
A New LP Based Incremental Timing Driven Placement for
High Performance Designs ∗

Tao Luo
Department of ECE

University of Texas at Austin
Austin, TX 78712

tluo@ece.utexas.edu

David Newmark
Advanced Micro Devices

Austin, TX 78759
david.newmark@amd.com

David Z. Pan
Department of ECE

University of Texas at Austin
Austin, TX 78712

dpan@ece.utexas.edu

ABSTRACT
In this paper, we propose a new linear programming based timing
driven placement framework for high performance designs. Our
LP framework is mainly net-based, but it takes advantage of the
path-based delay sensitivity with limited-stage slew propagation,
thus it enjoys certain hybrid feature of net and path-based timing
driven placement. Our LP formulation considers not only cells on
the critical paths, but also cells that are logically adjacent to the
critical paths (i.e., the criticality ad jacency network) in a unified
manner. We further present a timing aware spreading method to
preserve timing in legalization for high performance designs. Our
algorithm has been tested on a set of 65nm industry circuits from a
multi-GHz microprocessor, and shown to achieve much improved
timing on hand-tuned circuits.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit, Design Aids]: Placement
and Routing

General Terms
Algorithms, Design

1. INTRODUCTION
In a typical custom design flow for high performance micro-

processors, the chip is floorplaned into functional regions, then hi-
erarchically partitioned into basic design units. The size of the ba-
sic design unit is usually small, ranging from a few hundred gates to
tens of thousands of gates. Even for these relatively small circuits,
timing driven placement is very important since the gate delay is
very sensitive to wire capacitance load and input slew in deep sub-
micron technology. Therefore, cell placement in high performance
designs often involves extensive manual tuning iterations to meet
stringent timing requirement.
∗This work is supported in part by SRC under contract 2005-TJ-
1321, IBM Faculty Award, Sun, and equipment donations from In-
tel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

It has been reported that significant performance gap exists be-
tween ASIC and custom design methodologies [1] because the cus-
tom designers understand the data flow of the circuit and take ad-
vantage of the inherent circuit regularity. On one hand, the ASIC
methodology has fast turn-around time, but inferior performance
for high-performance designs; on the other hand, the custom de-
sign methodology has much better performance, but very time-
consuming.

To close such a gap, it is crucial to have powerful incremental
timing driven placement which can iteratively improve the timing
in custom designs. It helps to close not only the performance gap,
but also the time-to-market gap.

Existing timing driven placement can be roughly classified into
path-based and net-based approaches. The path-based algorithms
try to minimize the critical paths of the circuit directly and have the
advantage of holding an accurate timing view during the optimiza-
tion. A common problem with them is their high computational
complexity due to excessive number of paths. Path based timing
driven placement includes [2] [3] [4] [5] [6] [7]. In [8], an accurate
LP based differential timing analysis is proposed to improve the
slack on critical paths that are identified by a static timer. However,
one of the limitations of this approach is that if the static timer uses
a sophisticated wireload model, such as a steiner routing tree based
models, it is very difficult to formulate it into linear constraints.
Therefore, any error arising from inaccurate wire models [8] in one
stage of the path-based method will be propagated and accumulated
in downstream stages on the timing path.

Net-based approaches usually transform timing to net budgets
or weights, and perform constrained or weighted wire length op-
timization [9] [10] [11] [12] [13] [14] [15]. More recently, [16]
proposed a sensitivity guided net weighting method that targets the
net delay sensitivity. However, it did not consider slew propagation.
The net-based approaches, especially the net weighting, have low
computational complexity, high flexibility and is generally suitable
for any wirelength minimization frameworks. Therefore, net-based
approaches have more advantages as the circuit complexity contin-
ues to increase. However, net weighting often completely ignores
slew propagation. Since timing is inherently path based, an effec-
tive net weighting algorithm should be based on path analysis and
consider timing propagation. Furthermore, net-based approaches
are often done in an ad-hoc manner and have problems with con-
vergence [17] [7]. For instance, while the delay on critical paths
decrease, other paths become critical, and this leads to a conver-
gence problem. A systematic way of explicit perturbation control
is important for net-based algorithms.

