
An Accurate Sparse Matrix Based Framework for
Statistical Static Timing Analysis

Anand Ramalingam Ashish Kumar Singh Sani R. Nassif
Gi-Joon Nam Michael Orshansky David Z. Pan

Department of Electrical and Computer Engineering, The University of Texas, Austin, TX 78712
Austin Research Laboratory, IBM, Austin, TX 78758

{anandram,asingh,dpan}@cerc.utexas.edu, {nassif,gnam}@us.ibm.com, and orshansky@mail.utexas.edu

ABSTRACT
Statistical Static Timing Analysis has received wide atten-
tion recently and emerged as a viable technique for manu-
facturability analysis. To be useful, however, it is important
that the error introduced in SSTA be significantly smaller
than the manufacturing variations being modeled. Achiev-
ing such accuracy requires careful attention to the delay
models and to the algorithms applied. In this paper, we
propose a new sparse-matrix based framework for accurate
path-based SSTA, motivated by the observation that the
number of timing paths in practice is sub-quadratic based on
a study of industrial circuits and the ISCAS89 benchmarks.
Our sparse-matrix based formulation has the following ad-
vantages: (a) It places no restrictions on process parameter
distributions; (b) It embeds accurate polynomial-based de-
lay model which takes into account slope propagation natu-
rally; (c) It takes advantage of the matrix sparsity and high
performance linear algebra for efficient implementation. Our
experimental results are very promising.

1. INTRODUCTION
As technology has scaled, manufacturing variations have

emerged as a major limiter of design performance. These
variations exhibit themselves as systematic, spatial and ran-
dom changes in the parameters of active (transistor) and
passive (interconnect) components. Furthermore, these vari-
ations are increasing with each new generation of technol-
ogy. Statistical Static Timing Analysis (SSTA) has been
proposed to perform full-chip analysis of timing under such
types of uncertainty, and has been the subject of intense
research recently [1–18]. The result of SSTA is the predic-
tion of parametric yield at a given target performance for a
design.

SSTA algorithms can be classified into two major groups:

1. Block-based [1–6] approaches use a breadth-first traver-
sal of the circuit to compute circuit delay [1]. The de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA USA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

lay pdf is propagated from the primary inputs to the
primary outputs. The major difficulty in block-based
approaches is the introduction of the max operator at
each block, and the need to accurately estimate the
maximum of two random variables in the same form
in which those two variables are defined.

2. Path-based [7–11] approaches rely on an enumeration
of all or a large number of the most critical paths in
the circuit [7]. Considering the case where all paths
are enumerated, the max operator is deferred to the
end of the analysis (i.e. taking the maximum of all the
paths) and therefore does not introduce any inaccuracy
in the computation. A major problem with path-based
approaches is the perception that typical circuits have
an exponential number of paths, making the compu-
tational requirement for such approaches impractical.

While there has been much work on the algorithms for SSTA,
there has been somewhat less work on the accuracy issues.
Some of the sources of inaccuracy in SSTA are: (a) The
basic assumptions underlying static timing analysis, such as
treating a gate as a node without considering the functional-
ity which gives rise to false paths, (b) The delay models used
for gates and wires, and (c) The model for process variations
and their spatial and/or temporal distributions.

The algorithmic error introduced by SSTA algorithms can
be traced back to the application of the max operator, which
is an approximation to the behavior of true circuits, and
which is further approximated in SSTA algorithms [13–15].
While a direct assessment of that error is difficult, we pro-
pose that minimizing the number of max operations would
aid in reducing the error. The algorithm we propose in this
work reduces the number of max operations to one per cir-
cuit.

The model error has been widely recognized and a num-
ber of researchers have made important contributions. The
original parameterized delay form expressed delays and ar-
rival times as explicit linear functions of the process param-
eters [5]. It was later expanded to handle quadratic delay
models that are able to improve the accuracy of delay esti-
mates [12–15]. A related source of error, namely the model-
ing and handling of the slope of signals, has not received as
much attention. In fact, current published approaches typ-
ically make a worst-case estimate of the slope or propagate
the latest arriving slope [5] which can lead to significant er-
ror [19]. The polynomial models we propose in this work

allow high accuracy by using higher order models, and nat-
urally handle the slope and its propagation.

