Lj · (c · Lj

2
+ CLoadi2(k)) (26)

where r is the unit resistance of the interconnect, c is the unit capacitance constant, and KD is a constant,
0.69 [11]. If the resistance and capacitance in the horizontal and vertical directions are not equal, an alternate
model can be used which replaces Lj with individual variables for the horizontal and vertical lengths.

The arrival time at each pin is modeled through timing propagation and critical path method. Two types
of equations are used, the first for input pins and the second for output pins. For input pin k of cell i2, its
arrival time is

Arri2(k) = Arri1(o) + NDelayj(i1, o, i2, k) (27)

The arrive time at an output pin o of cell i is represented by the LP variable Arri(i, o) and a set constraints,
one for each input pin of cell i. Assuming two input pins k1 and k2 for cell i, the equations would be:

Arri(k1) + GDelayi(k1, o) ≤ Arri(o) (28)

Arri(k2) + GDelayi(k2, o) ≤ Arri(o) (29)

Most implementations assume the arrival time at the output of a sequential cell to be zero.

15



Each library cell has a maximum drive strength, limiting the total capacitance the cell can drive. This
drive strength limit is incorporated in the LP through length limits on the driven net. This limit is a pre-
computed constant to the LP formulation.

Lj < CMax(ej) (30)

5.1.3 Objective Functions

The required time at input pin k of sequential cell vi, Reqi(k), is a constant input. The negative slack at
these timing endpoints is represented by variable Slki(k) and equations

Slki(k) <= Reqi(k)−Arri(k) (31)

Slki(k) ≤ 0 (32)

The second constraint is needed so that paths are not optimized beyond what is required to meet timing.
This constraint can be adapted so that a slight positive margin is created for each path.

The path-based timing driven placement can optimize the total negative slack, i.e.,

max :
∑

i∈sequential

Slki(k) (33)

To optimize the worst negative slack, a variable representing the worst negative slack is introduced, WNS,
i.e.,

WNS < Slki(k) (34)

And the objective function is simply:

max : WNS (35)

The LP-based objective function can also be a combination of wirelength and slack [31], e.g.,

min :
∑

Lj − α ·WNS (36)

where α is the weight to tradeoff wirelength and worst negative slack.
To summarize, the complete LP formulation for timing driven placement can be written in the following

generic term

Minimize f(X)
subject to AX ≤ D (37)

where X is the set of variables including gate coordinates and auxiliary variables, f(X) is the objective
function which can be (33), (35), or (36). AX ≤ D includes all the physical and electrical constraints
such as net bounding box constraints, delay constraints, slack constraints, and other possible additional
constraints (such as the center of gravity constraints as in [31]).

5.2 Partitioning Based Overlap Removal

The LP-based formulation may create a lot of overlaps. Partitioning based approach can be used together
with LP-based formulation to remove the cell overlaps, as proposed in the original timing graph based placer
Allegro [31]. At each partitioning step, it formulates a LP problem to determine locations of cells. Each
partition is divided into two sub-partitions, and its cells are sorted based on the LP locations to determine
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the new partition assignment. The LP model is similar to Section 5.1. The objective function is similar to
(36). The factor α is used to trade off timing optimization versus wirelength. Additional physical constraints
includes center of gravity constraint and partition boundary constraint. The center of gravity constraint, as
shown in (38), tries to place the center of gravity of all the gates in the same partition to be in the center of
the partition, while the boundary constraints prevent gates being placed outside the partition boundaries.

x =
∑

mixi

mi
(38)

where x represents the center of the partition in x direction; xi is the position of gate i; and mi is the
equivalent mass of gate i, approximated by the gate width.

5.3 Lagrangian Relaxation Method

The number of constraints in the general LP-based formulation in (37) can be enormous, even for moderate
size circuits. Lagrangian relaxation is a very effective technique to transform the original constrained LP-
formulation into a set of unconstrained problems in an iterative manner, e.g., as in [59]. While the objective
function used in [59] is the quadratic wirelength, the principle of Lagrangian relaxation method is the same.
For the general mathematical programming formulation in (37), suppose A has m constraint equations. We
can define a size-m vector Lagrange multipliers λ and add the non-negative term λ · (D − AX) to the
objective function:

maxλminXf(X) + λ · (D −AX) (39)

When λ is fixed, minimizing f(X) + λ(D−AX) is an unconstrained mathematical programming problem,
which can be solved efficiently. Then the Lagrange multiplier λ will be updated to solve a new unconstrained
optimization problem. This process is iterated to obtain the constrained optimal solution.