In this paper, we present an LP-based incremental timing-driven
placement optimizer. Our key contributions include:

• Our LP framework is net-based, but it takes advantage of the
path-based delay sensitivity with limited-stage slew propaga-
tion. Thus it combines the advantage of net-based approach
(flexibility/lower computational complexity) and path-based
approach (more accurate timing view).

• Our LP formulation considers not only cells on the timing-
critical paths, but also cells that are logically adjacent to the
critical paths in a unified manner, through weighted LP ob-
jective function and net stretching bound constraints. There-
fore, our approach has precise control on timing perturbation
during the optimization.

• We propose a timing aware spreading/legalization method to
preserve timing for high performance custom designs. Our
algorithm has been tested on a set of 65nm industry circuits
from a multi-GHz microprocessor. It achieves much bet-
ter timing even on carefully hand-tuned circuits (on average
20ps worst slack reduction, which is significant as the clock
period is only a few hundred of pico-seconds)

The rest of the paper is organized as follows: The problem for-
mulation is in section 2. We discuss how to generate the path-based
delay sensitivity net weights in section 3. In section 4, we show a
method to construct the criticality adjacency network. The overall
LP program is presented in section 5. Section 6 presents the tim-
ing aware spreading algorithm. Experimental results are shown in
section 7. We conclude in section 8.

2. PROBLEM FORMULATION
Table 1 lists the key notations used in the paper.

Table 1: The key notations in this paper.
c The unit capacitance
r The unit resistance

L j The wirelength of net j
Cap j Total output capacitive load on net e j
Cpin j The sum of gate capacitance driven on net e j
Slewi The input slew to cell i
Dgi The delay on cell i
Sgi The slew on cell i
KD Constant 0.69
KS Constant 2.2
ai The slew coefficient in cell i’s delay formula in (6)
bi The delay coefficient in cell i’s delay formula in (6)
ui The slew coefficient in cell i’s slew formula in (7)
vi The delay coefficient in cell i’s slew formula in (7)

De j The delay on net j
Se j The slew on net j
S j The delay propagation sensitivity of net j

2.1 LP formulation
In our algorithm, the timing optimizer selects a few critical paths

from a timing report generated by an accurate static timer. Then
it computes the delay propagation sensitivity on each net and in-
spects and classifies cells and nets into different categories based on
their “criticality”, which is logically how close they relate to critical
paths. As the linear program has a system of well developed theo-
ries to solve, we formulate the timing optimization problem into an
LP problem and solve it optimally.

The half parameter bounding box wirelength (HPWL) model can
be formulated exactly into an LP framework. Our algorithm uses
HPWL for wirelength estimation and the linear gate delay and tran-
sition/slew models for delay computation. Although HPWL may
not be well correlated with the final routed wire, it still captures
the fidelity of the problem with reasonable accuracy. A carefully
designed algorithm can take advantage of the accurate timing in-
formation generated by a static timer to achieve the optimization
objective for a certain level of accuracy.

The objective of our algorithm is to minimize the delay on timing
critical paths. We formulate the linear program to minimize the
weighted wirelength on selected critical timing paths,

minimize ∑p ∑ j Lp, jSp, j (1)

where Lp, j is the wirelength of net e j on timing path p, and Sp, j
is the delay propagation sensitivity of net e j. In the following sec-
tions, we formulate the models and constraints of the LP problem.