The distribution error, i.e. the error caused by lack of
generality in the modeling of the statistical properties of
the process variations has been the most difficult to deal
with, due to the lack of published realistic manufacturing
variability data. Earlier approaches assumed that process
variables followed normal distributions [7], but recent work
has shown how more general distributions can be handled,
and how spatial and systematic correlation can be accom-
modated [18]. In this work, we make no assumptions about
the character or distribution of any process parameter.

This paper proposes a new approach to parameterized
path-based SSTA. The proposed method starts with a pre-
processing step of path enumeration and delay computation
of all the paths in a parameterized form, which we then
efficiently represent using a sparse matrix. We model the
delay and slope of each component in the circuit using a
general parameterized polynomial form which can include
the influence of: (a) Input waveforms and output loading,
(b) Manufacturing variations in parameters like threshold
voltage and channel length, and (c) Operating environment
variations in parameters like power supply voltage and tem-
perature. Next, the path delays in this same parameterized
form are computed by a natural extension to the gate delay
formulation. Given a sample of values from the distribution
of manufacturing variations, this computation is shown to
be simply a matrix/vector multiply to produce a vector of
delays for each path in the circuit. Finally, the maximum
circuit delay is obtained by applying the max operator on
the path delays. The major attributes of this work are:

1. We show that the number of paths in practice is sub-
quadratic in number of gates by evaluating the number
of paths in the ISCAS89 benchmarks as well as two
different families of industrial circuits.

2. It can handle global, spatial and intra-die variations in
one unified framework.

3. It can compute the delay based on an accurate propa-
gation of slope along all paths.

4. It minimizes the impact of the error caused by approx-
imating the max function commonly used in SSTA.

5. It is independent of the underlying distribution of the
process parameters, and is not restricted to the usual
Gaussian distribution.

The remainder of this paper is organized as follows. In Sec-
tion 2 we first motivate the path based approach by showing
that it is indeed practical for many circuits. We then show
our higher order (more than linear) delay models in Sec-
tion 3, and describe our approach to the delay modeling of
practical static CMOS gates. With those models in hand,
we then describe our matrix based formulation for STA and
SSTA without slope in Section 4 and SSTA with slope in Sec-
tion 5. We demonstrate its application to the ISCAS family
of sequential benchmark circuits in Section 6 and conclude
in Section 7.

2. A CASE FOR PATH BASED SSTA
CAD folklore holds that the number of latch to latch paths

in an arbitrary network can be exponential in the number

of gates. This is indeed a theoretical upper bound predicted
by graph theory. A key observation in this paper, however,
is that for the vast majority of practical circuits, the num-
ber of actual paths is far less than this theoretical upper
bound, and is quite manageable. With the easy availability
of large amounts of memory in modern computers, storing
and manipulating million of paths is eminently practical.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

10 100 1000 10000 100000

p
at

h
s

gates

Figure 1: The number of paths versus the number
of gates in ISCAS’89 benchmarks. By linear re-
gression we get the following relationship: paths ≈
0.04 × gates1.8.

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1000 10000 100000 1e+06 1e+07

p
at

h
s

gates

Figure 2: The number of paths versus the number of
gates for one family of 10 industrial benchmarks. By
linear regression we get the following relationship:
paths ≈ 0.12 × gates1.42.

To test our conjecture, we enumerated all the latch to
latch, primary input to latch, and latch to primary output
paths in the ISCAS sequential circuit benchmarks [20] (see
Figure 1), and found that the paths ≈ 0.04 × gates1.8. This
is hardly the type of explosive growth that might cause one
to completely discount a family of algorithms. But since the
ISCAS benchmarks are small compared to modern designs,
we further extended our analysis to 2 different families of
industrial benchmarks, one for large circuits (much larger
than the ISCAS benchmarks), and one for moderate sized
circuits (comparable to the ISCAS benchmarks).