5.4 Simulated Annealing

The simulated annealing is a generic probabilistic algorithm for global optimization. It randomly moves
gates, and accepts or reject the move based on certain cost function. It is very flexible, i.e., it can take
any objective function and consider accurate timing models, if needed. In [61], the Simulated Annealing
algorithm is used for timing driven placement by augmenting the cost function to include path based timing
information. Since efficient runtime of the cost evaluation step is critical in SA, great care has to be taken
in implementing the timing cost function. Rather than updating the static timing graph whenever a cell
is moved, the approach in [61] uses an enumerated set of critical paths, Pcritical. During a move cost
evaluation, the paths impacted can be directly updated by adding the change in delay for the nets connected
moved cells. The SA engine has two loops. The outer loop identifies Pcritical, and the inner loop runs a
number of annealing iterations. In each outer loop of the annealing process, Pcritical is chosen as the K
most critical paths using Dreyfus method [16]. In the inner loop, the nets impacted by a move will update
the slack of paths, and the total timing cost is the sum of the path slacks in Pcritical. When the inner loop
finishes, the outer loop updates the critical paths with new gate locations, and continue the inner loop. The
simulated annealing cost function is a combination of wirelength cost and timing cost function.

5.5 Graph Based Differential Timing

A recent work by Chowdary et al. [11] addresses the correlation problem of graph based placers with final
sign-off timers. Rather than modeling and computing delays and arrival times as was presented above, this
approach optimizes an initial global placement based on the differences in delays, arrival and required times
at all pins of a circuit, relative to a reference static timing analysis. It terms this approach differential timing
analysis [11]. This differential timing analyzer is almost exact in the neighborhood of the reference static
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timing, including modeling of setup time and latch transparency. It also introduces another improvement to
Graph timing based placement. The constants used in the delay and slope equations (26) are only accurate
for a range of values of output loads and input slopes. To maintain the validity of the differential timing
model, placement changes are limited to a local neighborhood. It then solves several iterations of the LP
adjusting model constants and the neighborhood limits in each iteration. Differential timing is optimized
using LP. A set of LP equations which parallel the static timing graph equations are used. For example, the
delta wirelength can be obtained by

∆Lj = rj − lj + tj − bj − Lold
j (40)

where Lold
j is the wirelength of net j in the current placement. The equations for ∆delay, ∆slope,

∆arrival, and ∆slack can be formed similarly [11].

6 Additional Techniques

There are many additional timing-driven placement algorithms in the literature which do not fall exactly
into the previous classifications. As mentioned earlier, net-based and path-based algorithms all have pros
and cons. A hybrid approach is proposed recently [39] to combine the net weighting and net constraints
together with LP-based formulations. Furthermore, due to the complexity of modern placement problems
and the iterative refinement nature from global placement to detailed/legal placement, it is very important
to have stability between placement iterations. In this section, we present several representative and recent
techniques for timing-driven and timing-aware placement.

6.1 Hybrid Net and Path Based Approach

In [39], a hybrid approach is proposed to combine the net weighting and net constraints together with
LP-based formulations. The net-based approaches, especially the net weighting, have low computational
complexity and high flexibility/scalability. Therefore, net-based approaches have more advantages as the
circuit complexity continues to increase. However, net weighting often completely ignores slew propagation.
Since timing is inherently path based, an effective net weighting algorithm should be based on path analysis
and consider timing propagation. Furthermore, net-based approaches are often done in an ad-hoc manner
and may have problems with convergence. For instance, while the delay on critical paths decrease, other
paths become critical, and this leads to a convergence problem. A systematic way of explicit perturbation
control is important for net-weighting based algorithms. The hybrid approach in [39] uses a hybrid net and
path-based delay sensitivity with limited-stage slew propagation as basis for net weighting. The objective
function is the weighted wirelength for a set of critical paths. The LP formulation considers not only cells
on the timing-critical paths, but also cells that are logically adjacent to the critical paths in a unified manner,
through weighted LP objective function and net bound constraints. This approach is suitable for incremental
timing improvement.