2.2 The capacitive load and delay models
For cell ni, center coordinates xi, yi are the variables of the LP

program. For a net e j , To model HPWL, four variables l j , r j , t j and
b j are used to represent left, right, top, and bottom locations of the
bounding box of net e j . Assuming k cells are connected to net e j ,
we have

l j ≤ xi + pinx(i, j)

r j ≥ xi + pinx(i, j)

t j ≤ yi + piny(i, j)

b j ≥ yi + piny(i, j), i = 1,2, ..,k (2)

where pinx(i, j) and piny(i, j) are the pin offset of cell i that con-
nected to net e j in horizontal and vertical directions respectively.
The wirelength of net e j is represented by L j. We have

L j = r j − l j + t j −b j (3)

We use Cap j to denote the total output capacitive load on net
e j . It is the sum of the wire capacitance of net e j and the total pin
capacitance driven on net e j , which is denoted by Cpin j, given by

Cap j = c ·L j +Cpin j (4)

where c is the unit capacitance constant. Assuming ni is the driver
of net e j , the maximum capacitive load driven by ni should not
exceed the library specified maximum load CMaxi

Cap j < CMaxi (5)

To formulate the optimization problem into an LP program, we
use the linear delay models for gates and the Elmore delays for
wires [18]. The gate delay and transition are linear functions of
input slew, Slew, and total capacitive load, Cap. We compute the
fitting coefficients of the linear models based on a SPICE circuit
simulation generated library. Note that the delay models for each
pin of a gate, and for the falling or rising transition are different. We
use different models for different pins and different transitions in
the implementation and show only one formula here for simplicity.
The gate delay Dgi is given by

Dgi = dI +ai ·Slewi +bi ·Capi (6)

The gate transition Sg is given by

Sgi = sI +ui ·Slewi + vi ·Capi (7)

where ai, bi, ui, and vi are the fitting coefficients. dI and sI denote
the intrinsic delay and slew of the corresponding pin of the cell.

The Elmore delay is used to estimate wire delay and slew on net
e j , which are given by

De j = KD · r ·L j · (
c ·L j

2
+Cpin j) (8)

Se j = KS · r ·L j · (
c ·L j

2
+Cpin j) (9)

In recent publications, it has been shown that interconnect delay
starts to dominate in deep submicron designs [19]. However, we
should clarify that De j in formula (8) is not the commonly referred
interconnect delay, which is the part of the gate delay resulting from
driving the interconnect/wire capacitance. Instead, De j is the incre-
mental RC delay on the wire, which is still relatively small for local
nets under current technologies.

3. PATH BASED DELAY SENSITIVITY
Any change on a net will affect the delay and slew of not only

the driver gate, but also all downstream receiver gates, because the
change of slew on a net will propagate. The delay propagation
sensitivity of a net is a measurement of the sensitivity of the path
delay to a wire length change, i.e., to estimate the change in path
delay due to wire adjustments. An effective net weighting method
should not only consider the current stage, but it should also have a
path or global timing view embedded in the formulation.

Our limited-stage delay propagation sensitivity computation con-
siders only two stages. We have the following observation from
extensive experiments.

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6bi

a i

a i =b i

0.5

(a) The coefficient ai and bi in gate delay formula (6)

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6vi

u i

u i =v i

0.5

(b) The coefficient ui and vi in gate slew formula (7)

Figure 1: The normalized coefficient for Slew is much smaller
than that for Cap in both formulas

Observation 1 The wire length change has much greater impact
on delay of the current stage than its receiving gates for most cases,
because the gate delay and slew are more sensitive to the output ca-
pacitive load than to the input slew for the majority types of gates.

Figure 1 plots the normalized coefficients in formula (6) and (7)
for all combinational gates in the library. In Figure 1(a), a point rep-
resents a pair of coefficients ai and bi in formula (6) for one gate
. We see that the coefficient corresponding to Capi is much larger
than that for Slewi in both gate delay and slew formulas in most of
cases. In other words, the delay and slew are more sensitive to the

ej
ej+1ni

A

B
A

B
ni+1

q

Dgi Dei Dgi+1

ej
ej+1ni

A

B
A

B
ni+1
A

B
ni+1

qq

Dgi Dei Dgi+1

Figure 2: A circuit example for delay propagation sensitivity
computation

output capacitive load than to the input slew. The impact of a wire-
length change on delay for the down stream gates is much smaller,
and decreases quickly. Meanwhile, the inaccuracy of HPWL wire
model still dominates; adding more stages may not help but will
increase the computation complexity. Therefore, we limit the delay
propagation sensitivity computation two stages.