We enumerated all paths for the circuits in those two fam-
ilies. For the first and larger family, shown in Figure 2, we

saw that the number of paths ≈ 0.12 × gates1.42. For the
second and smaller family, we found paths ≈ 0.43×gates1.17.

Clearly, the demonstration above should not be taken as
sufficient license to propose a purely path-based SSTA algo-
rithm. However, it does demonstrate that such an algorithm
can be practical for a significant number of cases. In the
broader picture, one can imagine a pairing of path-based
and block-based algorithms with one being applied when
the enumeration of paths results in a manageable number of
paths, while the other gets applied to those circuits where
the number of paths exceeds some suitable threshold.

3. PARAMETERIZED GATE DELAY MOD-
ELING

The advantage of path-based SSTA is that it can naturally
handle accurate nonlinear delay models. In this section, we
present a parameterized gate delay model which explicitly
takes slope propagation into account. In current published
approaches, typically worst-case estimate of the slope or the
latest arriving slope is propagated [5] which can lead to sig-
nificant error [19]. By modeling the input slope in the gate
delay equation we avoid this modeling error.

In order to generate the cell delay model for every gate
in the library, we simulate each gate varying the process
parameters uniformly in the range µ ± 3σ with 3σ = 0.2µ.
The load capacitance CL and input slope Sin were also var-
ied. The samples of Sin were generated in the range of 10
to 100 ps and samples of CL were generated in the range of
1 to 10 fF. Then the values were fit to the delay equation
given below:

D = a
d
0 + a

d
1L + a

d
2L

2 + a
d
3Vth + a

d
4V

2
th+

CL

“

b
d
1L + b

d
2L

2 + b
d
3Vth + b

d
4V

2
th

”

+

α
d
CL + β

d
Sin + γ

d
SinCL (1)

Similarly, the output slope was also fit to the same canon-
ical form as delay. Note that both the output delay equa-
tion Eq. (1) and the output slope equation are explicitly
dependent on input slope Sin. It should be noted that our
formulation does not restrict the model order in any way,
and higher order models are possible with no change to our
methodology.

4. SPARSE MATRIX BASED SSTA WITH-
OUT SLOPE PROPAGATION

In this and next sections, we present the sparse-matrix
based SSTA formulation. First, we calculate the path de-
lays without considering slope propagation and in the next
section we take the slope into account. Let the delay of gate
j from input a to the gate output be dja

∈ R. Later we
will generalize the gate delay as a function of parameters z,
dja

= f(z).

4.1 Sparse-Matrix Based Static Timing Anal-
ysis (STA)

Consider the circuit shown in Figure 3. This circuit has
4 paths and 6 gates. Three of the gates have two inputs
which we will denote by a and b. We define an incidence
matrix where each row represents a path, and each column
represents a gate input. The columns are sorted by gate

g1

g2

g3

g4

g5

g6

a

b

a

b

a

b

Figure 3: Example circuit for illustrating the matrix
formulation. For 2-input gates, the input pins are
identified by the labels a and b.

topological order. The path-gate incidence matrix for the
example is given by:

A =

0

B

B

B

B

@

g1 g2 g3 g4a
g4b

g5a
g5b

g6a
g6b

p1 1 1 0 1 0 0 0 1 0

p2 1 1 0 0 0 1 0 0 1

p3 1 0 1 0 0 0 1 0 1

p4 1 0 1 0 1 0 0 1 0

1

C

C

C

C

A

(2)

Since each path only consists of a small number of gates,
matrix A is a very sparse. The delay of the gates can be
written as gate delay vector:

dgate =
ˆ

d1 d2 d3 d4a
d4b

d5a
d5b

d6a
d6b

˜>

(3)

where d4b
is the delay from input pin b of gate 4 to its

output. The delay of a path is given by the addition of gate
delays along that path. Thus the path delays is given simply
by the multiplication of the path-gate incidence matrix with
the gate delay vector:

dpath = Adgate (4)

The overall circuit delay is given by the max of all path
delays:

dcircuit = max(dpath) (5)

Eq. (5) represents path based Static Timing Analysis (STA).
We note that STA in this form is essentially a sparse matrix-
vector multiplication, and that it requires only a single max
operator to find the circuit delay. There are many data
structures and algorithms developed for efficient sparse ma-
trix manipulation which we can exploit [21]. Now we turn
our attention to the Statistical STA (SSTA).