6.2 Hippocrates: A Detailed Placer Without Degrading Timing

Another timing driven incremental placement algorithm [49] helps to reduce total wirelength and improve
timing at the same time. It specifically maintains the timing constraints while reducing wirelength during
detailed placement. The detailed placement algorithms it uses can be any commonly used move-based
transforms, i.e., cell swapping, cell moving, etc. Instead of modeling path constraints, it models the timing
constraints at each input pin. The advantage of this is that it reduces the computation complexity, which
allows it to model timing constraints on every timing path. Therefore the output of this algorithm guarantees
no timing degradation. The timing constraint on each pin is called delta arrival time constraint, which is
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defined as the difference of arrival time at this pin to the arrival time of the most critical input pin on this
gate. By constraining the delta delay changed by moving cells to be less than the delta arrival time on each
pin, it guarantees that the final arrival time at timing end points would not degrade. It also models slew and
load capacitance constraints. Experimental results [49] show that Hippocrates helps improve wirelength and
timing significantly, in particular on total negative slack, while conventional detailed placement algorithms
fail to maintain the original timing.

6.3 Accurate Net Modeling Issue

While most timing driven placers assume simple net models, some uses specialized net models for timing
critical nets, e.g., during global placement [44] or detailed placement [1]. The first, [44], based on force-
directed global placement [18], proposes a more accurate tree net model to replace the ubiquitous clique/star
net models normally used in quadratic placers. A Steiner tree net model is constructed and the length of
each tree segment is controlled by weighting the individual segments to improve timing. This new model
does not increase numerical complexity. This net model is not specific to the force-directed formulation and
could be used in other quadratic programming (QP) based placers. In order to determine the weight of each
Steiner segment, the segment sensitivity is computed by determining the net delay derivative with respect to
the segment length. In this way the segments which produce the most slack improvement are shortened the
most.

Another work [1] proposes simultaneous detailed placement and routing to optimize timing. The algo-
rithm is stable and incremental, and it reduces WNS by 9-14%, although the runtime is quite high. It begins
with a placed and global routed netlist and optimizes the k most critical paths using a non-convex mathe-
matical programming model that optimizes slack while capturing the timing impact of cell movements and
Steiner point changes of the global route. In this approach, cell movements may change the Steiner tree
topology. Within the solving steps, each net is analyzed to ensure that its Steiner tree is correct, otherwise a
new topology is generated. Since routing changes are modeled, this is a more accurate net model than those
commonly used net models discussed in previous sections.

7 Conclusions

While timing-driven placement has been studied extensively in the past two decades, the problem is still
far away from being solved [14]. Many challenges still remain due to the ever-growing problem size
and complexity. On one hand, modern system-on-chip designs have millions of placeable cells and hun-
dreds/thousands of macros [43]; on the other hand, stringent timing requirements and physical effects pose
increasing challenges to the timing closure where timing driven placement plays a key role.

It shall be noted that to achieve the overall timing closure, timing driven placement needs to work
closely with synthesis/optimization tools (such as buffer insertion and gate sizing) and routing (in particular
global routing). The entire physical design/synthesis closure is an extremely complex task. Furthermore,
modern complex SOC designs usually have multiple clock domains, or even multiple cycle paths which
make the timing-driven placement problem even more complicated. Due to the infrastructure limitation,
the academia has not been able to fully push the state-of-the-art and limits of timing-driven placement.
With the availability of OpenAccess [27] and the OpenAccess Gear timer [65, 66], it is possible to push
the frontier of the very successful ISPD Placement Contest [43] for university researchers to work on more
realistic timing objectives. As technology scales into sub-100nm regimes, new physical and manufacturing
effects, in particular leakage/power and variations have to be considered together with timing closure during
timing-driven placement [9, 35], which requires continuous innovations for better quality and productivity.
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