We use the example in Figure 2 to show how to compute the
delay propagation sensitivity. In Figure 2, cell ni drives net e j on a
timing path, and cell ni+1 is the receiver gate connected to net e j .
Let S j denotes the delay propagation sensitivity for net e j. We have

S j =
∂D j

∂L j
(10)

where D j is the portion of delay associated with net e j . If the wire-
length of net e j changed by 4L j, 4D j changes due to three compo-
nents, the delta delay on the driving gate i, 4Dgi, on net j, 4De j ,
and on the receiving gate i+1, 4Dgi+1.

4D j = 4Dgi +4De j +4Dgi+1 (11)

From equation (4), (6), (7), (8), and (9), we have

4Dgi = bi · c ·4L j

4Dei = KD · r ·4L j · (
c ·4L j

2
+Cpin j)

4Dgi+1 = ai+1 · (4Sgi +4Se j)

where 4Sgi denotes the slew change on cell ni, and 4Se j is the
slew change on net e j. We have

4Sgi = vi · c ·4L j

4Se j = KS · r ·4L j · (
c ·4L j

2
+Cpin j+1)

The formula (10) becomes

S j = bi · c+KD · r
c ·4L j

2
+KD · r ·Cpin j

+ ai+1 · (vi · c+KS · r
c ·4L j

2
+KS · r ·Cpin j+1) (12)

4L j → 0 gives

S j = c · (bi +ai+1 · vi)+ r · (KD ·Cpin j +KS ·ai+1 ·Cpin j+1) (13)

In above formula, the value of the unit resistance r is in order
of magnitude smaller than that of the unit capacitance c, and the
dominant term in formula (13) is c · (bi + ai+1 · vi). Formula (13)
is used to compute the delay propagation sensitivity of the net and
also helps to guide the timing aware spreading/legalization.

4. CRITICALITY ADJACENCY NETWORK
To optimize the delay on critical paths, we adjust the coordinates

of all cells associated with critical paths. If we do not control the
timing perturbation on non-critical paths during the optimization,

non-critical paths may become critical. In Figure 3(a), the path
n1 → A → B → n2 is critical, and the path n3 →C → B → n4 may
become critical after the optimization, as shown in Figure 3(b). Pre-
vious LP based approaches such as [13] [15] [8] set a fixed range
to restrict every movable cell, as shown in Figure 3(b).

However, the delay of some cells may be extremely sensitive to
wirelength changes, and other cells can be moved farther without
significantly affecting the timing on non-critical paths. Such a po-
tential to move is determined by not only the delay sensitivity of
the net it drives, but also the “criticality” of the net and the cell
itself. In other words, how sensitive the timing is subject to the
net change and how logically “close” a cell is to the critical paths.
In the following, we present the criticality adjacency network to
classify cells and nets into different categories depending on their
“criticality”. As shown in Figure 3(c), we set different maximum
movable ranges for cell A and B depending on the sensitivities of
all nets they connected to. Furthermore, cell C in Figure 3 is not
on critical path, but is also movable for it is logically adjacent to
critical path, i.e., cell C is critical adjacent, as show in Figure 3(d).