4.2 Sparse Matrix based Statistical Static Tim-
ing Analysis (SSTA)

In this section, we drop the input specific delay for the
sake of convenience. Let the delay of gate j be a function
of r parameters zj ∈ R

r. Thus dj = f(z) is a symbolic
function of parameters instead of a real number.

dj =
r
X

k=1

cjkzjk = c>

j zj (6)

Note that z need not consist only of linear parameters. For
example, a possible second order gate delay model in channel

length L and load CL might be:

zj =
ˆ

1 L L2 CL CLL
˜>

(7)

The same formulation can trivially handle a mixed model
such as:

zj =
ˆ

1
√

L L CL CLeL
˜>

(8)

The gate delays of the circuit in Figure 3 can be written
as,

2

4

d1

. . .

d6

3

5 = diag(c>

1 , . . . , c>

6)

2

4

z1

. . .

z6

3

5

dgate = C>Z (9)

The path delays are obtained by multiplying the path-gate
incidence matrix in Eq. (2) and the gate delay vector in
Eq. (9)

dpath = Adgate

= AC>Z (10)

With Eq. (10) we have now extended the path delay cal-
culation in Eq. (4) to include the dependence of delay on
process parameters. Assuming that these process parame-
ters are random variables with some well defined joint prob-
ability density function from which we can sample, our goal
is to show how we can generalize this result to calculate the
distribution of path delays, and by using the traditional max
function, the distribution of overall circuit delay.

If the gate delay vector due to kth random sample is given

by d
(k)
gate then path delay vector in Eq. (10) is given by

d
(k)
path = AC>Z(k) (11)

Now if we take ` samples then Eq. (11) can be generalized
as

h

d
(1)
path . . . d

(`)
path

i

= AC>
ˆ

Z(1) . . . Z(`)
˜

(12)

To get the circuit delay distribution, we apply Eq. (5) to
Eq. (12)
h

d
(1)
circuit . . . d

(`)
circuit

i

=
h

max(d
(1)
path) . . . max(d

(`)
path)

i

(13)

This is essentially a Monte Carlo simulation expressed in ma-
trix form. A histogram of the circuit delay vector in Eq. (13)
produces the circuit delay distribution. Thus Eq. (13) repre-
sents path based Statistical Static Timing Analysis (SSTA)
ignoring slope. In this form, SSTA is a natural extension
of STA as written in Eq. (5) and is simply in the form of
a matrix-matrix multiplication. We make a few remarks
about the matrices. It is important to note that AC> ma-
trix is a sparse matrix, which allows for efficient storage as
well as fast computation. The Z vector, though dense, de-
pends only on the number of gates and not on the number
of paths.

5. SPARSE MATRIX BASED SSTA WITH
SLOPE PROPAGATION

We now extend our delay model to include slope propa-
gation. It is important to note that the output slope of gate
j cannot be specified unless we know which path it belongs

to. For example, in Figure 3, gate g4 will have two different
slopes namely:

1. s14 due to path 1 (g1 → g2 → g4a
→ g6a

), and

2. s44 due to path 4 (g1 → g3 → g4b
→ g6a

).