A

xBxA

n2

n1 n3

n4

B

CA

xBxA

n2n2

n1 n3n3

n4n4

B

CC

(a) Path n1 → A → B → n2 is
critical

xA-M xA+M xB-M xB+M

A

n2

n1 n3

n4

B

C

Movable region

xA-M xA+M xB-M xB+M

AA

n2n2

n1n1 n3n3

n4n4

BB

CC

Movable region

(b) Fixed movable ranges to
avoid path n3 → C → B → n4
becoming critical

xA-MA xA+MA xB-MB xB+MB

A

n2

n1 n3

n4

B

C

Movable
region of A

Movable
region of B

xA-MA xA+MA xB-MB xB+MB

AA

n2n2

n1n1 n3n3

n4n4

BB

CC

Movable
region of A

Movable
region of B

(c) Variable movable ranges
depend on the sensitivity of
the connected nets

xc-Mc xc+Mc

A

n2

n1 n3

n4

B

C
C is movable

xc-Mc xc+Mc

AA

n2n2

n1n1 n3n3

n4n4

BB

CC
C is movable

(d) Cell C becomes movable
in the criticality adjacency
network

Figure 3: The advantages of the criticality adjacency network

4.1 Criticality adjacency network
Figure 4 is an example of a combinational netlist with one crit-

ical path. Let G= (N, E) represents a netlist that has n cells, N =
{n1,n2, ...nn}, and m nets, E = {e1,e2, ...em}. The criteria to con-
struct the criticality adjacency network is essentially based on how
close the non-critical branches relate to critical paths and if they are
helpful for reducing the delay on critical paths.

Let symbol → denotes the connection relationship. The con-
struction of the criticality adjacency network is through the follow-
ing definitions.

Definition 1 N(0) represents the set of cells on critical paths, and
E(0) is the set of nets on critical paths.

N(0)= {n1, n2, n3, n4} and E(0) = {e4, e5, e6} in Figure 4. All
non-critical cells and nets in the circuit are classified by following
definitions.

Definition 2 N(1) is the set of cells connected to nets in E(0), ex-
cluding all critical nodes in N(0). Set N(2) contains all cells con-
nected to cells in N(0), excluding cells in N(0) and N(1). N(3) is
the set contains all other cells in N.

Therefore,

N(1) = {c : c → E(0),c ∈ N \N(0)}

N(2) = {c : c → N(0),c ∈ N \ (N(0)∪N(1))}

N(3) = {c : c ∈ N \ (N(0)∪N(1)∪N(2))}

Hence, in Figure 4, N(1) = {n5, n6}, N(2) = {n7, n8, n9}, and
N(3) = {n10}.

Definition 3 E(1) is the set of nets connected to cells in N(0), ex-
cluding nets in E(0). E(2) is the set for nets connected to cells in
N(1) or N(2), excluding nets in E(0) and E(1). All other nets are
in set E(3).

Similarly,

E(1) = {e : e → N(0),e ∈ E \E(0)}

E(2) = {e : e → (N(1)∪N(2)),e ∈ E \ (E(0)∪E(1))}

E(3) = {e : e ∈ E \ (E(0)∪E(1)∪E(2))}

In the example in Figure 4, E(1) = {e8, e11}, E(2) = {e1, e2, e3,
e7, e9, e10, e12, e13}, and E(3) = {e14, e15}.

By classifying cells and nets based on “criticality”, our algorithm
optimally moves cells not only in N(0) and N(1), but also in N(2).
All cells in N(3) and all nets in E(3) are fixed. Therefore, the
criticality adjacency network helps to obtain more room for opti-
mization, while explicitly controls the timing perturbation.

n1

n2 n3 n4

e1

e5

n5 n6

n7

n8 n9

e2 e3

e4 e6

e8

e11e9

e12

e7

e10

e13
n10

e14

e15

n1

n2 n3 n4

e1

e5

n5 n6

n7

n8 n9

e2 e3

e4 e6

e8

e11e9

e12

e7

e10

e13
n10

e14

e15

Figure 4: The criticality adjacency network

4.2 The timing perturbation constraints
With the help of the criticality adjacency network, instead of set-

ting a fixed maximum movement range for all cells, we set a sen-
sitivity based stretching bound for each net. The tightness of the
stretching bound of a net is based on how sensitive the path delay
is subject to the net change.

For a net e in E(1) or E(2), nd is the driver cell and ni is one
of the receiver cells. From each pin of cell nd to the receiver cell
ni, we compute a delay propagation sensitivity score. We compute
the inverse of the sensitivity score and use it as the weight for net
e. The sensitivity weights for all nets are scaled between zero and
Max. Max is an experimental setting parameter. Let We denotes
the weight for nets in E(2) and W

′

e denotes for nets in E(1). The
cell movement is restricted by the following net stretching bound
constraints,

Le −We ·Le ≤ Le ≤ Le +We ·Le,∀e ∈ E(2)

Le −W
′

e ·Le ≤ Le ≤ Le +W
′

e ·Le,∀e ∈ E(1) (14)

The criticality adjacency network may be expanded to have more
criticality levels to include more movable cells. Our experience
shows that current level of critical adjacency network is sufficient.

5. THE OVERALL LINEAR PROGRAM AL-
GORITHM

We formulate the optimization problem into an LP program and
perform weighted critical nets optimization. Powered with the crit-
icality adjacency network, the algorithm unifies the objective of
timing optimization and perturbation control into one LP frame-
work.

Furthermore, the slack is also considered for weight adjustment.
We adjust the weight of nets on critical paths according to their
slacks or original delays. Assuming there are top P critical paths
in a circuit, and the delay in the timing report for a path p is tp.
For a net e j , it is possible that the net e j belongs to Pj critical
paths. Let S

′

k,e j
denotes the delay propagation sensitivity of net

e j corresponding to the critical path p. Then, the adjusted delay
propagation sensitivity weight of net e j , which is denoted by S

′

e j
,

becomes

S
′

e j
≥ S

′

p,e j
, p = 1,2, ...,Pj (15)

where,

S
′

p,e j
=

tp

Tmin
·Sp,e j

Tmin = min(tp), p = 1,2, ..,P (16)

Tmin is the shortest path delay among all P critical paths, which is
used to normalize the original delay of all paths. Formula (16) adds
additional weight for paths with larger negative slacks. Using the
adjusted delay propagation sensitivity as net weight, the objective
of the LP program is to minimize the sum of the weighted wire-
length on critical paths. The following formulation is equivalent to
formula (1).

min ∑S
′

e j
·Le j

∀e j → E(0) (17)

The LP is formed under a set of constraints defined in previous
sections. Such as the wire length and capacitive load constraints
(2), (3), and (4), the maximum load constraint (5), and the timing
perturbation constraints (14),etc.

6. TIMING AWARE SPREADING FOR LE-
GALIZATION

The timing optimizer will generate a solution with cell over-
laps. To legalize the placement, timing improvements may de-
crease. It is important that the legalization algorithm should avoid
too much timing degeneration. According to [20] and [21], to
maintain the relative orders among cells during the legalization
helps preserve timing. We use the bin-stretching and Delaunay-
triangulation based spreading algorithms similar to [21] for cell
spreading to reduce overlaps.

We modify the spreading process in [21] to become timing aware
to help cells with higher delay sensitivities move closer toward
their “optimal” regions. The BoxPlace heuristic [22] is an effective
method to reduce the wirelength in detailed placement. In brief, the
BoxPlace moves a cell to the mean of its connected net bounding
boxes to reduce the wire length. We propose a weighted BoxPlace
to improve the cell spreading timing aware.

In Figure 5, e1, e2 and e3 are nets connected to cell A. Figure
5(a) shows the optimal region for cell A, which is the medium of

all cells connected to cell A. Figure 5(b) shows that nets are shrunk
or expanded depending on their delay sensitivity weights. Con-
ceptually, a net with higher delay propagation sensitivity will be
shrunk and a net with lower weight will be expanded. The new
optimal region for cell A shown in Figure 5(b) is better than that
in Figure 5(a) from the timing perspective. To pull cell A to its
optimal region, a timing optimization force is generated on cell A.
The timing force is scaled and vector combined with the spreading
force to generate a timing aware cell spreading force to guide the
movement of a cell. The cell spreading stops once the cells density
distribution satisfies certain criteria, and we legalize the placement.

e1

e2

e3

A

Optimal region
for cell A

e1

e2

e3

A

Optimal region
for cell A

(a) The optimal region for cell
A

e1

e2

e3

A

Optimal region
for cell A

e1

e2

e3

A

Optimal region
for cell A

(b) The weighted optimal re-
gion for cell

Figure 5: Under the weighted nets e1, e2 and e3, the cell’s opti-
mal region changed