We use the same canonical form to express both delay and
slope, but we restrict the dependence of delay and output
slope on the input slope to be linear. This linearity is re-
quired in order to preserve the canonical form as delays are
accumulated along a path. We use the superscripts d and
s to distinguish among them. We delineate the input slope
to a gate by the subscript in. The gate delay dij and the
output slope sij of gate j in path i is given by:

dij = λ
d
j sin + ω

d
j (14)

sij = λ
s
jsin + ω

s
j (15)

Where the ω terms represent the terms not related to the
slope in the canonical form of Eq. (6), i.e. ω = c>z. From
Eq. (14), one can see that the input slope at all the gates is
required to calculate the gate and path delays. One way to
solve for the input slope is to look at each path p separately
and obtain the slope of each gate in an individual path. This
method is illustrated using the Figure 4, and this simple
circuit consists of inverters which allows us to conveniently
drop the input-pin specific subscripts.

g1

g2

g3

s0

s11 s12

s21 s23

Figure 4: A simple circuit to illustrate SSTA with
slope propagation. Here s0 denotes the slope at the
primary input. The output slope at gate g1 in path
1 is denoted as s11 and in path 2 is denoted as s21.

Let sp be the column vector in which the values of slopes
along path p are listed. Assume the values are listed in the
topological order of the gates along path p.

To illustrate, consider the path p = 1, through gates g1

and g2 in Figure 4. The column vector s1 is given by

s1 =

2

4

s0

s11

s12

3

5 (16)

and related by Eq.(15) as
2

4

s0

s11

s12

3

5 =

0

@

0 0 0
λs

1 0 0
0 λs

2 0

1

A

2

4

s0

s11

s12

3

5+

2

4

ωs
0

ωs
1

ωs
2

3

5

s1 = Λs
1s1 + ω

s
1 (17)

where s0 = ωs
0.

In general Eq. (17) is valid for any arbitrary path con-

taining t gates. Thus, s1 ∈ R
t+1, Λs

1 ∈ R
(t+1)×(t+1) is lower

diagonal matrix, and ω
s
1 ∈ R

t+1. If the circuit has p paths,

then the Eq. (17) for all the p paths can be succinctly cap-
tured into one single equation shown below:

2

4

s1

. . .

sp

3

5 = diag(Λs
1, . . . ,Λ

s
p)

2

4

s1

. . .

sp

3

5+

2

4

ω
s
1

. . .

ω
s
p

3

5

s = Λss + ω
s (18)

From Eq. (18) we can solve for the slope s in the circuit

s = (I − Λs)−1
ω

s (19)

Lemma 1. The matrix (I − Λs)−1 is non-singular. Thus

its inverse exists.

Proof. The proof is omitted due to space constraints.

The equation for gate delays is similar to Eq. (18) and can
be generalized to make the gate delay a function of param-
eters as in Eq. (6), and Eq. (9),

dgate = Λds + ω
d = Λd(I − Λs)−1

ω
s + ω

d

=
“

Λd(I − Λs)−1(Cs)> + (Cd)>
”

Z = DZ (20)

Once the gate delays are calculated, we can find the path de-
lays using Eq. (11). The circuit delay is given by the max of
all path delays. Since delay and slope are a function of pro-
cess parameters, by taking ` samples of process parameters
one can generate ` samples of circuit delay. A histogram on
these samples gives us the circuit delay distribution. Thus
SSTA can be performed considering the slope and process
variations.

6. EXPERIMENTAL RESULTS
We implemented our algorithm using a combination of

awk/perl scripts and C++. We report the results of ex-
periments run on the ISCAS89 benchmarks using a 64-bit
Linux machine with 16 GB RAM and running at 3.4 GHz.
The delay models were generated using the 90 nm Berke-
ley Predictive Technology Model [22]. In the experiments
only latch-to-latch paths were considered for timing. Thus
in Table 1 only the latch-to-latch paths and the number of
gates between the latches are listed. We modeled the effect
of variations in channel length and threshold voltage, and
assumed that the variance of these parameters was such that
3σ = 0.2µ. We modeled the impact of spatial correlation on
parameter variations, and therefore required placement in-
formation for the circuits, which we obtained by placing the
circuits using Dragon [23]. To properly account for random
die-to-die (global) and within-die (intra) variations along
with the spatial component mentioned above, we modeled
each process parameter zg,i as:

zg,i =
√

0.5 z
global
g,i +

√
0.25 z

intra
g,i +

√
0.25 z

spatial
g,i (21)