7. EXPERIMENTAL RESULTS
We implement the algorithm in C++ and use the commercial tool

MOSEK [23] as the LP solver. Seven circuits from a multi-GHz
processor in 65nm process technology are used for experiments.
The circuits are manually placed and have been optimized by de-
signers to obtain the desired performance. The circuit sizes range
from 6k standard cells to 28k. We take the critical paths above
a certain threshold to optimize, then call the timing aware legal-
izer to remove overlaps. For each circuit, different thresholds are
tested, and the best result is kept. Although those circuits have
been manually optimized, our algorithm still achieved significant
improvements; the result is shown in Table 2.

In table 2, column Gates and Nets are the number of cells and
nets of the testcases. Column MCells is the number of movable
cells in the LP formulation. Column Initial is the initial worst slack
of the circuit. Column Final is the worst slack after the optimiza-
tion. 4slack summarizes the worst slack improvement on each
circuit. Column TNSReduced is the total negative slack improved.
Column Base is the timing baseline we used to measure how much
slack improvement is obtained. If Base equals 0, TNSReduced is
the total negative slack reduced. Because the final worst slack in a
few circuits is positive, we use a base larger than zero to measure
the total slack improvement for those circuits. Note that ckt1 has
a positive initial worst slack. We should point out that it is mean-
ingful to improve a positive worst slack design unit, because any
slack improvement can be traded for power reduction later, where
designer downsizes gates on timing paths with large positive slack
to reduce the power consumption.

Column OrignW L and FinalW L are the initial and final HPWL
wirelength. 4W L is the wirelength change. We can see that most
of wirelength changes are within 0.1%, which implies that the dis-
turbance to the circuits is very small. We did not show the com-
putation timing data because the computation is very fast for all
testcases. The algorithm only handles a small number of cells
and because of the efficient linear formulations, the algorithm runs

Table 2: Experimental results
Testcases Gates Nets MCells Initial Final 4slack TNSReduced Base OrignW L FinalWL 4W L

ckt1 6671 7261 340 22 32 10 297 40 193904 192962 -0.50%
ckt2 8249 9640 89 -15 5 20 412 10 240671 239693 -0.41%
ckt3 9541 12161 92 -33 -15 18 937 0 267661 268240 0.22%
ckt4 13220 14479 164 -54 -30 24 559 0 483479 483037 -0.09%
ckt5 15486 19515 587 -37 -12 25 331 0 432319 436170 0.89%
ckt6 27014 28961 60 -3 12 15 136 15 659269 659171 -0.01%
ckt7 28535 31893 62 -36 -22 14 1211 0 921118 921518 0.04%

very fast, within a few minutes for the largest circuit. By moving
a small number of critical cells, slack can be improved consider-
ately. We observe a slack improvement of 20 picosecond on aver-
age, which is significant considering the circuits have already been
hand-optimized.

8. CONCLUSION
We proposed a new LP-based incremental timing optimizer for

timing optimization in placement for high performance custom de-
signs and ASICs. Our LP framework uses an accurate delay sensi-
tivity based net-weighting method that combines the advantage of
the path-based approach. We further presented a novel criticality
adjacency network concept to formulate cells both on and adja-
cent to critical paths into the optimization framework, which helps
to precisely control the timing perturbation during the optimiza-
tion. In addition, we developed a timing aware spreading method
to preserve timing during the legalization. Our experimental results
showed that the proposed algorithm significantly improved tim-
ing on a set of manually-optimized industry circuits from a 65nm
multi-GHz high performance custom processor.

9. REFERENCES
[1] D. G. Chinnery and K. Keutzer, “Closing the gap between

asic and custom: an asic perspective,” in Proc. Design
Automation Conf., pp. 637–642, 2000.