We performed 10000 Monte Carlo simulations for each of
the ISCAS benchmark circuits. The results are summarized
in Table 1. The table contains the number of gates and paths
along with the runtime taken by the algorithm to compute
the delay statistics of the circuit. Also shown is the break-
down of effort among (a) Path enumeration (implemented in
awk), (b) Sparse matrix generation (implemented in perl),
and (c) Matrix multiplication (implemented in C++). Note
that the path generation step takes a modest portion of the
overall runtime, less than 21% for smaller benchmarks and

nearly 5% for bigger benchmarks, while the parameterized
path delay generation, which builds the various matrices,
and the matrix multiplication take the bulk of the runtime.

0.1

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

ru
n
ti
m

e
t
[s

]

Number of paths

proposed
literature

Figure 5: The runtime of the proposed algorithm
with respect to the number of paths in the cir-
cuit. By linear regression we get the following re-
lationship: runtime ≈ 0.006 × paths1.09. The runtimes
for Monte-Carlo simulations of the ISCAS89 bench-
marks as reported in [18] are also plotted. The run-
times for bigger benchmarks are comparable.

The runtime versus the number of paths is shown in Fig-
ure 5. The relationship between number of paths and run-
time is approximately

runtime ≈ 0.006 × paths1.09

which is nearly linear in the number of paths, and shows that
our algorithm is scalable. We include in Figure 5 the runtime
for Monte-Carlo simulations reported in [18] noting that the
machine specification are comparable, and that the number
of Monte-Carlo samples is identical. The runtimes are quite
close, especially for the larger benchmarks, inspite of (a) the
use of a simpler linear delay model, (b) not accounting for
slope propagation, and (c) a complete compiled code (C++)
implementation in [18].

The number of simulations performed in our experiment
(10000) was set high in purpose to establish an accurate re-
sult. But a run with one tenth (1000) the number of samples
would normally be sufficient to calculate the mean and vari-
ance of each circuit delay to engineering accuracy. Further-
more, one can devise an adaptive strategy where non-critical
paths non-critical paths are pruned early and skipped from
future sample generation and matrix multiplication phases.
We believe that we can easily achieve two order of mag-
nitude speedup over the run times quoted, but will defer
further discussion to future work.

7. CONCLUSION AND FUTURE WORK
This paper demonstrates that it is possible and practical

to perform path based statistical static timing analysis, and
that such an analysis can be written compactly in matrix no-
tation, allowing the use of standard highly optimized linear
algebra techniques. The major advantage of this formulation
is that it places no restrictions on process parameter distri-
butions. It embeds accurate polynomial-based delay model
which takes into account slope propagation naturally. With

Table 1: Path-gate statistics of ISCAS89 benchmarks and runtime for 10000 simulations.
circuit gates paths sparsity [%] runtime [s] percentage runtime [%] time per

generating matrix total generating matrix matrix
paths matrix multiply paths matrix multiply multiply [s]

s27 8 9 46.13 0.02 0.02 0.07 0.11 18 18 63 7.00e-06
s1196 73 43 11.61 0.15 0.07 0.60 0.82 18 8 73 6.00e-05
s1238 73 43 11.61 0.12 0.04 0.39 0.55 21 7 70 3.90e-05
s208 50 72 10.48 0.07 0.04 0.49 0.60 11 6 81 4.90e-05
s386 92 86 8.56 0.08 0.07 0.57 0.72 11 9 79 5.70e-05
s820 187 207 3.42 0.15 0.13 1.14 1.42 10 9 80 1.14e-04
s298 98 212 4.97 0.10 0.11 1.04 1.25 8 8 83 1.04e-04
s832 188 219 3.41 0.15 0.12 1.07 1.34 11 8 79 1.07e-04
s510 162 230 4.02 0.15 0.19 1.39 1.73 8 10 80 1.39e-04
s641 237 238 12.82 0.41 2.14 4.80 7.35 5 29 65 4.80e-04
s344 154 323 6.21 0.17 0.43 2.33 2.93 5 14 79 2.33e-04
s349 155 333 6.11 0.21 0.40 1.70 2.31 9 17 73 1.70e-04
s382 133 353 4.21 0.16 0.17 1.18 1.51 10 11 78 1.18e-04
s1488 307 366 3.36 0.31 0.51 3.33 4.15 7 12 80 3.33e-04
s1494 306 375 3.37 0.36 0.52 3.33 4.21 8 12 79 3.33e-04
s526n 172 377 2.66 0.15 0.20 1.75 2.10 7 9 83 1.75e-04
s526 171 379 2.67 0.15 0.12 1.76 2.03 7 5 86 1.76e-04
s444 160 482 4.18 0.21 0.27 1.60 2.08 10 12 76 1.60e-04
s953 328 723 2.54 0.40 0.76 3.93 5.09 7 14 77 3.93e-04
s713 250 2650 17.54 5.13 36.47 50.42 92.02 5 39 54 5.00e-03
s5378 1938 6858 0.66 4.44 9.62 20.28 34.34 12 28 59 2.00e-03
s1423 566 35990 5.61 37.42 255.02 384.52 676.96 5 37 56 3.80e-02
s35932 14773 122997 0.16 109.93 436.57 1041.31 1587.81 6 27 65 1.03e-01
s9234 5158 227837 0.74 319.25 2030.37 4236.31 6585.93 4 30 64 4.20e-01
s38584 15351 850422 0.25 1121.40 6925.62 11612.28 19659.30 5 35 59 1.15
s13207 7070 1005680 0.63 1575.20 10385.31 15364.06 27324.57 5 38 56 1.52
s38417 21633 1389348 0.13 1349.61 5779.38 13128.55 20257.54 6 28 64 1.30

the exception of the need to have the slope appear linearly,
fairly arbitrary models can be trivially handled using this
framework.

Data was presented to show that many practical circuits
have a bounded number of paths, making such an analy-
sis possible. It should be noted that this demonstration
should not be taken as sufficient license to propose a purely
path-based SSTA algorithm. For example, the s15850 IS-
CAS89 benchmark circuit had ≥ 150× 106 paths and could
not be handled. We plan to explore efficient non-critical
path removal techniques to reduce the matrix sizes. In ad-
dition, we plan to study further speedup techniques, extend
the formulation to handle wires, and show how incremental
computation may be done in the framework.

Acknowledgment
This work is partially supported by SRC, IBM Faculty Award,
Fujitsu, Sun, and Intel equipment donation.

8. REFERENCES
[1] Jing-Jia Liou, Kwang-Ting Cheng, Sandip Kundu, and Angela Krstic. Fast

statistical timing analysis by probabilistic event propagation. In DAC ’01:
Proceedings of the 38th conference on Design automation, pages 661–666, 2001.

[2] Aseem Agarwal, David Blaauw, Vladimir Zolotov, and Sarma Vrudhula.
Computation and refinement of statistical bounds on circuit delay. In DAC
’03: Proceedings of the 40th conference on Design automation, pages 348–353,
2003.

[3] Anirudh Devgan and Chandramouli Kashyap. Block-based static timing
analysis with uncertainty. In ICCAD ’03: Proceedings of the 2003 IEEE/ACM
international conference on Computer-aided design, pages 607–614, 2003.

[4] Hongliang Chang and Sachin S. Sapatnekar. Statistical timing analysis
under spatial correlations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(9):1467–1482, 2005.

[5] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and
S. Narayan. First-order incremental block-based statistical timing
analysis. In DAC ’04: Proceedings of the 41st annual conference on Design
automation, pages 331–336, 2004.

[6] Jiayong Le, Xin Li, and Lawrence T. Pileggi. STAC: statistical timing
analysis with correlation. In DAC ’04: Proceedings of the 41st annual conference
on Design automation, pages 343–348, 2004.

[7] Anne E. Gattiker, Sani R. Nassif, Rashmi Dinakar, and Chris Long.
Timing yield estimation from static timing analysis. In ISQED ’01: 2nd
International Symposium on Quality of Electronic Design, pages 437–442, 2001.