[2] M. Burstein and M. N. Youssef, “Timing influenced layout
design,” in Proc. Design Automation Conf., pp. 124–130,
1985.

[3] W. E. Donath, R. J. Norman, B. K. Agrawal, S. E. Bello,
S. Y. Han, J. M. Kurtzberg, P. Lowy, and R. I. McMillan,
“Timing driven placement using complete path delays,” in
Proc. Design Automation Conf., pp. 84–89, 1990.

[4] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “Ritual: A
performance driven placement algorithm for small cell ICs,”
in Proc. Int. Conf. on Computer Aided Design, pp. 48–51,
1991.

[5] Y.-C. Ju and R. A. Saleh, “Incremental techniques for the
identification of statically sensitizable critical paths,” in
Proc. Design Automation Conf., pp. 541–546, 1991.

[6] W. Swartz and C. Sechen, “Timing driven placement for
large standard cell circuits,” in Proc. Design Automation
Conf., pp. 211–215, 1995.

[7] A. B. Kahng, S. Mantik, and I. L. Markov, “Min-max
placement for large-scale timing optimization,” in Proc. Int.
Symp. on Physical Design, pp. 143–148, 2002.

[8] A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao,
V. Tiourin, Y. Parasuram, and B. Halpin, “How accurately
can we model timing in a placement engine?,” in Proc.
Design Automation Conf., pp. 801–806, 2005.

[9] M. Marek-Sadowska and S. Lin, “Timing driven
placement.,” pp. 94–97, 1989.

[10] H. Eisenmann and F. M. Johannes, “Generic global
placement and floorplanning,” in Proc. Design Automation
Conf., pp. 269–274, 1998.

[11] B. Halpin, C. Y. R. Chen, and N. Sehgal, “A sensitivity based
placer for standard cells,” in Proc. of Great Lakes symp. on
VLSI, pp. 193–196, 2000.

[12] C. Chen, X. Yang, and M. Sarrafzadeh, “Potential slack: an
effective metric of combinational circuit performance,” in
Proc. Int. Conf. on Computer Aided Design, pp. 198–201,
2000.

[13] B. Halpin, C. Y. R. Chen, and N. Sehgal, “Timing driven
placement using physical net constraints,” in Proc. Design
Automation Conf., pp. 780–783, 2001.

[14] T. T. Kong, “A novel net weighting algorithm for
timing-driven placement,” in Proc. Int. Conf. on Computer
Aided Design, pp. 172–176, 2002.

[15] W. Choi and K. Bazargan, “Incremental placement for timing
optimization,” in Proc. Int. Conf. on Computer Aided Design,
p. 463, 2003.

[16] H. Ren, D. Z. Pan, and D. S. Kung, “Sensitivity guided net
weighting for placement driven synthesis.,” in Proc. Int.
Symp. on Physical Design, pp. 10–17, 2004.

[17] M. Sarrafzadeh, D. Knol, and G. Tellez, “Unification of
budgeting and placement,” in Proc. Design Automation
Conf., pp. 758–761, 1997.

[18] W. C. Elmore, “The transient response of damped linear
networks with particular regard to wide-band amplifiers,”
Journal of Applied Physics, vol. 19, pp. 55–63, Jan. 1948.

[19] P. Gopalakrishnan, A. Odabasioglu, L. Pileggi, and S. Raje,
“Overcoming wireload model uncertainty during physical
design,” in Proc. Int. Symp. on Physical Design,
pp. 182–189, 2001.

[20] H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia,
“Diffusion-based placement migration,” in Proc. Design
Automation Conf., June, 2005.

[21] T. Luo, H. Ren, C. J. Alpert, and D. Z. Pan, “Computational
geometry based placement migration,” in Proc. Int. Conf. on
Computer Aided Design, 2005.

[22] A. A. Kennings and I. L. Markov, “Analytical minimization
of half-perimeter wirelength,” in Proc. Asia and South
Pacific Design Automation Conf., pp. 179–184, 2000.

[23] MOSEK, “http://www.mosek.com,” 2005.