[8] Jing-Jia Liou, Angela Krstic, Li-C. Wang, and Kwang-Ting Cheng.
False-path-aware statistical timing analysis and efficient path selection for
delay testing and timing validation. In DAC ’02: Proceedings of the 39th
conference on Design automation, pages 566–569, 2002.

[9] Aseem Agarwal, David Blaauw, Vladimir Zolotov, Savithiri
Sundareswaran, Min Zhao, Kaushik Gala, and Rajendran Panda.
Path-based statistical timing analysis considering inter and intra-die
correlations. In ACM/IEEE International Workshop on Timing Issues, 2002.

[10] J. A. G. Jess, K. Kalafala, S. R. Naidu, R. H. J. M. Otten, and
C. Visweswariah. Statistical timing for parametric yield prediction of
digital integrated circuits. In DAC ’03: Proceedings of the 40th conference on
Design automation, pages 932–937, 2003.

[11] Michael Orshansky and Arnab Bandyopadhyay. Fast statistical timing
analysis handling arbitrary delay correlations. In DAC ’04: Proceedings of the
41st annual conference on Design automation, pages 337–342, 2004.

[12] Yaping Zhan, Andrzej J. Strojwas, Xin Li, Lawrence T. Pileggi, David
Newmark, and Mahesh Sharma. Correlation-aware statistical timing
analysis with non-gaussian delay distributions. In DAC ’05: Proceedings of the
42nd annual conference on Design automation, pages 77–82, 2005.

[13] Lizheng Zhang, Weijen Chen, Yuhen Hu, John A. Gubner, and Charlie
Chung-Ping Chen. Correlation-preserved non-gaussian statistical timing
analysis with quadratic timing model. In DAC ’05: Proceedings of the 42nd
annual conference on Design automation, pages 83–88, 2005.

[14] Vishal Khandelwal and Ankur Srivastava. A general framework for
accurate statistical timing analysis considering correlations. In DAC ’05:
Proceedings of the 42nd annual conference on Design automation, pages 89–94,
2005.

[15] Hongliang Chang, Vladimir Zolotov, Sambasivan Narayan, and Chandu
Visweswariah. Parameterized block-based statistical timing analysis with
non-gaussian parameters, nonlinear delay functions. In DAC ’05: Proceedings
of the 42nd annual conference on Design automation, pages 71–76, 2005.

[16] Khaled R. Heloue and Farid N. Najm. Statistical timing analysis with
two-sided constraints. In ICCAD ’05: Proceedings of the 2005 IEEE/ACM
international conference on Computer-aided design, pages 829–836, 2005.

[17] Debjit Sinha and Hai Zhou. A unified framework for statistical timing
analysis with coupling and multiple input switching. In ICCAD ’05:
Proceedings of the 2005 IEEE/ACM international conference on Computer-aided
design, pages 837–843, 2005.

[18] Jaskirat Singh and Sachin S. Sapatnekar. Statistical timing analysis with
correlated non-gaussian parameters using independent component
analysis. In ACM/IEEE International Workshop on Timing Issues, 2006.

[19] David Blaauw, Vladimir Zolotov, and Savithri Sundareswaran. Slope
propagation in static timing analysis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 21(10):1180–1192, 2002.

[20] Franc Brglez, David Bryan, and Krzysztof Koźmiński. Combinational
profiles of sequential benchmark circuits. In Proc. of ISCAS, pages
1929–1934, 1989.

[21] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2003.

[22] Yu Cao, Takashi Sato, Michael Orshansky, Dennis Sylvester, and
Chenming Hu. New paradigm of predictive MOSFET and interconnect
modeling for early circuit simulation. In Proceedings of Custom Integrated
Circuits Conference, pages 201–204, 2000.

[23] Maogang Wang, Xiaojian Yang, and Majid Sarrafzadeh. Dragon2000:
standard-cell placement tool for large industry circuits. In ICCAD ’00:
Proceedings of the 2000 IEEE/ACM international conference on Computer-aided
design, pages 260–263, 2000.

